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Abstract. It is shown that there exists a selfadjoint Hamilton operator corresponding
to the interaction #(

(?
) + # (

o

b ) +JΦb

+(x) Φa(x) Φζ~(x)d3x, where a and b denote two types
of scalar particles. We discuss the scattering theory of this operator.

I. Introduction

It is one of the aims of quantum field theory to describe in a mathemati-
cally precise fashion the scattering of relativistic quantized particles.
This aim has been reached with different degrees of imperfection for
several models of varying complexity. In this article we show that the
results known for the Lee model remain essentially valid for a more
complex model type to be defined in Section II.

The model treated in this paper is not a relativistic model. It shows,
however, the problem of an increasing number of particles and the
problem of a logarithmically divergent mass renormalization as the
momentum cutoff is removed. The kinematics is relativistic and the
interaction is translation invariant. There is no vacuum polarization,
and in this sense the model is less ambitious than λ: Φ4:, and it is at
this price that we get more detailed results.

We shall see that this model allows essentially the same conclusions
about the existence of scattering states as the Lee model which is very
well understood [11] but in which the problem of multiple particle
creation is not present. The model we shall treat is very similar to the
Nelson model for which much is known about the total Hamiltonian
and the n-point functions [9,1]. The Nelson model is somewhat simpler
than the present model because the mass renormalization is a logarithmi-
cally diverging constant, whereas it is an operator in the case of the
persistent model. In Section II we state the definition of the model and
give a basic estimate. Section III contains the proof for the selfadjointness
of the renormalized total Hamiltonian. The difficult part is the summation
of the renormalized Born series for the resolvent. In Section IV we

* Work partially supported by the Swiss National Science Foundation.
** This paper contains results from the author's Ph. D. Thesis [3].



248 J.-P. Eckmann:

construct scattering states. The main point is the construction of the
intertwining operator T satisfying HT= TH0 on the one-particle states.
T is given by the Friedrichs expansion.

II. Definitions and Basic Estimates

ί. Notations for Second-Quantized Operators

We begin with the construction of the Fock space J^ for one scalar
field of mass θ > 0, in s space dimensions. All arguments k, /, p, q, x, y
and all integration variables are to be considered as elements of W.
As usual, θ(k) = ψ2 + k kf. We define the Fock space & as & =

= 0 ^{n). φe^ means
w = ° ί 1

φ=\φ(n)e^{n);\\φ\\2= £ \\φ(nψ < ooL
I n = 0 J

Here, J ^ ( n ) is the space of symmetric functions in L2(IRSM). We write the
scalar product in J Γ ( " ) as

(φ("\ ΨM) = ί<f *! - <rκφ®(k»... U vw(*i,... U

We shall write from now on dk instead of dsk.
On 3F we have a representation of the canonical commutation

relations
ίa(k\a(l)-] = 0 and [α(/c), α*(/)] = δ(k- ΐ).

The annihilation operator a(k) is defined by

(α(/c)φf-1)(fe1,...feM_1) = ^φ^(/c,fc1,...fcw_1).

α*(fc) is the adjoint of a(k). The number of particles operator N is defined

t θ b e {Nφ{n)}={nφ(n)}.

We define Wc/c monomials W by

W=fdk1...dfcdw(fc1,...Uα*(k1)...fl^fci)fl(fci+1)...fl(fc<ί), (1)

0 ^ ι ^ ( i . d is called the degree of W, w is called the (numerical) kernel
of P̂ . By convention, a small letter will always denote the numerical
kernel of the Wick monomial with the same capital letter.

We suppose that the reader is familiar with Wick's theorem (see e.g. [6]).
We shall use sometimes a graphical representation described in [4] and in
[6]. A Wick-ordered expression of the form (1) is visualized by a vertex of
a graph, where the α*'s are depicted by legs pointing to the left (and going
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actually to infinity), and the α's are depicted by legs pointing to the right.
So the operator W of Eq. (1) is drawn as

k 1
W= k0 ^ V y ^ — k i + 2

" k d
Fig. 1

Wick's theorem is then easily depicted by forming all contraction
schemes between the legs of the factors.

