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Abstract. The following theorem is established. Every zero-mass scalar field which is
gravitationally coupled, static and asymptotically flat, becomes singular at a simply-
connected event horizon. In the special case where the gravitational coupling of the scalar
energy density is neglected, the solutions are computed explicitly. Some properties of the
singular event horizons are discussed, and a brief mention of related work with non-static
scalar fields is given.

1. Introduction

Recent interest in the theory of gravitational collapse has raised
many questions regarding the existence and nature of event horizons
in relativity. Some definite results are known. Israel has shown [1] that
for the class of asymptotically flat, static vacuum fields, only the spheri-
cally symmetric Schwarzschild solutions with m =0 have a regular
event horizon (r = 2m), and [2] that for the corresponding electrovac
space-times, the Reissner-Nordstrom solutions with m = G*¥le|/c are the
only ones with non-singular horizons. In view of these special cases, it is
therefore natural to ask whether, for arbitrary, asymptotically flat static
fields, a regular event horizon is destroyed by any asymmetric per-
turbation due to sources within the surface gy, = 0.

In this connection there has been some recent interest in another
special class — namely, the static coupled gravitational and massless
scalar fields (where by “massless scalar field” we mean a scalar field for
zero-mass particles). The spherically symmetric solution of Janis,
Newman, and Winicour (JN'W) [3] has the interesting property that the
event horizon is a singular point in the space no matter how small the
coupling constant becomes. Penney [4] has suggested that this sur-
prising result is due to the imposition of spherical symmetry, and that,
by considering asymmetric solutions, one is led to a nonsingular horizon.
However, his example in support of this contention contains an error [5],
and, in fact, his solution is singular at the horizon.

In this paper we propose to clear up much of the controversy about
event horizons associated with asymptotically flat, static, massless scalar
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fields interacting with Einstein fields. Our main result can be stated as a
theorem: every zero-mass scalar field which is gravitationally coupled,
static and asymptotically flat, becomes singular at a simply-connected
event horizon. This theorem immediately obviates Penney’s search for
a nonsingular asymmetric horizon.

We proceed by reformulating the given conditions in terms of the
geometry of the surfaces g, = const. (Sec. 2, 3). The theorem is stated
in detail (Sec. 4) and proved (Sec. 5). In the special case where we neglect
the gravitational effect of the scalar energy density, the solutions are
computed explicitly (Sec. 6). Some properties of the singular horizons
are discussed, and a brief mention of some related results for non-static
scalar fields is given (Sec. 7).

2. Static Fields

This section deals with the general static field. We want to reformu-
late the Einstein equations as conditions on the geometry of the equi-
potential surfaces. This has already been done in detail in Ref. [2], and
need not be repeated here, except to list those formulas we will actually use.

The signature of the metric is — + + +. Capitalized Latin indices
run from O to 3. Three-dimensional and two-dimensional subtensors
are distinguished by Greek indices (range 1-3) and by lower-case Latin
indices (range 2—3). Covariant differentiation with respect to the 3-dimen-
sional and 2-dimensional metrics is denoted by a stroke and a semicolon,
respectively.

A space-time is called “static” if it admits a regular vector field & which
satisfies Killing’s equations. In the domain where &, <0, the metric
can be put in the form

ds® = g, (V. 0", 0%)d0°d6" + [o(V, 0", 0*)]2dV? — V?de? (1)
Here, V is defined by

V= (=&Y, 2

and
o =WV A3)
vanishes nowhere in the domain of interest (if the 2-spaces V = const.,
t = const. do not bifurcate), while 6, 8% are intrinsic coordinates for the
equipotential 2-spaces. Let n be the unit vector normal to the equi-

potential surfaces, and e, the tangential base-vectors associated with
0“. Then we have

n* =g tox*(V, 91,02)/8V} @

eqy=0x*(V, 0", 6%)/06".
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The triad {e), n} spans the 3-space at each point, and the following
decompositions are derivable from (1):

g = g* egefy + nn’

5
Vi = lKabe‘“)e(b)—Q 0. (e© nﬁ-l-e‘ n)—o 3(6@/6V)nanﬂ } (%)

Here,
K., = 2Q agab/aV (6)

is the extrinsic curvature of the 2-space V = const., considered as imbedded
in the 3-space t = const. From (6) we have the related formula

