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Abstract. The physical content of a para-Fermi field theory is analysed from the point
of view of its local observables. The parafield theory leads to parastatistics only for special
choices of the observable algebra, and only then does it give a complete description of the
relevant physical states. On the other hand there is always a physically equivalent description
in terms of a certain number of ordinary Fermi fields from which the observables are
selected by a gauge group (in general non-Abelian). Thus one can always achieve a reduc-
tion to Fermi statistics by considering a system with different particle types which are
distinguished by hidden (unobservable) quantum numbers.

I. Introduction

Do all particles obey either Bose or Fermi statistics? Specific theoreti-
cal models for other alternatives (parastatistics) have been proposed by
H. S. Green [1] and studied by various authors1. In terms of physical
observations the essential feature of such models is the following. Let
Φl9..., ΦN be different states such that Φf is well localized at time t = 0
within a space region i^u the different i^{ being far apart. In the case of
ordinary statistics there is exactly one "product state" which corresponds
to specifying that observations a.tt = 0inir

i find the state Φ, and obser-
vations outside of any 'f] find the vacuum state. In the case of para-
statistics, on the other hand, there are several states answering to these
specifications. The distinction between these states can be found either
by means of a very large measuring apparatus at time t = 0 (covering
several of the regions ^ ) or, more realistically, by measurements at a
much later time.

A situation* of this sort also arises in another context. Consider the
idealized theory of strong interactions in which the electromagnetic and
weak interactions are strictly neglected. In such a theory the basic fields
have ordinary commutation relations but only those quantities which
are invariant under the transformations of a certain symmetry group
(the isospin group) can be observed2. In particular, the distinction
between a single neutron and a single proton becomes impossible; yet

1 See e.g. [2-4]. There are also various discussions of general statistics which are not
directly based on Green's models. Compare for instance [5] and the literature quoted there.

2 This is so if all possible measuring devices are governed by the laws of the theory.
In other Vords, if the theory does not contain any electromagnetic interactions, then we
may exclude the possibility of measurements which rely on electromagnetic effects.
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for two far separated nucleons with prescribed spatial and spin wave
functions there are two distinguishable 2-particle states in the theory,
namely the isospin singlet and the isospin triplet. One may therefore ask
whether a parafield theory is just an alternative description of a theory
with normal commutation relations but equipped with a non-Abelian
gauge group (non-Abelian superselection rules). This would mean that
parastatistics is reduced to ordinary statistics if one introduces a larger
number of particle types than those which are distinguished by the
observed quantum numbers.

A strong indication in support of this conjecture is already given by
H. S. Green's decomposition of a parafield. Thus, for instance, a para-
Fermi field of order n may be written as the sum of n mutually commuting
Fermi fields. Still, for the analysis of the contents of such a model one
must know what the observable quantities are supposed to be. The
observables should be functions of the parafield and the theoretical
possibilities for their selection are restricted by the principle of locality.
There remain, however, several distinct choices some of which have been
mentioned in the literature [4].

We study here in some detail the example of a para-Fermi field of
order 2 and come to the following conclusions. If the algebra of ob-
servables is large then the Hubert space generated from the vacuum
state by the parafield algebra does not contain all the relevant states of the
observable algebra which are needed for a complete particle description.
In such cases the parafield is not a convenient tool for describing the
physical content of the theory. It does not generate the appropriate
"field algebra" in the sense of Ref. [6]. There are, on the other hand,
choices of the observable algebra for which the Hubert space generated
by the parafield from the vacuum contains all relevant states. Then the
parafield description is appropriate and perhaps even convenient. In
such cases one finds, however, that the model may be alternatively
described by a field algebra with normal commutation relations from
which the observable algebra is selected by a non-Abelian gauge group.

In Section IV we give a brief discussion of the case of para-Fermi
fields of higher order showing that the above conclusions remain valid.

II. Notation. Description of Possible Observable Algebras

As indicated we shall study the example of a para-Fermi field of
order 2. We need consider only quantities referring to the time t = 0. The
form of the dynamical laws will play no role in the discussion3. We shall

3 In the next section we shall assume some qualitative properties of the ground state
(vacuum state) and these are, of course, implicit dynamical assumptions. They allow a
more detailed illustration of the physical features of the models but are not necessary for
our main conclusion, namely the equivalence between a parafield theory and a normal
field theory with a suitable gauge group.
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not require relativistic in variance nor assume any specific transformation
character of the parafield ψ under rotations. Therefore it is irrelevant for
our purpose whether ψ has any spinor indices. We shall omit indicating
them.

If / is a square-integrable function in 3-dimensional space, then we
shall write

Ψ(f)=Sψ(χ)f(χ)d3x
with the adjoint

It will simplify the subsequent formulae considerably if we combine ψ
and ψ* into one symbol φ and correspondingly introduce 2-component
test functions / = (/',/") such that

(2.1)

The adjoint is then

Ψ(f)* = ψ(f) with f=(f"J'). (2.2)

The commutation relations of the parafield ψ are most conveniently
described indirectly, using the decomposition of ψ into its Green com-
ponents ψ(1) and ψ(2) [1]. We have

(2.3)

with the commutation relations4

lψiί)(f\vi2\g)-] = 0, (2.4)

{V{k)(flVik)(9)}=(f,9) for fc = l ,2 (2.5)
where

We now have to consider various algebras which are associated in
some way with the parafield. Actually we shall not only be interested in
these algebras themselves; each such algebra has a set of distinguished
subalgebras corresponding to regions in (3-dimensional) space. To
emphasize this structure we shall speak of a "net" 95 when we have an
assignment of a C*-algebra 95(TΓ) to each finite space region Ψ*. To
deserve the name "net" the correspondence rV-*SR("Γ) should satisfy a
few general requirements which we shall not spell out here in detail
since they are trivially satisfied in the examples appearing in our context.
We only mention here two features for notational purposes.