Example. Let ψ = χ w = ^

Then the Wick ordered expansion of Wx W2 is

WίW2=:W1 W2: + :Wί W2: + :Wt W2:

Ύ
- JL J- — y_ -t

It is understood that the symbol and the graphs imply already the

combinatorial factors which might occur.
We define finally the time zero free field operator Φ(x) by

φ+(x) = φ-(χf = $dk θ{k)~τ α*(fc) eίkx,

An important technical tool for constructive quantum field theory, the
cutoffs, will appear only in the form of a momentum cutoff σ. We define

Wσ= J dk1...dkdw(ki,. .kja*(k1)...a(kj. (2)

Evidently W^ = W. For reasons explained later, we need no space cutoff.

2. Definition of the Model and a Basic Estimate

Persistent models are theories with two types of particles which are
called nucleons and mesons (irrespective of the actual statistics). The main
characteristic of the Hamiltonians of such models is that these Hamil-
tonians commute with the nucleon particle-number operator, i.e. the
nucleon number is conserved. The Fock space underlying the theory
(which will be defined below) can therefore be decomposed into an
infinite direct sum of superselecting sectors with fixed nucleon number.
As a further characteristic the Hamiltonian annihilates the Fock vacuum;
therefore the free and the physical vacuum are identical. This in turn
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implies that no space cutoff will be necessary to make the Hamiltonian
a well-defined operator (Haag's theorem does not apply), and that one
can have therefore a translation invariant interaction. However, the
difficulties due to high momenta or to large meson number, known from
relativistic quantum field theory, can be present.

We leave now this general context and start the definitions leading to
the model which we shall treat below. Both the mesons and the nucleons
will be bosons in all the following discussions; many results can be
carried over to the case where the nucleon is a fermion.

We define a Fock space 34? for the two types of particles:

Here, 3F is the Fock space for one particle type defined in Section II. 1.
It will be convenient to distinguish several subspaces of 3tf:

the space with fixed nucleon number (often called a sector), and

the space with nucleon and meson number fixed.

We will apply consistently the following conventions:

— α# denotes a meson creation or annihilation operator: a* =

— fe* denotes a nucleon creation or annihilation operator: b* = •;

— a or b used as index or as superscript between brackets denotes that the
corresponding quantity is used for mesons or nucleons respectively;

— n denotes the nucleon number, Nb denotes the nucleon number
operator;

— m denotes the meson number, Na denotes the meson number operator;

— ω(k) is used for nucleons, ω(k) = (ω2 + /c2)% ω > 0;

— μ(fc) is used for mesons, μ(k) = (μ2 + fe2)^, μ > 0.

With these notations, we can now define the Hamiltonian H:

H = H0 + V.

if 0, the free Hamiltonian, is defined by

The interaction Hamiltonian V is given by the formal expression

V=$Φb

+(x)Φb~(x)Φa(x)dx.
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By construction, H maps Jf(n)r\9{H) into ^f(n) for each n = 0,1,2 ...,
so it makes sense to speak of H\n9 the restriction of H to Jf(n). We shall
w r i t e

n=0 «=0

Our aims are to give a meaning to this formal Hamiltonian in s = 3
space dimensions and to derive some of its properties. Before starting
this work in the subsequent chapters, we close this section by the following
remarks.

The conclusions of Haag's theorem become irrelevant for persistent
models because the physical and the free vacuum coincide. Therefore
one can work with models which have no space cutoff. This motivates the
preceding definitions. The following result is typical for interactions
which conserve the particle number of one particle type:

Lemma 1. Let W be a Wick monomial of the form

~>+ki-ki+1 kd)dp1dp2dk1...dkd.

If
+ +fcI-/cί+1 kd,ku ... kd)\2 dk1 ...dkd=Y

P

is finite, then W is defined on 3){Nb{Na +Ί)m) and

\\W{Na + tydl2\n\\SnYί- const,

where the constant depends only on d.

Proof. Let ̂ eJf ( π ' m + d ~ i ) , ψeJ>ίfin>m+i). Let p + Σ==p + k1 + ••• +kt

C/ _j_ i ~~~ * * * ~~ Krj. A n e n

w(p9p + Σ9kl9...kJdpdkx ...dkddqί ...dqn-1dl1 ...dlm.

The numerical factor can be estimated by

where c is a constant and the integral can be estimated by the Schwartz
inequality

iψwφ£ldp\\ψ\\r\\w\\r\\φ\\2',

where || || 2> means the L2-norm over all variables of the functions except p.
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Using now

and again the Schwartz inequality, we get

and this proves the Lemma.

