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Abstract. An outline is given of some new results for collisionless radiation in Bianchi
type IX cosmologies. An interesting new effect is displayed which distorts the pattern of
any microwave temperature anisotropy from the quadrupole + dipole shape previously
predicted in these models.

I. Introduction

This paper presents an outline of several new results for rotating
homogenous anisotropic cosmologies containing collisionless radiation.
A fuller account has been submitted for publication elsewhere.

We concentrate on Bianchi type IX homogeneous cosmologies
[1-5] which contain collisionless radiation ("neutrinos") and in which
there may be rotation. A type IX metric may be written [3]

ds2=~dt2 + R2(t)efj

β^σίσj, (1.1)

where βtj is a 3 x 3 symmetric traceless matrix, not in general diagonal,
and the σl obey the curl relations of type IX [2, 3]:

dal = ̂ £ijka
j Λσk. (1.2)

In dealing with collisionless radiation we write the homogenous
stress tensor [6—8]

t}qμqv(q0Γίd*q (1.3)

where the components qα are expressed in the {dt, σ1} basis of Eq. (1.1)
anά(q°}2 = R~2elj

2βqiqj. Also, d*q = dq1dq2dq3.
For a collisionless system F(qt, t) is a solution of the collisionless

Boltzmann equation, and hence is a function only of constants of the
geodesic motion [7]. F therefore can be expressed solely as a function
of the three quantities kt:

ki = qi(t0) (1.4)
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which are simply the values of the momentum components at some
"initial time" ί0. The geodesic equation is [9]

dt

where qk = R~2e^l

2βql. According to Eq. (1.5) q2 = <Mj is constant,
so one has

q^ = k2 = kiki. (1.6)

A less obvious result from Eq. (1.5) is that the Jacobian

that is, the volume integration element is conserved:

(1.7)

Combined with Eq. (1.6), this shows that the angular integration element
is also conserved:

dn3 dφ = dm3 dφk (1.8)

where nf = qjq, φ = aτctan(q1/q2), m{ = kjk and φk = arctan(/c1//c2).
Because the only nontrivial coordinates for the neutrino motion

are τt3 and φ, it is important to realize that the conservation of the simplectic
form dn^Adφ by the motion implies the existence of a Hamiltonian.
In the Hamiltonian formulation n3 and φ are the coordinate and con-
jugate momentum in a time dependent 1 -dimensional Hamiltonian system.
The Hamiltonian is found to be

H = n°ΞΞR-i(e~2βninJ)*. (1.9)

The "phase space" for this Hamiltonian system is the unit sphere of
neutrino directions.

The form of the integral in Eq. (1.3) for T00 and the corresponding
form for the spatial stresses shows that

where one holds all quantities except β constant in the derivative on the
right. The quantities Ttj are the components of the stress tensor expressed
in an orthonormal tetrad {dt, ω1} with ωi = R~1e^j

βσj. Eq. (1.10)
is analogous to one found by Misner [6] for type I.

None of the results in this section have made use of the field equations.
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II. The Lagrangian Formulation

We consider a distribution function describing neutrinos which
were thermal at one instant (the production, or decoupling, instant).
At that instant they had a fluid-like stress tensor in their rest frame, and
this rest frame had a definite velocity Ua. The distribution function was
thus of the form F(paU

a/Td), where Td is the temperature at the de-
coupling instant, and pa (the components of the momentum at the de-
coupling instant) and l/α are henceforth to be expressed in the {at, ω1}
frame. That is,

p' = R^er-/dkj; (p°)2 = R^2 e^2"' ktkj , (2.1)

where we take the decoupling instant td as the initial time and kt = qt(t^
as the initial conditions for the subsequent evolution of the problem.
Also Rd = R(td) and βd = β(td) Rotation can be shown to be equivalent
to non zero Ut.

Substituting Eqs. (2.1) into Eq. (1.3) for the stress tensor, and partially
evaluating the resultant integral one obtains

) ]. (2.2)
Here

Qv = av(TdRd/R)4 (2.3)

where av is the "Stefan-Boltzmann" constant appropriate to the type of
particles under consideration, and TdRd/R is the adiabatic law for the
decrease of temperature. The quantity Vv is defined by

4π[l + Vv(β, ί)] =l(eΓJ

2βninj)*\:U0(e;b

2'dmamb)*-U^
(2.4)

The 17° and Ut are the components in the [dt, ω1} frame.
Eq. (2.4) for the "potential" Vv is analogous to one defined by Misner [6]

for type I, where the denominator in Eq. (2.4) reduces to unity. Because
the denominator of Eq. (2.4) is bounded above and below one has
immediately that

-lVvI(f), (2.5)

where Vvl is Misner's type I potential [6] and D+ are the bounds on the
denominator in Eq. (2.4). Now for large \β\, Vvl is exponentially steep,
so the potential Vv(β, t) has equipotentials which for large anisotropy are
similar to those of Vvl(β).