0g*/0V = g* oK, (7

where g is the 2 x 2 determinant of g,, and K = g** K, is twice the mean
curvature.
The Einstein field equations

Gup=—8nyT,p, ®)

(where y is Newton’s constant of gravitation divided by ¢?) can now be
decomposed, yielding

39" R,y =8ny Ty, (9a)
0=_8nyT,,, (Ob)
Gup=—81y T =V (Vg — V' 0:p) (9¢)

The relativistic analogue of Poisson’s equation is then given by
Vi =4ny V(T - Tg) . (10)
Finally, we record the following expressions [2] for later use:
0 200/0V=K—4nyVo(T*—T}), (11)
Vg *0(g* VK)oV

= —0, —30R, —8myo(Tpedyely— 1 T4 gas) » (12

H(K K —K*—R)= —8myT,,wnf + o ' V'K, (13)

0, K—Kb,=—8nyTzeln’ + 0 2V "10,0 (14)
iR4pcp R =G,y G + 072V 72K, K® (15)

+207*V 20,0 + 07V " 2(00/0V) .

Egs. (6), (11), and (12) form a complete system for determining the
evolution of g,;, 0, K as functions of V. Egs. (13) and (14) are involutive
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constraints, i.e. if they are satisfied on one surface V = const., they must
be satisfied identically. The last equation gives the (invariant) square of
the four-dimensional Riemann tensor.

3. Static Massless Scalar Fields

We now consider a static scalar field ¢ for zero-mass particles, with
“scalar gradient” given by

S =—4n)32d,g. (16)

Since ¢ is static we have S, = 0. The scalar equation [J¢ =0 can be
written

(—detg,p) *0,[(—detg,p)*g* 0,41 =0. (17)
In view of (1) this can also be written as
Vio(Vgty)oV = —0,(eg* ¢*), (18)
with p defined by
090V =gy . (19)
For a massless scalar field the energy tensor is given by
Typ=0,000—39459°°0ch0pd, (20)

or from (16) we can write
AnT = — 332,
4nT%* =0, (21)
4T = S*SF — 19 S,
with
641 = _(470—% (w n, + e(?() aa¢) 5

62 = 6(16“ = 4n(w2 + ¢;a¢;a) . (22)

If we now substitute (21) into the basic Eqgs. (11)—(14) of the previous
section, we are led to the following complete first-order system for
determining the V-dependence of g,,, ¢, ¥, ¢ and K?:

Geometrical equation

09ap/0V =20K,y . (6)

Static scalar equations
0¢/oV = ey, (19)
o(Vg*p)/oV = —Vi(eg*d™), (18)
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Gravitational equations
07 200/0V =K, (23)
VlgTH0(g* VKL)/OV = —0,i’ — 30R3; — 8nyed,. 4", (24)
Involutive constraints
3(KpK® = K?> = R)= —4ny(yp* ~ ¢,,¢')+o ' V'K, (29
aaI<__I<Z;b': _8”V1P¢;a+Q—ZV_IQ;a~ (26)
The following result, which we will need later, is obtained by contracting
(24) and eliminating R by means of (25):
Vo(V T K) 0V = — g — $0K? — 9 A, A° — 8yoy?, (27
where
Aab = Kab - %gabK (28)
is a measure of deviation from spherical symmetry.
Finally, we combine (15) and (23) to obtain
iR, pcpRYPP =Gy G + 072V 2K, K™ (29)
+ 2Q—4V—2Q;aQ;a + Q-—ZV——ZKZ .

Although an exact expression for the term G,;G** could be evaluated
from (5), (9¢), (10), (21), and (22), it is sufficient to note here that, of the
terms of this expression (all positive), one will be

8T (2 + ¢, 6 (30)

4. Statement of Theorem

In a static space-time, let 2 be any spatial hypersurface t = const.,
maximally extended consistent with &,&4 < 0. We consider the class of
static massless scalar fields such that the following conditions are
satisfied on X

(i) 2 is a “scalar-vacuum” space (i.e. free of matter and sources of
scalar fields).

(i) 2 is regular, non-compact and “asymptotically Euclidean”. That
is, there exist coordinates x* in terms of which the metric (1) has the
asymptotic form

gaﬂ = 5«[7 +0(r_1), aygaﬂ = 0(7‘-2)
V=1—(m/r)+n, m= const. (r—o0), (31)
n=0("2), 0,n=0(r"%), 8,0, =0(r"*)

where r = (5,5 x* x")2.
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(iii) The asymptotic form of the static scalar field is

¢ =(k/r)+{, k=const.
[=0072), o= ow)} (r=c0). (32)

(iv) The equipotential surfaces V' = const. > 0, t = const., are a regular
family of simply-connected, closed 2-spaces.