III. Existence of the Renormalized Hamiltonian

ί. The Hamiltonian with Momentum Cutoff

In this section we shall see that, with cutoff, V is a relatively bounded
perturbation of H0.

Let Vσ denote the momentum cutoff operator V (see Eq. (2)), that is

J b*(k-l)a*(l)b(k)(kl)-ίμ(l)-ί(k)-ίd3kd3L ( j

|*|
c and a denote creation and annihilation of the meson respectively. Let
ω~1(k) = ω~1 (k) if \k\ ?g σ, zero otherwise.

Lemma 2. Let σ<oo, rc^O, A G R Then Vσ\n is small in the sense of
Kato with respect to H0\n.

Proof. By Lemma 1,
\\V(

S 4n2 sup J \ω ~*(p + q) ω~Hp) μσ~Hq)\2 dq = n2C2

σ; Cσ < oo
pp

and therefore, for φin)

\\λVσφ\\ύn-\λ\ Cσ \\(Na + ti)*<P\\ ύe\\Hoφ\\ + C(n • \λ\ Cσ, ε)

for any ε > 0. The last inequality above is a well-known relation between
N and i ί 0 (see e.g. [9]), and thus Lemma 2 is proved.

We are now prepared to state the

Theorem 3. For all σ < o o and all AelR and any number of space
dimensions, the operator Ho + λVσ is selfadjoint on @(H0) C Jίf.

Proof. The selfadjointness of

follows by Lemma 2 from the theorem of Kato (Theorem V.4.3 in [8]).
In fact, λVσ is a symmetric operator by definition and bounded with
respect to Ho by a bound ε < 1, due to Lemma 2.
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It is then easy (see e.g. [3]) to conclude that

n = 0

is a selfadjoint operator.

2. Convergence of the Renormalίzed Born Series

A convenient way to study the selfadjointness of an operator which is
in its cutoff version a small perturbation of Ho is to look at the Born series
for the resolvent

= R0(z) Σ
fc=O

where R0{z) = {Z — HQ)"1 Vσ is defined in Eq. (3) and Mσ is given by

For our persistent model the choice of Mσ is given by the construction of
a dense domain for H0 + λVσ by means of a dressing transformation
(see [3] or [6]).

Schrader [11] has shown the convergence of the Born series for the Lee
model which has the same momentum divergence as our model in three
dimensions. Hepp has given in [6] a somewhat more elegant proof for a
similar relativistic model. If his estimates are refined by the Lemma 5
given below, they can be applied to the model we are considering now.

The two principal ideas for the convergence proof of the Born series
are a resummation (according to the powers of the coupling constant λ)
and the fact that the norm of the fc-th order term can be estimated by a
product of norms. The absolute convergence of the series will justify a
posteriori the resummation.

We shall consider from now on a fixed sector n ̂  1. We state now the
main result of this section.

Theorem 4. The renormalized Born series (4) for Rσ(z)\n converges
(if properly reordered) in norm for all z satisfying R e z < — δ(λ9 ή),
uniformly in σ ^ oo . norm-lim Rσ\n exists.

σ-> oo

Proof. The resummation mentioned above is done as follows. We
W Γ i t e oo 2

*,(*) = Σ *k Σ (*o(*) VhR0(z)... VikRo(z))ren (5)
fc=O f i , . . . i k = l



254 J.-P. Eckmann:

where V1 = VZ,V2 = V£ and ( ) r e n means that every factor V1R0(z)V2

is replaced by

M)2 Mή,
with

(Vt Ro(z)V2)rea = VMz)V2 - Mσ.

Here, Ro is contracted with Vx and V2.
This resummation allows a factoring of the corresponding norms

which is expressed in the estimates of Lemma 6.

An important estimate relating Ho and V is the following

Lemma 5. Let n>0 be fixed, τ^\. Let r"bea continuous function. Let

fc2, k3) (5(fci - k2 - k3) b*(kt) b(k2) a(k3) dkγ dk2 dk3.

Then

Proof. This lemma has first been given by Glimm [5], Lemma 2.4.1,
with a slight technical error in the proof. A correct and extended proof
can be found in [7], Lemma 50 (p. 137).