By considering the implications of the conservation of the number
of neutrinos, one can prove the following inequality:

Since the proof is rather long, we shall not give it here.

1*
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In view of Eq. (1.10), and techniques developed by Misner [3, 6]
one concludes that the

Ttj - i δtj fkk = Gij - ^Stj Gkk

equations can be obtained by the variation of β in the Lagrangian

where

σ.j = \\(eβ] e~β + e ~ β ( e β ) ' ] ί j (the dot means time derivative);

ρg = ^R~2 , (,R is taken as a given function of time),
and

Vg(β] = i trace(e4' - e~ 2β + 1) . (2.8)

It is possible to parametrize the matrix β by giving the Euler angles
φ, θ, ψ defining the orientation of the principal axes of the metric, and
two parameters, β+ and β_ which are linear combination of the eigen-
values of β. (Recall β is traceless.) Because the trace operation is rotation
invariant, Vg is independent of φ, 0, and ip.

Misner [6] has shown that in the large anisotropy non-rotating
case, the system point, described by the parameters /?+, obeys

dβ+
dΩ

dβ-
(2.9)

where Ω = — ln(R/Rmax) + const. In the rotating case Eq. (2.9) still
holds. Additionally Misner [6] has shown that Fv/ has equipotential
contours of triangular shape, and that the position of a "wall" due to
FvJ (i.e. a region where Fv/ becomes effective in affecting the motion)
moves outward with a (d/dΩ) speed of order unity as Ω increases (i.e. as
the model nears the singularity). Because of Eq. (2.5) a similar result
holds in type IX for Vv(β, tj.

Let us now consider the evolution of the model as Ω increases,
approaching the singularity. We assume that the anisotropy is large.
(Roughly this means that the position of the potential walls, βw, satisfies
βw > 1). From the analysis above we see that the system point can reach
the Vv(β, t) wall at most once during the large anisotropy regime. Misner
has shown that such collisions result in a quick reflection after which the
system point moves in the opposite direction from the wall. (Misner [6]
dealt with type I but because of Eq. (2.5) the result applies here.) Because
of the triangular contours of Fv, the system point can never again reach
a wall of Vv(β, t). Hence the entire large anisotropy evolution after the
single encounter is dominated by the potential Vg. But Vg is independent
of θ, φ, and ψ so ,̂ the total angular momentum formed in the usual
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way from the momenta conjugate to the Euler angle coordinates, is
constant throughout most of the large anisotropy evolution.

Because the Vv potential does not affect the motion after the single
encounter, the results of Misner [10] for mixing in non-rotating models
apply to these models as well. Rotation does not interfere with mixing.

III. Small Anisotropy Calculations;
the Microwave Temperature Anisotropy

If one assumes that some sort of dissipative process such as the
neutrino viscosity suggested by Misner [6] reduces the anisotropy β
(and its derivatives) and the quantities \Ui\ to small values by the de-
coupling epoch (in a discussion of ^-neutrinos this is a temperature of
~ 1010 K), then a small anisotropy calculation can be made.

The potential Vg in that case becomes negligible in the Lagrangian
because ρg is small compared to ρv. (Only at the present epoch, when
T~3K, is ρgccR~2 perhaps comparable to ρvσ:R~4.} In the small
anisotropy limit, Fv reduces to the Vvl defined by Misner (to within a
constant additive factor):

const. (3.1)

where β = β — βd. This simple-harmonic form can be exploited in the
Lagrangian, which reduces to

1

where β is parametrized:

Σ

1/30,

J/302 1/30S
(3.3)

The decoupling value, βd, can be considered diagonal so only β{ and βd

2

are nonvanishing.
A Lagrangian of the form (3.2) is analogous to the small anisotropy

one found in type I by Misner [6], except that here we have more variables,
describing the possibility that the principal axes may rotate. We find
solutions similar to Misner's type I solutions.

While the model is radiation dominated, if the neutrinos are not too
small a fraction of the matter present, the βγ, Y= 1 ••• 5 oscillate with
amplitude oc R~* about the point βd

γ.
If however, one supposes that there is also some baryon matter

present, then the radiation density ρoc jR~4 will eventually drop below
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the baryon matter density, ρ f eoc K~3. In realistic models this will occur
at temperatures of ~3x 104K (high density model) to 3 x W2K (low
density model).