1. The net 95 defines a total algebra also denoted by 95 which contains
all 95 {1T\ 95 is the smallest C*-algebra containing the

4 IA,B] = AB-BA; {A,B}=AB + BA.
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2. We assume covariance under spatial translations. Thus a trans-
lation by xeR3 shall be represented by an automorphism ax of the
algebra 93 such that

where if + Λ; denotes the translated region.
Let 5 ( 1 ) be the net generated by the Green component φ(1). In other

words, S ( 1 )(^) is the Clifford algebra5 generated by all the ψ(1)(f) for
which the support of/ is contained in if. Replacing φ ( 1 ) by ψ{2) we get the
(isomorphic) net g(2). The net %G is defined as the tensor product of the
two6

(2.7)

and Sp is the subnet of gG generated by the parafield quantities ψ (see
Eq. (2.3)). In $p we consider the automorphism γ inducing the trans-
formation H>{f)-+-—ip{f). The subnet of %P containing all those elements
which are invariant under y will be denoted by 9ΪO. In other words, 9I0

is the even part of %P.
Now we want to consider the observables. As indicated in the intro-

duction we shall demand that the net 91 generated by the observables
satisfy the two requirements

ii) local commutativity:

[Sl(Ή> 2 Ϊ ( Ό ] = 0 when ifnΨ" is empty .

We observe

2.1 Lemma. The net 9ί0 satisfies properties (i) and (ii).
// 91 satisfies (i) and (ii), then

(2.8)

Proof. Elements of 5G m a y be classified according to their Bose or
Fermi character in the component fields.

For F e 5 G (^) w e have the unique decomposition

F = F + + + F + _ + F _ + + F _ _ with Fabe$G(r). (2.9)

The subscripts refer to the transformation properties under the auto-
morphisms y(ι) defined by

/ 0 ( ψ « ) = . v ( 0 ; /0(v<*>) = v<*> for jφfc 7. (2.10)

5 See e.g. [7].
6 The C*-tensor product of two Clifford algebras is unique [8].
7 Thus the subscript + means Bose type, — Fermi type.
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The first subscript relates to y(1), the second to y(2). The locality con-
dition (ii) demands that if F e 2I(f")

[F, αx(F)] = 0 for sufficiently large |x|. (2.11)

We first show that (2.11) implies

F + _ = F _ + = 0 . (2.12)

If i^ni^ + x is empty then

Gx = [F, α,(F)] + + = 2F+ _αΛ(F+ _) + 2F_ + αΛ(F_ + ) . (2.13)

Therefore (2.11) demands that

lim ω(G*Gx) = 0 (2.14)
|ΛC|-»OO

for any state ω 8 .
We shall test (2.14) by choosing

ω = ω(1)(g)ω(2)

where ω(ί) is the trace state9 over the Clifford algebra 3r(ί) The state ω
has the following convenient properties which follow immediately from
the corresponding properties of the trace states ω( ί):

a) ω is translationally invariant and satisfies the cluster relation

ω{Fax(G))->ω{F)ω(G) as |x|-»oo, (2.15)

b) ω(y'(F)) = ω(F) and hence

ω(F) = ω(F + + ), (2.16)

c) ω(F*F) = 0 implies F = 0.
Using (2.15) and (2.16) we get for |x|->oo

Thus we get (2.12) from (2.14) and property c). Condition (2.12) is synony-
mous with the invariance of F under the automorphism y = y(ί)y(2)

which transforms xp into — ψ. We have seen therefore that only the subnet
of y-invariant quantities in QTG (the "even part") can satisfy the local

8 A "state" shall be understood as an expectation functional, i.e. a state is described by
a normalized positive linear form over the algebra under consideration.

9 The trace state over the Clifford algebra g ( ί ) is the quasifree state with the 2-point
function

It is the only state over the Clifford algebra with the property
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commutativity condition. Conversely, a trivial computation shows that
the even part of ^G indeed satisfies local commutativity. Restricting our
attention to the subnet %P we obtain Lemma 2.1.

We shall now consider three possible choices for the nets of observable
algebras. The study of these three examples should suffice to illustrate
the relevant phenomena. The first example is the net 2ί0 defined above.
Clearly, 2IOC^1 *s generated by elements of the form ψ(f) tp(g) with the
support of both / and g restricted to Ϋ". We can write

ψ(f)ψ(9) (f,g) (£g) (2.17)
with

r(f, 9) = KψifX ¥>(*)] + (A 9) = Ψil)if) Ψ(1)(9) + Ψ{2)(f) Ψ{2)(9), (2.18)

s(f, 9) = Uψifl Wi9)} ~ (Λ 9) = Ψa)(f) Ψi2)(9) + Ψ{2)(f) Ψ(ί)(9) (2.19)