Remark. The main point of Lemma 5 is that HQ^~\ ε > 0 , com-
pensates at the same time the unboundedness of the annihilation operator
and gives an improvement in momentum behaviour. Lemma 5 holds as
well for the adjoint operators. Lemma 5 in turn implies the following
estimates on certain fragments of the Born series:

Lemma 6. Let 0 < ε < J. For Rez ^ — 1 there exist constants Cn and Cε

(independent of 0<σf^co) such that

|| Λo(z)|| S const, dist (z, [0, oo))- ', (6)

M, (7)

n, (8)

\\RQ{zγl2Va

σR0{z) F^ 0 (z) ε / 2 | J | ^ C2C2 , (9)

*/2 Vσ°R0(z) V:R0(ZY%\\ ^ C\Cl, (10)

=§ c2

εc
2

n\z\-

(12)
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Proof of Lemma 6. In principle, Lemma 6 is the same as formulas
3.66 to 3.71 of Theorem 3.5 in [6]. However, in some situations, the
infinite meson number problem which is typical for the persistent model
but absent in the Lee model has to be taken care of. This is done by
improving the estimates of Hepp in the sense of our Lemma 5: HQ 1 does
not only furnish an additional negative power but is also compensates
one meson creation or annihilation operator.

We give the necessary additional remarks for each of the formulae
(6) to (12).

(6): This is well-known (see e.g. [8]).

(7): We apply Lemma 5:

But
supω(q) 1 μ(p — q) * ̂  const. ω(p)

q

thus the integral converges and (7) follows.

(8): This is the adjoint of (7).

(9): To obtain (9), we write

pε/2 . τ/a n τ/c . pε/2

and (9) can easily be obtained by estimates of the type of (7) and (8).

(10): This is obtained in the same manner as (9).

(11) and (12): These two relations are not trivial. They follow,
however, directly from the proof given by Hepp for the analogical case
of the Lee model, because the two meson legs of Va and Vc are contracted.
This means that the meson number problem does not arise and pure
energy estimates - as given by Hepp - are sufficient.

This completes the proof of Lemma 6.
The rest of the proof of Theorem 4 is now identical to the proof of

Theorem 3.5 in [6], which consists in splitting appropriately the powers
of Ro in order to write each term of the Born series as a product of terms
occurring inside one of the norms of Lemma 6. It is evident by the choice
of the relations (6) to (12) that this is always possible. One finds then that

\\(R0(z) VhR0{z)... R0(z) VikRo(z))rJn\\ g Ck

εC
k

n\zΓk3k^2 , (13)
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for some τ>0. The factor 3fc/2 comes from the definition of ( ) ren. One
gets then

| |2Uz)| |^ Σ Kk\zΓk\λ\k with K = 23-CεCn, R e z < - 1

fc=O

and this proves Theorem 4.

Remark. The proof can also be done in another way by estimating
a) the norm of each Wick-ordered contribution of order k (after

resummation) by the methods used for any superrenormalizable theory
[2] and

b) by estimating the number of such terms.
We do not present this proof here because much more space would

be needed than for the version given above.

3. Existence of a Selfadjoint Operator in the Limit without Cutoff

In this section we state without proof the consequences of Theorem 4.
For details the reader is referred to the work of Schrader [11] or Hepp [6].
Theorem 4 is indeed strong enough (together with some additional facts
which are very easy to verify) to ensure

Theorem 7. Let R^iz) denote the sum

Jim \R0(z) ΣO l(Wσ + λ2Mσ)R0(z)

of Theorem 4. Let H\n = z — R^z)'1 \n. H\n is a selfadjoint, linear operator,
bounded below.

Proof. Schrader [11], Corollary 1, Lemma 5, Lemma 6 and Theorem 4.

Remark. The selfadjoint operator H is the closure of the essentially
selfadjoint operator defined by a dressing transformation (for details,
see [3]).

IV. Results on Scattering

It is known [6] that scattering states can be constructed as soon as
one has been able to give an operator T which intertwines the one-
particle states and which is densely defined. The main problem of this
section will therefore be to construct the operator T. The construction
of the scattering states follows the standard lines described in [6].

It will only be possible to define one-particle states for bounded
momentum and small coupling constants, because otherwise one loses
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control over the regularity properties of Ro or equivalently of Γ+, the
Γ-operation of Friedrichs.