(v) If the greatest lower bound of V on X is zero, then the geometry
of the equipotential surfaces V =¢ approaches a limit as ¢—0,, cor-
responding to a closed regular horizon of non-infinite area.

(vi) The invariant R, zcp R42? is bounded on X.

Theorem. There is no non-trivial static space-time which satisfies
conditions (i)—(vi).

(Here we assume y>0. The case of zero coupling is discussed in
Sec. 6.)

The proof of the theorem is presented in Section 5. There is one
trivial case, however, which can be quickly disposed of here. Suppose
that V has a positive lower bound. Then X is complete, hence space-
time is flat with ¢ =0 [2].

We may assume henceforth that ¥ comes arbitrarily close to zero
on X. The equipotential surface V = 0, then forms an inner boundary of X.

We conclude this section by recording the exterior and interior
boundary conditions in a form convenient for later application. For the
asymptotic forms (31) and (32), we find from (2), (7), and (19)

r—o0, o/r*—»mt rk—2 1
rg—k, r*y——k, as V—+1.} (33)

According to (vi) and (29), the regularity of the manifold at the inner
boundary V = 0, requires that

Kip=0(@V), 0.,=00’V) as V-0, (34)

It follows that ¢! is constant on the event horizon:
0 10,6, 6*) = 1/g, = const. (35)
In addition, since the curvature scalar R, zcp R*2°? is bounded every-
where on X by (vi), it follows that the expression (30) cannot become

infinite anywhere on X. Hence we have the result that y and ¢,, are
bounded functions throughout X.
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5. Proof of Theorem

In this section we employ mainly the scalar equations (18) and (19)
to derive integral relations which enable us to show that the trivial
solution ¢ = 0 is the only one compatible with conditions (i)—(vi).

Let F(V, ¢), G(V, ¢) be (for the moment, arbitrary) differentiable
functions. From (18), (19), (23), and (7) we easily obtain the identity

970V [ {VF(V. )y + o' GV, )}]
=AWV, $)e W* + ¢,,0") + BV, p)yp + 071 0G0V ~ Vg *(Fag*d),,

where
A=VOF/op, B=VIF/OV+3dG/op. (36b)

In order to obtain integral conservation laws from (36), we require that
A=B=0G/0V=0. (37

The general solution of this linear system of differential equations for
F, G is a linear combination of the two particular solutions

F=1, G=1, (38a)
F=InV, G=—¢. (38b)

Taking these values in turn we integrate (36a) over X, i.e. we form
fff (36a) g*dVd6" d6?, noting that the integral of the last term, being a
z

2-divergence, vanishes when taken over any closed 2-space V = const.
The results express the equality of the surface integrals of the expression
in square brackets above over any two equipotential surfaces V' = const.:

f(Vyp+e)dS=Cy, (392)
flVinVyp—o '¢ldS=C,, (39b)

where we have defined the element of area by dS = g* d6" d6*.
As an immediate consequence of (7) and (23) we have

oo " gh)oV =0, (40)
hence if we form [ {{ (40) dV d6' d6?, we obtain
fo tdS=0C,. 41)
Comparison of (39a) and (41) shows that
fVwdS=C, —C3=0C,. (42)

We can now evaluate the constants C,, C5, and C, by integrating (39b),
(41), and (42) over the upper boundary V=1, with the help of the
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boundary conditions (33). We thus find, as integral conditions on the
lower boundary V' =0,

[ o 'dS=4mm, (43a)
V=0,

[ VipdS=—4nk, (43b)
V=0,

[ [(VInV)p—0~'¢]dS=0. (43¢)

V=04
In view of (35) we can write (43a) as
So/@o = 4mm., (44)
where S, is the area of the horizon V' =0,. Since S, is non-infinite by
(v), (44) implies that g, is also non-infinite.

We now consider the relation (43 b). Since y and the surface area are
bounded on the horizon ¥V =0, , it follows that k=0, i.e.