After the model becomes baryon-matter dominated, again in analogy
with Misner's [6] results, we find that the βγ motion is strongly damped
(because of the different time dependence of R). We find

dβy

dΩ
(3.4)

where the subscript "1" indicates the value of a quantity at the instant
ti when the matter first became dominant. We conclude that subsequent
to ίls (β - βd)γ is essentially constant at a value of the order of its value at ̂ .

It is not difficult to show that the observed directional temperature
of these neutrinos, or of photons, which behave similarly once the universe
becomes transparant, has the form:

•fficdScSΛ+UtSi+' . (3.5)

Here st are the direction cosines of the momentum of photons being ob-
served and TO is a mean temperature. The quadrupole term (β — jf^)^ Sj is
of order \β — βd\ and the dipole (Doppler) term £7^ is of the order of |£7 | if
the observer is at rest in the homogeneous frame. The observed smallness
of the blackbody anisotropy [11] implies that both these terms are of the
order of 10~3 or smaller. It has therefore been assumed that the next order
terms will be order (A T/T}2 and hence unobservable. However, a
careful analysis of the temperature anisotropy shows that there are some
second order terms of the form \β\ \β — βd\. The quantity β is invariantly
defined because it appears in Vg and need not be small. The only ob-
servational determination of \β\ so far is Sandage's [12] result that the
deceleration parameter suggests a dosed universe. One writes the
expansion law (see [4, 5, or 6]):

3(R/R)2 = TOO + K <7y + Qe(
va ~ !) (3 6)

The Robertson-Walker form has Va = 0. If Va > 1 then the k = +1
y y

term (i.e. — ρ g = — J R ~ 2 ) in Eq. (3.6) is swamped, and the "closed"
behaviour suggested by Sandage's observations cannot appear.

The contour Vg=l stretches off to infinity in some directions, but
for Vg<ί the enclosed region is bounded (in the β+ — /L plane). For
definiteness one may take \β\ ~0.1 which does not violate our small \β\
approximation too severely, but which leads to sizeable effects, as we
show below. From our analysis above we see that β has been essentially
constant since the instant tλ that the model became matter dominated.
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Suppose we define an evolution matrix A

(3.7)

which connects the "direction cosines" n{ of a particular photon (or
neutrino) with their initial values m v Obviously Atj is an orthogonal
matrix. The freedom of rotations about mt or nt is not important. Atj is a
function both of the particular photon considered and of the time. One
finds :

) = 1 - (Aτβ*A - β)cdscsd - ViAtjSj + terms of order (A T/T)2 . (3.8)

The term UiAijsj is a Doppler shift term corrected for the direction
of the incident flux. The term (AτβdA — β)cdscsd gives the corrected
quadrupole pattern, and measures the difference between the decoupling
anisotropy βd, as presented by the transformed direction of the photons,
and the current value β.

It is not necessary to use Atj explicitly in what follows; one simply
finds the solutions to the geodesic equation to lowest order in β. These are

(3.9 a)

π3 = m3 - (1 - mi) J dη 2]/3 β_ sin(2φ + 2φk) , (3.9 b)

in a model which has only a 1-2 off-diagonal component [5]:

A = β+9 β2 = β- cos2φ , /?3 = /L sm2φ .
In Eqs. (3.9)

In typical models, the interval A η between the last photon scattering
and the "current" epoch (T~ 3 K) is A η ~ 0.5 to 1.5. Also, since the baryon
matter has been dominant for most (or all) of the time since the last
photon scattering, β+, β_ and φ have been essentially constant as the
photons traveled.

Eqs. (3.9) show that the resultant directions of the photons will
not lead to a quadrupole temperature pattern, but instead the pattern
will resemble one which has been torqued or twisted about each of the
principal axes. Hence the locus of directions of maximum temperature
in the sky will no longer be a great circle but will be some more complicated
(roughly S-shaped) curve. If one estimates |/?|~0.1, Aη~Q.5 we see the
angles of twisting are small Aφ~Q.l. If however, one allows |/J|~1
then A φ ~ 1 and the quadrupole shape could be completely destroyed.
(Of course |/J| ~ 1 violates our small anisotropy assumption but the result
is suggestive.)

These twisting effects appear even in non-rotating models. In type IX
models, rotation is intimately connected to the size of Ut [9]. The ob-
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servational limits on the dipole anisotropy exclude sizeable rotation so
effects specifically due to rotation in realistic models are too small
to be important.

This work was supported in part by NSF grants GU 2630 (to Wesleyan
University where this work was begun) and GP 20033 (University of
Texas).
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