Theorem 8. Let 0 ̂  R < oo, let H = Ho + λ Vc + λ Va. There exists a
mass renormalίzatίon S and a densely defined operator T such that on the
vacuum φ0,

holds for all \p\^R and for \λ\^λo(R). λo(R)>0. S and T depend on
λ and R.

Remarks. -S is equal to λ2VaΓVc + Sf with S1 an infinite sum of
finite mass renormalizations. ^-2-^

The treatment of the infinite renormalization has to be understood
in the same sense as for the summation of the Born series. We will not
mention this problem again.

Proof of the Theorem. A formal solution to the problem HT'b* φ0

= TΉob* φ0 is given by the perturbation theory of Friedrichs [4] in a
form described by Hepp [6].

T is formally given by T = : expΓβ':

Q' = Σ ( -

Here [ ']1 denotes the sum over all connected graphs with exactly one
nucleon annihilator and some creation operators. Γ denotes the Γ+
operations of Friedrichs which coincide here because of regularity.

The operators of Q are of the form \Σ = ]Γ ,
\ ί = i

= J b*(ko-Σ)f\a*(ki)b(ko)w(ko,...kq)dko...dkq, (15)

1*°^* i = 1 q = 0,l,2,....

Then Γ = Γ\ where we define Γ (0 < α ̂  1) by

• ω(k0 — Σ) + Σ μ(fc ) — ω(k0) dk0 ... dkq.
\ ί = i /

The expansion of Q contains terms of the form W(o) on which the Γ
operation is not defined. We call them mass graphs. To make sense out
of T we will have to modify the definition of Q{1) so that Q contains no
mass graphs. We omit primes in the new definition.
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LetS1>1=-AFJJ;S1>i=0,i=0,2,3,4,...;let

(n-0/2

V_! s V-2 ' fc=l ^ 1—'

0<i^n; n^2
S w i = 0 if i>n or ί = 0 ;

M π = -AF α ΓiS π _ 1 } 1 . n denotes the order, i the number of meson

creators, and^~ 2 y

VC

R= f
I l

We define now Q ( 1 ), β and Γ:

i)), /c = 2,3, . . . , (16)

[
where the R indicates restriction of all Wick ordered terms W{q) to|/c0| ^R.

It is easy to verify that Q contains no mass terms: Write
oo n

β= Σ Σ * M
« = 0 i=0

where n and i have the same meaning as above. Evidently Rni = Sni if
n ^ i ^ 1 and Kπ>0 = — AFαΓKM_ l f x — Mn which is zero by the definition

of Mn if n is even and by connectivity otherwise.
Note that in the series for Q mass graphs cancel only if they form

the rightmost factor of the expression. This will be a complication in the
subsequent estimates. We define skeletons: a skeleton of an expression
and its corresponding graph is the same expression with all terms
occurring in some Mn replaced by f, for n ^ 4.

Example. The skeleton of:

\ ,

Fig. 2

is Γ(FΛΓ(FαΓ(FT(FT(FT(Fc))))))

Fig. 3
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(we have omitted the usual contraction notation ̂ 2 ^ ) . The removed
terms are called insertions. If an insertion is itself not a skeleton, one can
speak of its own insertion, which will then be said to be of depth two,
and so on.

The problem connected with the insertions is that their Γ operations
do not act on the variables of the surrounding skeleton. We will therefore
first estimate the skeletons and we will treat later on the total graphs as
a collection of inserted skeletons of varying depths.

Definition. Eg> = {fo, ... pfc)elR3k, N UK i= 1,... k}; k= 1,2,....

Lemma 9. Lei Wiq) be as in Eq. (15). Let φeJ^(1\
q^l, α>0. Then

\\Γ{Wiq)) φ\\ ^D(Rf\\(H^ + iίyaWiq)φ\\ . D(R)<oo.