[ Vypds=0. (45)

V=0,

In addition, the boundedness of gy =0d¢/0V and ¢., throughout X
guarantees that ¢ itself is bounded on the horizon. This fact, together
with (45) leads to

[ VéypdS=0. (46)

V=04
We now return to the identity (36) and this time require
A=V, B=0G/0V=0. 47)
The resulting linear differential equations have the particular solution

F=¢+InV,

48)
G=—¢. (
With F, G given by (48), we thus have the identity
1@V [¢*(VFyp+07'G
g 2@/ V)lg*(VFyp+eo  G)] (49)

=V + ¢, — Vg *(Fog* '),

Integrating over X (again the last term doesn’t contribute) we deduce the
inequality
[ VFp+07'G)dS= [ (VFy+o7'G)dS. (50)
V=1 V=0,

21 Commun math Phys., Vol 19
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From (49) it is clear that equality in (50) holds if and only if

ool g

everywhere on X. Now the surface integrals in (50) can actually be
evaluated. The left side yields the value zero when integrated with the
help of (33), as does the right side, in view of (43 ¢) and (46). We conclude
that (51) must hold, hence ¢ = const. throughout X. The fact that ¢
vanishes on the outer boundary V =1 ensures that ¢ =0 and this
completes the proof. It is worth noting that the theorem holds even for
a regular point or line horizon (S, = 0).

6. Zero Coupling

We consider in this section the case where the gravitational coupling
of the scalar energy density is neglected. Our problem is to obtain
solutions of the vacuum equations G,z =0 and the scalar equation
¢ =0, which satisfy conditions (i)—(vi) of Section4. It is already
known [1] that the only vacuum space-times compatible with (1)—(vi)
are the Schwarzschild solutions with m = 0. The problem thus reduces to
finding well-behaved static scalar fields defined on the Schwarzschild

background:
Gapdx*dxP = (1=2m/r) "' dr* + r*(d6* + sin*0d D7), 52)
V =(1-2m/r)?.

The static scalar equation, [J¢ = 0, reduces to

Ki([ﬂ,ﬂ%)+ v i(sin@ﬁs—)+ v 82¢—0- (53)

¥2 Or or r?sinf 00 00 rrsin?h 0d:

Separable solutions which are regular on the axis have the form

¢ = R(r) PY(cos0)e™® , (54)
where R satisfies
d’R dR
(I—XZ)W—ZXK‘F”(H'FI)R:O, (55)
x=-"1 1. (56)
m

For general n, (55) has the linearly independent solutions

R=C,$,x, R=C,9,(). (57)
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Of these solutions, the latter are unacceptable for all n, since Q,(x) is
singular at x =1 (i.e. at the event horizon r = 2m). On the other hand,
the former solutions have the wrong behaviour at infinity, except when
n=0. Hence the only well-behaved solution satisfying (i)—(vi) occurs
for n=M =0 and is given by

d):Cl:O’

from the boundary condition (31). We conclude that the trivial solution
¢ = 0 is the only static scalar field on a Schwarzschild background which
is well-behaved for 2m < r < c0.

7. Singular Point Horizons

It is clear from the previous theorem that a non-trivial static scalar-
vacuum field must have a singular event horizon (be it a point or other-
wise), and thus Penney’s search [4] for an asymmetric solution with a
regular event horizon is unnecessary. Our theorem also generalizes the
work of INW [3] and Gautreau [6] who show that all spherically
symmetric solutions, and a certain class of axially symmetric solutions,
respectively, always have singular horizons.

In the case of spherical symmetry, Egs. (18) and (27) become simply

oVgry)ov =0, (58)
VoV IK)0V = —3oK?* —8nyoy?. (59)

Now (58), (40), and (19) can be solved explicitely with the help of the
asymptotic forms (33) to give

¢=—km IV, (60)

which is a function of the two parameters k and m. Consideration of
(23), (59), and (60) enables us to solve for ¢ and K as functions of V, from
which it can be determined that ¢—0 as V-0, . From (43a) it then
follows that the area of the inner boundary V' = 0_ is zero, i.e. the horizon
is a point (the non-regularity of the event horizon means that (35) is no
longer true, but the integral condition (43 a) still holds). This solution is
precisely the JNW [3] solution!, which has a singular point horizon
regardless of how small the coupling constant becomes.
! In our solution k, m, and V are related to the 4, r, R, and g of INW by: A = —k/[/i
ro=2m,
= %%Iir%%ﬂ—_—ll))— ,  u=1+4npkimHE=1.