Now one observes that r(f9 g) can actually be expressed as a polynomial
in the s( , •)• To see this one computes the commutator [β{ej\ s(g, h)~]
which yields r(f, g) if the test functions are chosen so that (/, g) = (e, g)
= (/,/*) = 0 and (e, ft) + 0. In this way we obtain a subset of the r( , •)
namely those for which (/, g) = 0. By taking commutators again between
pairs of elements from this subset we can obtain any r( , •). Therefore
9ί0 is already generated by the s( , •)•

The second example, denoted by 9ll9 is the net generated by the

r( , )
The third example results when we add a principle of charge con-

servation. We abandon the equal treatment of the components (ψ, ψ*)
of ψ and allow as observables only quantities with an equal number of
starred and unstarred factors. If we start from the generators r( , •) of
the net 2^ then the subset of such ("chargeless") quantities is obtained by
restricting the components of/ and g by

f' = g" = 0. (2.20)

This leads to terms of the form

/, g) = ψ(1\f)* ψ(1)(g) + ψ(2)(f)* ψi2){g) (2.21)

where / and g are now 1-component functions. The net generated by the
ρ( , •) will be denoted by 9ί2. Clearly we have the following inclusions
for the nets which have been mentioned so far:

S G D & O S I O ^ I D ^ . (2.22)

We shall show that the nets 9ΪO, 9Il3 2l2

 c a n be characterized by
invariance properties. For this purpose we should consider them not as
subnets of gG or ^p but as subnets of a net $ which is generated by two
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Fermi fields with normal commutation relations. Using the same
notation as in Eq. (2.1) we take two fields φ(i) with the commutation
relations

{φ(i)(f\Φik)(9)} = δik(f,g) (2.23)

and define adjoints by

Φ{ί)(f)* = Φ{i)(f) (2.24)

Then 3r(τT) denotes the C*-algebra generated by the φ{1)(f\ φ(2)(f) with
support of / contained in Ψ*. If we represent 5G *n Fock space then g
will be the Klein transform of 5G Since the Klein transformation is
macroscopically nonlocal, the algebra 5(^) *s n o t contained in gG.
But we can consider the Klein operator, denoted by K2, as an additional
algebraic element satisfying the relations:

{Φi2)(f\ K2} = 0; lφ^{f), X2] = 0, (2.25)

K2 = K2

1=Kf. (2.26)

Defining then fjf(ir) as the algebra whose general element is of the form
F + F'K2 with F, F' e ψi^J we obtain a net § in which both g and $G

are embedded10. Within § we can identify the generators of %G by

Ψ(1)(f) = Φω(f)K2; HF>if) = iφmif)K2. (2.27)

One easily checks that this identification gives the right commutation
relations and definition of the adjoint for the ψ{ί). We see then that the
even parts of ^G and g coincide since the factor K2 drops out in all even
polynomials in φ(1), ψ{2). The parafield becomes

ψ = (φV + iφW)K2. (2.28)

The generators of the nets 9l0,8ί l5 9ί2

 a r e respectively

s(f, 9)=- i(Φ(1)(f) Φ(2)(9) ~ Φm(f) Φω(g)), (2.29)

rif, 9) = Φ(ί){f)Φ{ί\9) + Φm(f) Φ(2\9), (2.30)

ρ(f, g) = φ<»(f)* φ<»(g) + φ<2>(f)* φV>ig). (2.31)

One recognizes in the expressions (2.29), (2.30), (2.31) the fundamental
invariants of certain groups. Consider automorphisms of % which are
induced by transformations of the form

(2.32)

1 0 Actually §(1^) may be regarded as the covariance algebra [9] of 5 ( ^ ) with respect
to the cyclic group of order 2 whose generator acts on 5 by changing the sign of all elements
which are of Fermi character in the second index.
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where g is a unitary 2x2 matrix. The group of automorphisms resulting
when g in (2.32) runs through £0(2) (orthogonal matrices with determi-
nant 1) will be called ^ 0 . Correspondingly we define 91 and ^ 2

 a s groups
of automorphisms of the form (2.32), &1 being isomorphic to the full
orthogonal group 0(2) and ^ 2 isomorphic to the unitary group (7(2).
It is clear that both r( , •) and s( , •) are invariant under ^ 0 ; r( , •) is
invariant under (S1 and ρ( , •) is invariant under ^ 2 . O n e n o w has

2.2 Theorem. The nets 2I0, 9I l 5 912

 α r e ^ subnets of g consisting of

precisely those elements of 5 w/ιfc/ί are invariant under the automorphism

groups ^ 0 , &l9 ^ 2 respectively.

Proof. We have already seen that 9l0, 9I1? 912 are subnets of g and
that the generating elements (2.29), (2.30), (2.31) are respectively invariant
under the automorphism groups ^ 0 , 9l9 &2- Polynomials in ψ(0( ) and
φ(ί)( )* are norm dense in Qί Averaging elements of g over one of these
groups is a norm-continuous operation and the mean of a polynomial in
φ(l)( )* is again such a polynomial. Hence every invariant element of $
can be approximated in norm by an invariant polynomial and it suffices
to show that every invariant polynomial is a polynomial in the respective
fundamental invariants s( , •), r( , •) or ρ( , •). If the φ{i)( ), ψ(l)( )* were a
commutative set then the classical theorems on invariant polynomials
would be applicable. In that case the s( , •) and r( , •) together would be
a generating set of invariants for the group SO(2); similarly the r( , •)
are the fundamental invariants of 0(2), and the ρ( , •) are those of 1/(2).
We show in the appendix that a generating set of invariants for the classical
polynomial algebra remains a generating set for the Clifford algebra.
The only change is that in the Clifford algebra the r( , •) are also ex-
pressible as polynomials in the s( , •) so that we do not need the r( , •)
as generators in the case of 9I0.