Proof. (Γ(W<ηφ)(p,kl9..ΛJ = {(Ho-ω(p^ but

\\((H0-ω{p))-'W<*φ){p9kl9...kJ\\

= \Ω(R)-ω(R)

where Ω(R) = (R2 + (μ(0) + ω(O))2f. This proves the assertion.
It will be more convenient to count graphs, in contrast to the case of

the Born series. We therefore introduce a "kernel norm" || ||s, defined by

where

J \w(kOί...kq)\2dk1...dkq

(see also Lemma 1). Then one gets by methods similar to those used in
Lemma 6 the following

Lemma 10. LetW(p)beasinEq.(l5),O<ε<i,φ = φ(1'°\
\\φ\\ = ί.Let

V< = (VT = Sb*(k0 - kj α*(/ct) b(k0) ω-*(ko - * J μ-ψ

18 Commun. math. Phys., Vol. 18
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Then

1)-* | |F e | | , \\W^\\SC(R),

||γa Γi
+HWM)φ\\^(p-l)\±p-* \\V

Γ ( ί ^ JW^))) φ\\ ^p\i \\V\p-1 \\V% \\W^\ C(R)2 ,

\\Γ(VaΓ(Vc W(p)))φ - Γ{VaΓ(V) W(s>)) φ\\ ^ p !* || W^P>||, C(R)2 Kt

c W(p)))φ\\

It is now easy to prove
00

Lemma 11. Let Q be the sum of all skeletons of ΓQ, Q = £ Q{i\ where
i=ί

i denotes the number of meson creators. For every 0 < ε < £, there exists
a λx (R) > 0, and aK0<oo such that

%
forall\λ\<λι(R).

00

Proof. We write Q(ί)= ^ Qf where n denotes the order. Let

Cγ = max(l, | |F c | | s ) C(R) max(X l 5 1) |A|. We will prove by induction

Using Lemma 10, we find immediately H β ^ L ̂  6 Q 2% ||β£0 ) | |β = 0.
Then, taking into account the unused powers of Γ and the number of
contractions, one gets

As an example, we give the derivation of the second term:



A Model with Persistent Vacuum 261

where the factors have the following origins: Γ1 comes from the Γ,
(f+l)^ + ε comes from the unused Γ to the right (unused, because by
construction we are not in one of the special situations), (z +1)""* comes
from | |FαΓ|| s and (z+ 1) comes from the number of contractions. The
remaining factors come from the induction assumption.

This completes the induction proof and by summing the geometric
series one gets

and this proves Lemma 11.

Corollary. Let Gbea graph containing exactly one M2k and let G be the
skeleton of G (M2k is a sum of insertions]). Then \\G\\SS (C 1 2 i ) 2 k | |G | | s .

Proof. The estimates of Lemma 11 hold for all the Γ's inside the M2k

because of the restriction |/co| ̂  .R in the definition of M2k. One can
therefore apply Lemma 11 to all Γ's inside M2k. The Γ to the extreme left
of M2k is well defined because M2k is an insertion.

This allows now to treat the insertions in full generality:
00

Lemma 12. Let Q be defined by Eq. (16), ΓQ = £ Q(i\ where i denotes

the number of meson creators. For every 0 < ε < ̂  there exists a λo(R) > 0
and a K < oo such that

\\Q(%^K(irί+\ forall \λ\^λo(R).

Proof. Let
oo [n/2]

llβ<«IU Σ Σ *>«.».*.
«=1fc=O

where Dink is an upper bound for the s-norms coming from the sum of
all the graphs of β ( ί ) with order n and with at least one insertion of
depth k and no insertions of depth k + 1. By Lemma 11, Din0 ^ C£(ί !)~ 1 + ε

for i ̂  1, with Co = 2^ Q 6. We define Do π? 0 = Cn

0 in view of the application
of the corollary.

Now, for k= 1,2, 3,...

Uί,n,k— L i,jo,00,2h,0\
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Here j t , (/^ 1) denotes \ the sum of the orders of the skeletons of the

insertions of depth /. ι~ι . ι 1 is an upper bound for the
\ Ji I

number of ways to place these j ι pairs of vertices into a maximum of
2/z-1 — 1 "holes" which can be formed by the skeletons of order 2/z_ 1 and
of depth / — I . DO2juo is an upper bound for the || ||s-norm coming from
the sum of all the inserted skeletons of depth / and order 2jι -j0 is treated
separately, but accordingly.

Writing xo=jo,xι = 2jιJ=l,...k, we get the estimate

xo+'- + xk = n 1=1 \ xl
xι^l,l = O,...k

Here we have used

- 1\ = /2j,_! + 2 / , - 1\ >

xι I \ Vi ) = \ h

for / ̂  2 and a similar estimate in the case 1=1.
n

It is known that Bn = ]Γ Sn>fc denotes the sum over all plane one-
k = 0

rooted trees with n+1 vertices and endpoints (including the root). This
can also be seen from the structure of the insertion mechanism. Using
generating functions, one can show that

ψ ) [10, p. 196-197].