21*
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The fact that the horizon is always a point in the case of spherical
symmetry leads us to ask whether the same is true in general. Penney’s
example [4], although not regular as he had thought [5], serves to show
that there are asymmetric solutions whose horizons, while singular, are
not pointlike. His axially symmetric solution has the line element

R—-2m

ds? = ez“[( R fzm )dR2 +R? dﬂz} + R?sin?0d®? — ( )dtz , (61)

with R(R - 2m)sin6

= —2 2 .
! ma [R(R — 2m) + m? cos? 071>

(62)

Itis easy to check that the horizon (R = 2m) is not pointlike. This example,
along with (43a) suffices to show that the function ¢ need not vanish
everywhere on the horizon ¥V = 0,. We can, however, show for a general
scalar solution with event horizon of bounded area, that ¢ always
vanishes at least locally there. From (23) and (40) it is easily shown that

j—ng-stz—jg-les. (63)

From (27) and (40) we have
e 'g*K)o0V =0 'V g* K —8nygiy® — 39°K?
—g*[(InQ);" + 07 %0,, 0" + A A*"] .

If we now form [ [ § (64) dV d0" d6* and use the Schwarz inequality on the
second term of the right side,

futdsz - [[wdsP,

(64)

it is straightforward to arrive at the inequality
d -1 1 - 8my
_c < Tgs — ——4 2 65
S VKe tdSs - [Ko dS— =S [fwdSP. (69

which, in view of (42) can be written

1 const.

d 1 -1
— < — — . 66
If we now let
X(V)=[¢ ?dS, (67)
then (63) and (66) combine to give
_d_ iiX_ > const. . (69)
av v dv V3s
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Since S = S(V) is a continuous function, infinite only on the outer
boundary V =1, then for any V; <1, S(V) must attain a maximum S,
somewhere in the interval from ¥V =0, to V=V,. In this interval we
thus have 1/S = 1/S,,, hence

d [1 dX const.
—_— >
dV[V dV}= |48 (69)
Integrating (69) twice we arrive at the inequality
X(V)z -C,InV+C,V?+C,, (70)
from which
XO0)= [ o%dS=w. (71)

V=04

The integral condition (71) along with (43 a) shows that ¢ becomes zero
at least locally on the inner boundary ¥V =0, (this reaffirms that for
spherical symmetry the horizon must be a point). It is also clear from
(43 a) that the region of the horizon on which ¢ vanishes must be of zero
area. In other words the gravitational flux ¢! = | F'V| becomes infinite
somewhere on the horizon because some finite-area flux tube shrinks
to a point or line there.

In the case of Penney’s example, comparison of (1) and (61) shows

V:(R“sz, (72)

R

R
R—-2m

0*dv? =eZV< )dRZ. (73)

From (72) and (73) we immediately deduce that
0=¢R*/m. (74)

On the horizon R = 2m, consideration of (62) shows that ¢ vanishes in
the equatorial plane 6 = n/2.

We can summarize our results for static scalar fields as follows:

(1) Every massless scalar field which is gravitationally coupled, static
and asymptotically flat, becomes singular at a simply-connected event
horizon.

(2) In the case of spherical symmetry, the singular horizons are
points.

(3) If we allow asymmetric solutions, it is possible to find examples
for which the horizon is not pointlike.

(4) Assuming the horizon has bounded surface area, the gravita-
tional flux ¢! always becomes singular somewhere on the horizon, due
to the shrinking of some finite-area flux tube to a point or line.
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Finally, we mention some recent investigations into non-static scalar
fields. Qualitative considerations by Israel [7] have indicated that, if
such a field is anchored to a collapsing star, some of the field energy will
drain downwards through the event horizon (r =2m) on a time scale
t~m as measured by a distant observer. Taking as a model a highly
idealized star collapsing with the speed of light, detailed numerical
integrations have been carried out which confirm these considerations
[8]. We find that the external field decays in an oscillatory fashion. The
energy lost goes partly into outflowing radiation, but most of it (about
68%) falls in through the horizon after the star has collapsed. The
oscillatory nature of the decay has been described by Israel [7] as a
“bathplug effect”: blobs of field energy drawn inwards by gravity cannot
be sucked in all at once, but are first turned aside by field pressure and
swing about the hole on a time-scale several times larger than the Schwarz-
schild characteristic time 2m (the factor is roughly 10 in our numerical
results).
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