III. Physical Content

The preceding discussion was of a purely algebraic nature. Now we
want to consider the relevant states of the observable algebra. For
elementary particle physics the interesting states are those which (asymp-
totically) coincide with the vacuum state11 ω0 for observations in far
away regions of finite size. In the traditional treatment of Quantum Field
Theory these states appear as the normal12 states in a Hubert space

1 1 By "vacuum state" we mean the dynamically determined ground state not the Fock
vacuum.

1 2 These are states which can be described by vectors or density matrices in the Hubert
space in question.

15 Commun. math. Phys., Vol. 18
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representation of the field algebra generated from the vacuum. In fact one
may say that the basic reason for embedding the observable algebra in a
field algebra is precisely the wish to unite and connect all relevant states
in one Hubert space representation [10,6,11]. Therefore, while the field
algebra does not have an intrinsic physical significance and is not
uniquely determined by the physical content of the theory the arbitrari-
ness which remains in the construction of a field algebra is severely
limited. In our context we have the algebras $p> $, § a s possible candi-
dates. It will turn out that $ is always an appropriate field algebra (under
some simplifying assumptions concerning the vacuum state), whereas g P

is appropriate only in one of the three examples described in the last
section, namely when 2I2 is the observable algebra. The model with 2ί0

describes ordinary Fermi statistics in disguise.
The Hubert space representation referred to above is obtained by

the Gelfand-Naimark-Segal construction once the vacuum state,
originally defined over the observable algebra, is extended to the field
algebra. We first note that there is a unique extension of the state ω 0

defined over 21,. to a ^.-invariant state of g. We proceed as follows:
since the automorphisms ag e ^ f of g are induced by a unitary group of
operators on the test function space we have a strongly continuous
group of automorphisms of the Clifford algebra when ^ is given its
natural topology as a matrix group, i.e.

g-+ag(F) is norm continuous for each F e 5 .
Let

m f(FH i*§(F)dμ(g) (3.1)

where μ denotes normalized Haar measure. Then we extend the vacuum
state to g by defining

ωo(F) = ωo{mi(F)) for all Fe%. (3.2)

We now make three simplifying assumptions. First the extension of ω 0

defined by (3.2) shall be a pure state on g. This means that we do not
discuss here the possibility of a "spontaneous breakdown of the gauge
symmetry" or in the terminology of Yang [12] the possible occurrence
of an "off-diagonal long range order". This first assumption implies,
that (3.2) is the only possible extension of ω0 from 2If to J$r.

Secondly (and related to this) we assume that, in the case when
2ί0 is the observable algebra, ω 0 as a state over 2l0 is invariant under
the automorphisms y(/). If this were not the case then there would be
another translationally invariant state ω'o arising from ω0 by the trans-
formation y(2). This state might be another ground state, degenerate
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with ω 0 , corresponding to the spontaneous breakdown of an observable
symmetry; we do not wish to discuss this possibility here. If ω'o is not
another ground state it is not an interesting state for elementary particle
physics but is typically a many-body state with finite mean particle
density. The parafield, which connects ω 0 and ω'o is then not a useful
object in elementary particle physics. The third assumption is that the
representation of the observable algebra resulting from ω 0 by the GNS-
construction is faithful. This assumption ensures that we have a situation
as envisaged in [6] and typical of local relativistic theories (e.g. existence
of antiparticles). This assumption would not hold if ω 0 were the Fock
vacuum annihilated by all the ψ(f).

In the representation of $ resulting by the GNS construction from
the extended vacuum state (3.2) we denote the operator representing
F e 5 by π(F) and the vector corresponding to ω0 by Ω.

Since ω 0 is invariant we also have a continuous unitary representation
of the "gauge group" ^, , the representative U(g) of α ^ e ^ being defined by

U(g)π(F)Ω = π(aβ(F))Ω for all F e g . (3.3)

As shown in [6] the representation space 2tf may be decomposed as

(3-4)

where the index σ characterizes the superselection quantum numbers
which in turn correspond to (equivalence classes of) irreducible represen-
tations of the gauge group in question. J"fσ is the finite dimensional space
carrying the irreducible representation Uσ of ^ f . In other words, in the
decomposition (3.2) we have

tffe)=0Uσto)®£ (3.5)
σ

On the other hand, Jί?ά is a representation space for the observable
algebra, carrying an irreducible representation πσ of 21, i.e.

0). (3.6)
We now have σ

3.1 Theorem. The superselection quantum numbers are in one-to-one
correspondence with the equivalence classes of irreducible representations
of the "gauge group" ^ 1 3 .

Proof. We need only show that all representations of the gauge group
occur. Given any equivalence class σ of irreducible representations of

1 3 Compare [6; Theorem 3.6] where this result is derived using the Reeh-Schlieder
property.

15*
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^ f we can find a non-zero tensor F e 5 of character σ and it suffices to
show that

π(F)£oΦ0 (3.7)

where Eo is the projection onto the vacuum sector. For any vector
π(F)E0Φ transforms according to σ. Suppose π(F)E0 = 0 then

Eoπ(F*F)Eo = π (m(F*F)) Eo = 0.