We find therefore that

Therefore | | β ( ί ) | | s ^ K (i!)"1+ε if μ| < λ^Rψ and this proves Lemma 12.
We come now to the proof of Theorem 8.

Then for T= :expΓ(Q):,

j=o ji Vj_y

Let ΣΊ j denote the sum over all partitions of i into a sum of j terms
/c 1 , . . ./c j ^l.

Then „
i + -)= Σ - τ r ' . - : Π e ( M : <?f m)
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Using

j = 1

we get, using Lemma 12,

^ [(JK+iy ι2"+ i" 1 n i ] 2 (ϊ !)- 1 + 2 ε 2 m + i const. | |φ||

and therefore T is defined on φ(n'm) and hence on the dense domain
formed by the vectors of Jtf* with a finite number of particles. This
completes the proof of Theorem 8.

Theorem 8 is indeed the main ingredient for the construction of
scattering states. For details the reader is referred to [6]. We state only
the definitions and the result, adding some remarks concerning the proof
where it differs from the proof for the Lee model given in [6].

We define the "physical" one-particle creation operators as

a (p) = α(p) and S (p)

Here, h(p) is a normalisation of T defined as follows: Let

where [ ] M denotes all the mass graphs of Γ ( 0 * Γ(Q) or in other terms
all the completely contracted graphs of Γ(β)* Γ(Q). Now h is defined by

A and h depend on λ and are both bounded and invertible. Also

(Tb*{p)φ09Tb*(q)φ0)=h{p)δ(p-q).

With these definitions we can formulate the

Theorem 13. Let H = H0 + λV+S. On

jf(»\R) = {φW e jr(M), suppφ e Eg
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in the nucleon variables}

Ω± = s-lim exρ(iiίί) TA exp(- iHot)
ί->±OO

exists and satisfies

exp(itff) Ω± = Ω± exp(iHoή, (Ω±)* Ω±=/K.

Proof. The proof of Theorem 13 is essentially identical with the proof
of Theorem 3.3 in [6]. The uniformity of the estimates in all orders of
T (or Q) can be established by interchanging differentiation and summa-
tion which is in turn possible by our Lemma 10. For each term of order n,
differentiation yields n terms and this additional factor is absorbed by

oo / oo \ fc+ 1

the fact that £ nkxn = k\ I £ xn\ , that is, it does not spoil the con-

vergence of the geometric series in Lemma 11.

Acknowledgements. It is a pleasure to thank Profs. M. Guenin and K. Hepp for many
enlightening discussions and for their constant encouragement. The author has much
profited from the excellent lecture notes on renormalization by K. Hepp of which he got
a preliminary copy.

References

1. Cannon, J. T.: Field theoretic properties of Nelson's model. Princeton University,
Thesis 1968.

2. Eckmann, J.-P.: A theorem on kernels of superrenormalizable theories. Preprint.
3. — Hamiltonians of persistent interactions. Universite de Geneve, Thesis 1970.
4. Friedrichs, K. O.: Perturbation of spectra in Hubert space. Providence: AMS, 1965.
5. Glimm, J.: Yukawa coupling of quantum fields in two dimensions I. Commun. Math.

Phys. 5, 343 (1967).
6. Hepp, K.: Theorie de la renormalisation Lecture Notes in Physics Vol. 2. Berlin,

Heidelberg, New York: Springer 1969.
7. Jaffe, A.: Constructive quantum field theory. Lecture Notes ETH Zurich (1968).
8. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York:

Springer 1966.
9. Nelson, E.: Interaction of nonrelativistic particles with a quantized scalar field.

J. Math. Phys. 5, 1190(1964).
10. Polya, G.: Anzahlbestimmungen fur Gruppen, Graphen und chemische Verbindungen.

Acta Math. 68, 145 (1937).
11. Schrader, R.: On the existence of a local Hamiltonian in the Galilean invariant Lee

model. Commun. Math. Phys. 10, 155 (1968).

Dr. J.-P. Eckmann
Institut de Physique Theorique
Universite de Geneve
CH-1211 Geneve/Suisse