However, we have assumed that the vacuum representation of the ob-
servables is faithful, hence ra(F*F) = 0. Thus ω(m(F*F)) = 0 where ω
is the unique trace state of $• However ω is invariant under all auto-
morphisms of g, so ω(m(F*F)) = ω(F*F) = 0. Thus F = 0 contrary to
hypothesis and the proof is complete.

Let us now look at the superselection quantum numbers in the three
different cases mentioned. This is the purely group theoretical problem
of classifying the irreducible representations of SO(2), 0(2) and 1/(2).

Case 1) 8ί0; {SO(2)}
Here σ runs through all integers n (positive, negative, and zero). The

rotation by an angle φ is represented in Un by the number einφ. Thus
J^n is 1-dimensional.

Case 2) 2^ {0(2)}
For each positive integer \n\ we have a 2-dimensional representation

of 0(2), tying together the two representations of SO(2) with n = ±\n\.
In addition there are two 1-dimensional representations of 0(2) denoted
by 0+ andθ~.

Case 3) 9Ϊ2; {£7(2)}
Here σ is characterized by two quantum numbers which may be

interpreted as isospin / and baryon number B. Of course, B runs through
all integers (positive, negative, zero) and 2/ is a non-negative integer. The
two numbers are related by

= even. (3.8)

(3.9)

The dimensionality of J ̂  B is 2/ -h 1.
The position of the subgroup ^ 0 within ^ 2 i s s u c h

where I2 is the second component of the isospin vector I = (Il91291$).
We now wish to compare this classification of states by the above

charge quantum numbers with the one resulting from the parafield
description. This comparison is simplified by observing that from (2.25),
(2.26)
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and furthermore y{2) e ^ . A s © 0 is invariant under y(2) we can represent
K2 by an operator π(K2) in Jf defined by

π(K2)π(F)Ω = π(γi2)(F))Ω for all Fe%. (3.10)

In particular π(K2)Ώ = Ω Thus we have a representation of g and a
fortiori of g P in ^ The state ω 0 has thus been extended to Qίp and this
extension is in fact unique. Using 5p as a field algebra instead of 5 means
restricting attention to the subspace J^P generated by applying the para-
field algebra to Ω. Writing now

Z+(/) = Φω(f) + iφ(2)(f),

X-(f) = Φω(f)-iφ(2)(f),

we see that χ+ raises the quantum number n (defined with respect to the
observable algebra 9I0) by one unit whereas χ_ lowers n by one unit. On
the other hand, by (2.28) and (3.10) we have

(ιι = l), (3.12)

0), (3.13)

(n = l). (3.14)

Hence the subspace JfpC Jf which is generated by applying the parafϊeld
algebra to the vacuum contains only two sectors, namely those states
with "charge" n = 0 or n = 1.

This paradoxical situation is best illustrated by looking at (3.13) with
functions / and g, having supports in two far separated regions Yγ and
i^2 respectively. Then the state (3.13) means, for observations from the
algebra 2l0, that we have charge -f 1 in i^2 and charge — 1 in yu whereas
if we look at the left hand side of (3.13) and at (3.12) we might be led to
believe that in both regions we have charge +1. The conclusion is
therefore: if 9I0 is the observable algebra then the parafϊeld description
is very unsuitable because the product of parafields does not correspond
to the physical notion of the product of states well localized in far
separated regions. Furthermore only a small part of the physically
relevant states are described by the vectors in 3^P. We have for example
no states with total charge — 1 in Jfp, although we do have states in which
the charge of a certain region is —1. The true physical content of the
theory in this case is completely equivalent to that of a theory with Fermi
statistics; the parastatistics are here only simulated by an artificial and
physically inadmissible restriction on the manifold of states which are
considered.

Let us now turn to the case where 9I2 is the observable algebra. First
we observe that the subspace J ^ 0 ) got by applying even polynomials in
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ψ to Ω contains all vectors in 34? with "charge" n = 0. Similarly ^
spanned by the vectors ψ(f)Jί?p°\ contains all vectors in Jίf with n = 1.
Further, the vectors in ^ 0 ) have even baryon number and hence by (3.5)
integer isospin; those in ^ 1 } have odd baryon number, hence half
integer isospin. In every isospin multiplet with integer / there is a vector
with I2 = 0 and for half integer I we have a vector with I2 = \. Since all
the vectors belonging to one isospin multiplet give the same expectation
values for the algebra 9X2 i

 e they correspond to one and the same state
over 5Ϊ2 it suffices to pick one state vector from each multiplet and we
can choose in particular the one with I2 = 0 (or \) for / integer (or half
integer). Therefore 3tfP contains indeed all the relevant states of the
observable algebra 9I2. Each such state is represented by exactly one
state vector in f̂P, whereas it is redundantly represented in Jf (for a
state with isospin / we have a (2J + l)-dimensional subspace of ob-
servationally equivalent vectors in Jf). The parafield description is
consistent and perhaps even convenient when 9Ϊ2 is the observable
algebra. The alternative description by means of the field algebra g
(normal commutation relations and the non-Abelian gauge group 02)
shows however, that the parastatistics are reduced to ordinary statistics
when "hidden variables" are introduced i.e. when certain quantities
outside of 2l2 are added as possible observables.

The case where 2^ is the observable algebra illustrates both the
phenomena encountered in discussing 9ί0 and 9Ϊ2. On the one hand, the
group 0(2) is non-Abelian. Therefore the model is not equivalent to
Fermi statistics (at least without introducing hidden variables). On the
other hand the parafield description is again inadequate in this case
because Jtfp does not contain all the relevant states over 9lx.

IV. Para-Fermi Fields of Higher Order

The main results of Section II can be generalized to parafields of
order p > 2. We shall restate these results in a form appropriate to the
case p > 2 and outline the proofs, without however giving details.

For a para-Fermi field of order p we have Green's decomposition

V= ί > W (4-1)
i = l

with commutation relations

[V ί 0(Λvϋ )(ί)] = 0 for iΦj, (4.2)

i ί ) i i ) (f,g)ίor » = l,...,p. (4.3)
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The net %G is now defined by

where g ( 0 is the net generated by the Green component ψ(i). g P is the
subnet of $G generated by the parafield quantities ψ.

The elements of $G may be classified according to their transforma-
tion properties under the automorphisms y(ι) defined by

(4.4)

For F e S G ( ^ ) w e have the unique decomposition

F= Σ FN with FNe%G(r) (4.5)

where

p-times

jr = 'z2χ.Λ..χZ2 = {(Nί9..., Np)\Nt = 0,1} (4.6)

and

y(ψN) = (-lf>FN. (4.7)

Actually the γ(i) generate a representation of the group Jf by auto-
morphisms of gG. Since Jί may be identified with its own dual, (4.5)
corresponds to the decomposition of this representation into irreducible
components. Let Ψ" and y be two disjoint regions and FegG(^)>
F' e Scί^'). One has

Σ NiMi

i ^ M = (- l ) ι = 1 F^FN. (4.8)

We now define subnets 3I0 and 2lx of %P by:

Consider the following conditions for a net 91 of observables:

(i) &(r)c%P(r)
(ii) [S&{Π SΆ{ψ-'y\ = 0 ii-rn-T' is empty.
4.1 Lemma. A net 91 satisfies (i) and (ii), if and only if
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Proof. Let 91 be a net satisfying (i) and (ii), and let F e SΆ(ir). Then for
all x such that Yc\Y + x is empty we have

N,N'

Σ i ί

= Σ [ l - ( - l ) i lFNax(FN,) (4.11)
N,Nf

= 0.

Applying the same technique as in the proof of Lemma 2.1 one may
show that

Σ Nt N( is even for all N, N' eJΓτ. (4.12)
I

Furthermore since F is invariant under any permutation of the Green
indices, so \&Jί¥. Using (4.12) one may thus derive the following condition
for a l lAΓe^

Ni = Nj fora lΠj . (4.13)

Combining (4.12) and (4.13) we get

^CUO,. . .^ ) } forpodd,
(4.14)

^FC{(0,...,0),(l,...5l)} for p even
and hence the result.

Condition (4.14) is equivalent to the in variance of F under each of
the following automorphisms

γ = Y\ y« /'Λ = y(OyCΛ for all i φ J .
i = l

For p > 2 these automorphisms do not induce automorphisms on g P so
that we cannot, in general, characterize 9I0 by invariance properties

Oϊ dp-
A generating set for 9ί0 can now be obtained by using decomposition

theorems [13] for polynomials in the parafields and taking norm limits.
These generators are of the form

r(f,g)=iv>(i)(f)¥'\g),
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where the sum is to be taken over all permutations π of (1, ...,p). The
quantities r(/, g) alone form a generating set for (Άί. We again consider
the net 9Ϊ2 constructed by using the "neutral" generators ρ( , •), where:

Q(f,9)= Σ v ( i ) ( / r v % ) (4-16)
i = ί

The following inclusions hold:

& P & θ 2 I 0 3 2ϊi;)2Ϊ2. (4.17)

The nets 9l0, 9Il9 212

 m a Y n o w be characterized in terms of in variance
properties by considering them as subnets of a net g generated by p
Fermi fields with normal commutation relations:

{Φii)(f\Φij)(9)}=δij(f,g) for i = l , . . . , p .

We can embed both g and gG in a net § where §(τ^) is generated by
elements of the form

FHH with FHe%(r)
HeXT

where the group J Γ of Klein operators is generated by elements Hk

defined by the relations:

(4.18)

Within § the

The parafield

j=ί

φ(f)= Σ

{Hk,φ

lHk,Φ

Hk = l

generators

becomes:

>M(f)}

of SG

= 0 for all i ^ k,

= 0 for all j < k,

i k

ι for k even ^p +1

can be identified by

) = φ^(f)Hj+1 for; odd

= iφ

Φ(2j)(J

+ iφi2-

ω(f)Hj for even.

')} H2j for p even,

n(f)}H2] + φ(p)(f) for

Again this identification gives the correct commutation relations and
definition of the adjoint for the φ ( 0. The generators of 3I0? 9tl9 9Ϊ2 may
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now be written in terms of the fields φ(i) as:

r(f,9)= ΣΦ{i)(f)Φ(ί)(9)> ( 4 2 1 )
i = l

s(Λ> - JP) = ( - 0 [ i p ] Σsign ( π ) ^ (A) - Φ{πp)(fP) (4-22)

where [^p] is the largest integer ^^p and sign(π) is the signature of the
permutation π.

)=ΣΦ{i)(frΦ(i)(g) (4-23)

Consider automorphisms ag on g defined by (2.32), where g is a unitary
p x p matrix. We get automorphism groups ^ 0 , ^ and ^ 2 by letting g
run through the matrix groups SO(p% O(p) and U(p) respectively.

4.2 Theorem. 77ze nets 9I0, 2l1? 9ί2

 α r β precisely those subnets of g
which are invariant under the automorphism groups ^0,^x, ^2 respectively.

The proof of this theorem is analogous to the proof of Theorem 2.2
and completes the extension of the results of Section II to para-Fermi
fields of order p > 2.

The assumptions and discussion in Section III leading to Theorem 3.1
apply without modification to order p. The representation π of g can be
extended to § by requiring

π(H)Ω = Ω, He Jf. (4.24)

It remains to determine which states are obtained from the subspace
J^P generated by applying the parafield algebra to Ω. To this end we
study symmetry operations on certain subspaces of g and ^p

Let fl9f29 ,fn be linearly independent test functions and consider the
linear spaces g" C 5 and g P C g P spanned by

and {v(/τ(i))... ψ{fτ(n))\τe Sn} respectively. Here Sn denotes the permu-
tation group on n objects. On both spaces we get a representation of Sn

by permuting test functions

( 4 2 5 )

Ψ(fτπ(n)) • (4.26)
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Considering gί" and $p as subspaces of g, we get

) = Σ ΐ(FH)H for £ /^ffegt. (4.27)
HeJT ) HeJfT HeDίT

We now show that JfF contains all relevant states of the observable
algebra 9I2.

4.3 Theorem. Given an equivalence class σ of irreducible representa-
tions of U(p) there is a non-zero vector in Jtifp transforming according to σ.

Proof. Arguing as in the proof of Theorem 3.1, it suffices to show
that we can find a non-zero tensor F e % of character σ, such that

π{F)Eojec^P. (4.28)

Now %n carries a representation of U(p) equivalent to the w-fold tensor
product of the defining representation. This may be decomposed into
irreducible components using Young symmetrizers from the group
algebra of Sn where the action of Sn on gr" is given by

Φih)(fi) -. Ψiin)(fn)) = Φ ( i '-1 ( 1 ) )(/i)... Ψiiτ'Un))(fn) (4.29)

Consider a Young symmetrizer

ε = Σ sign(τ)τπ (4.30)
τ, π

corresponding to a Young tableau of n squares and at most p rows,
where π permutes the rows and τ the columns.

Comparing (4.25) and (4.29) we have τ = sign(τ)τ and hence

s = Σ sign(π)τπ = ε'. (4.31)

Now Y. Ohnuki and S. Kamefuchi [14] show that the representation
(4.26) of Sn contains irreducible components corresponding to all Young
tableaux with at most p columns and hence that for some £ FHHe^P

Hetf
(4.32)

But the FH here are linearly independent since they have different trans-
formation properties under the automorphisms (4.4) and hence by (4.27)

ε ί \FA = f i ( Σ Fή +0. (4.33)

Further

Σ FHH\E0Jtrc^P. (4.34)Σ
HeJίT
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To show that all representations occur it suffices to remark that

*,(s(fi, •.-,/,)) = (detίΓ^C/i, ...,/p), ge U(p), (4.35)

if the test functions are chosen so that f{ = 0, 1 = 1,2,...,p. Hence
multiplying a n ε ί ^ FH\ by a suitable product of the s( ,..., •) we

\Hetf J
obtain a non-zero tensor of arbitrary character satisfying (4.28).

In conclusion we remark that the decomposition theorem [13] for
polynomials in the parafield when combined with (4.20) shows at once
that the only representations of O(p) contained in JfP are those cor-
responding to Young tableaux with a single column. Hence when either
9ί0 or 9IX is the observable algebra not all physically relevant states are
described by vectors from J^P.

Appendix

For certain groups of linear transformations it is possible to prove
what is known as the first main theorem in the theory of invariants [15],
namely that every invariant polynomial in any number of vector variables
is a polynomial in a finite number of fundamental invariants. At the end
of Section II we wish to apply this result to the groups (7(2), 0(2) and
SO(2) but in a context which is not the classical one because the algebra
of polynomials has been replaced by the Clifford algebra. In this appendix
we justify this step by showing that the analogous result holds in the
Clifford algebra for any group of linear transformations for which it
can be proved in the polynomial algebra.

Let G be a group of linear transformations on a vector space Eo over
a field K which we may take to be the real or complex numbers. Let E be
the direct sum of any infinite number of copies of Eo.

£ = 0 £ α , E^E0. (A.1)
aeA

Let {^lϊej be a basis for Eo then we have a corresponding natural basis
}iei,αeΛ f°r ^" We n o w consider the polynomials in the variables

i.αeA14' The algebra of such polynomials is the symmetric
algebra of E and we denote it by ίf{E). The algebra ^(E) is independent
of the choice of basis in E.

We also consider the algebra s/(E), the antisymmetric algebra of E
(or Grassmann algebra), where the variables φ(((χ) are taken to anti-

1 4 The notation for the basis has been chosen to help the reader apply the result to
Section 2. The vector φ((oc) should be thought of as ψ(i)(/α) where fa is a test function. The
index i labels the component while {fa}aeA is chosen as a basis in test function space.
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commute rather than commute

φ\a) φj(β) + φj(β) φ%) = 0 all ij eI,aL,βeA. (A.2)

The group G acts in a natural way on &*(E) and s/(E) and we may
speak of invariant elements of ίf{E) or srf(E). In what follows we need
to deal with mappings between spaces on which G acts. If such mappings
commute with the action of G they will be called G-morphisms, linear
G-morphisms, G-isomorphisms etc.

An element φ e ̂ (E) (or s#{E)) will be called generic if it is a sμm
of monomials in each of which no index α e A occurs more than once. In
other words φ is generic if its partial degree in each vector variable φ(oc)
is at most one. The first step in proving the first main theorem is to show
that it suffices to restrict oneself to generic elements. The technique
involved is called complete polarization [15].

Let B C A be any finite set of indices and consider the subalgebra
s/(B) generated by φ^β) with βeB,ίeI. Let jrfs(B) denote the G-in variant
linear subspace of s/(B) consisting of elements homogeneous of degree 5.
Pick distinct indices (β, r) e A, β e B, r = 1,2,..., s and let Bs = {(β, r) e A :
βeB, r = l,2...s}. Define

F{φHβύ ... Φi'(βJ) = ̂ γΣΦil(βiMl)) ... tf-(fia,n(s)), (A3)
S π

where the sum is taken over all permutations π of 1,2, ...,s. To show
that F can be extended to a linear G-isomorphism of stfs{B) onto a sub-
space of stf(Bs\ it suffices to check that F is well-defined. However an
elementary calculation shows that

= sign(π)F(φHβi) ... ΦHβs% for all π,

where sign(π) is the signature of the permutation π. Hence F is well-
defined. Further we may define a G-homomorphism F of <stf(Bs) onto
s/s (B) by substituting the variables φ(β) for φ(β, r), r = 1,2,..., s. In other
words we define Fr by setting

Ff(φi(β,r)) = φi(βχ all β e B , iel, r = 1,2, . . . ,s . (A.5)

From (A.3) and (A.5) the composed mapping F'F acts as the identity on
s/s(B). Now given an invariant φ e s/s(B), F(φ) is a generic invariant in

). If F(φ) is a polynomial in the fundamental invariants in s/(Bs)
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then using F' we deduce that φ itself is a polynomial in the fundamental
invariants in jrf(B). The same argument holds, mutatis mutandis, for the
symmetric algebra.

Hence in proving the first main theorem of invariants in Sf(E) or
jrf(E) it suffices to consider the generic invariants of maximal degree in
vector variables with indices from an arbitrary finite subset Be A. Order
the elements of B as βl9 β2,..., βn say, and let ^<B> and J</<£> denote
the G-invariant linear subspaces of generic elements homogeneous of
degree n in S?(B) and s/(B) respectively. Since {φil(β1),..., ΦHβnY-
il9 i2 ... ίne/} can be considered as a basis for either ^{B} or srf(fiy
we have a linear G-isomorphism of these two linear spaces which we use
to identify corresponding elements.

Suppose φe6f(By is invariant and may be expressed as a poly-
nomial p in the fundamental invariants fl9f2, ...,fk of G.

<P = P(fi,f2,...,tt in ST(B). (A.6)

Expand the polynomial p as a sum of monomials; in each monomial the
indices βί9 β29 ...,/?„ will require a certain permutation to bring them
into their natural order. Let p' be the polynomial obtained by multi-
plying each monomial of p by the sign of the corresponding permutation,
then

(A.7)

Conversely (A.7) implies (A.6) and we have proved

Theorem A.I. fl9f29 ...,fkis a fundamental set of invariants for G in
s/(E) if and only if it is a fundamental set in Sf(E).

We have still to extend the results to cover the Clifford algebra.
Suppose E has a G-invariant symmetric bilinear form (,), then the Clifford
algebra Ή(E) is generated by {φι(α)}, iel9 oceA with the commutation
relations

φ'(a) φKβ) + ΦJiβ) Φ'(«) = (Φ%), Φj(β)) (A.8)

Now si (E) and %>(E) are quotient algebras of the free algebra generated
by {φ ι(α)} l e/,α e^ with respect to the ideals J1 and J>2 generated by the
relations (A.2) and (A.8) respectively. We note the following two facts:

a) If φ2 e «/2 has degree n there exists a φ1eJ1 such that φλ — φ2 is
of degree at most n — 2.

b) J>x is a direct sum of linear subspaces of elements homogeneous of
degree n9 n = 2, 3,... .
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Theorem A.2. If fί9f2, ...,fkis a fundament set of invariants for G in
it is a fundamental set in the Clifford algebra ̂ (E).

Proof. We proceed by induction on the degree of the invariant.
Suppose all invariants in ^(E) of degree <n are polynomials in/ 1 ? / 2 , . . . ,fk.
Given an invariant φ e ^(E) of degree n then by writing it in a totally
antisymmetric fashion we may consider it as an invariant of degree n in

). Then by hypothesis φ = p(fl9f29 ...,/fc) in s/(E)9 i.e.

Furthermore by b) we may suppose that p(fu / 2 , . . . , fk) also has degree n.
Hence by a) </>-p(/i,/2, •••,/*) has degree at most n-2 in <^(£). Thus
</> must also be a polynomial in fl9f2, ...,fk in ^(E). However for in-
variants of degree 0, and 1 the induction hypothesis is trivially satisfied
and the proof is complete.

As we have seen in Section II, the converse of this theorem need not
hold. We may well require fewer fundamental invariants in ̂ (E) than in
&f(E) and hence than in ^(E). Naturally we can prove the analogue of
Theorem A.2 for the algebra of the canonical commutation relations

0ι'(α) φj(β) - φj(β) φ^a) = (φι'(α), φj(β))

where (,) is now a G-invariant skew-symmetric bilinear form.
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