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Abstract. We consider classical systems of particles in v dimensions. For a very large
class of pair potentials (superstable lower regular potentials) it is shown that the correlation
functions have bounds of the form

Using these and further inequalities one can extend various results obtained by Dobrushin
and Minlos [3] for the case of potentials which are non-integrably divergent at the origin.
In particular it is shown that the pressure is a continuous function of the density. Infinite
system equilibrium states are also defined and studied by analogy with the work of Do-
brushin [2 a] and of Lanford and Ruelle [11] for lattice gases.

0. Introduction

A number of papers have been devoted to the study of the thermo-
dynamic limit (infinite volume limit) in the statistical mechanics of
classical systems of particles in v dimensions. Fairly satisfactory results
have been obtained for the thermodynamic functions: existence of the
limit, convexity (stability) properties, and the equivalence of the various
ensembles*. For other problems (continuity of the pressure as a function
of specific volume, study of correlation functions) the results are less
satisfactory due to a technical difficulty: it is hard to exclude large
fluctuations of the number of particles in a small region of space. It is
true that if many particles are put in a small region A of space their
repulsion will lead to a large positive potential energy (and therefore
to a small probability in the grand canonical ensemble), but it is difficult
to estimate the interaction energy of the particles in A with the neigh-
bouring ones. In the present paper we solve the technical difficulty just
mentioned and study some consequences of the solution.

1 See the pioneering work of Van Hove [15], Yang and Lee [16] and the articles of
Ruelle [13], Fisher [5], Griffiths [7]. For a general exposition and further references see
Ruelle [14].
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We shall assume that the interaction between particles is given by a
pair potential Φ 2, i.e. the energy of m particles located at x l 5 . . . , xm is

U(xί,...,xm) = £ Φ(Xj-Xi)
ί<j

where Φ is a Lebesgue measurable function which satisfies Φ(x) = Φ( — x)
and which may take real values and the value + oo. In order to have a
system with thermodynamic behaviour, we assume that Φ is stable,
i.e. there exists JB^O such that, for all m, x l 9 ...,xm,

If Φ is of the form Φ = Φ' + Φ" where Φ' is a stable pair potential and Φ"
is a positive continuous function with Φ"(0)>0, we say that Φ is super-
stable3. The reader may convince himself that stable potentials which
are not superstable are in a sense exceptional: in fact the only case of
interest is Φ = 0. If A is a fixed bounded region of 1RV, and Φ a superstable
potential there exist A >0 and B^O such that for all m and all

U(xί, ...,xJ^Am2 — Bm.

We say that Φ is /ower regular if there is a positive decreasing function φ
on [0, -f oo) such that

J ί v " 1 d ί φ ( ί ) < +oo
o

and for all x e Rv

We summarize now in two theorems the main results of Sections 1-4
of the present paper

0.1. Theorem 4 . Let Φbea superstable and lower regular pair potential,
let A be a bounded Lebesgue measurable region in Rv, and let

00 „«

Z =

M ? 0 -^ϊidX^"dXne'βUiXU""XH)

be the grand partition function at activity z.
2 Actually, a weaker assumption is made in Sections 1 and 2.
5 A slightly less restrictive definition is given in Section 1.
4 See Proposition 2.6 and Corollary 2.9. Part (a) of the theorem is an easy result for

positive or hard core pair potentials (see [14], Exercise 4.D). Part (b) had been proved by
Dobrushin and Minlos [3] for pair potentials which are non-integrably divergent at the
origin.
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(a) Define the correlation functions by

00 -It

n (Ύ Ύ \_7~1 V f Λγ AΎ p-βU(xι,...,xn)

n = m \n rn) ' Λn~rn

There exists a positive constant ξ, independent of A, m, xl9..., xm, such that

(b) Given λ > 0, ίfere exfsί f̂ > 0 and d^O such that if A is any bounded
Lebesgue measurable subset of W with diameter L^λ, then the grand
canonical probability of finding more than m particles in A is less than

\

exp - 0
L

The probability in question is

00 00 -» + p

n = m p = o ft'P (ΛnΔ)n (Λ\Δ)P

0.2. Theorem 5 . Let Φbea super stable and lower regular pair potential.
(a) Let A be α parallelepiped with sides a1, . . . ,α v and volume

\A\ = ax . . .α v . // a1,..., av-+oo, then \Λ\~1ίogZ tends to a finite limit
βp (p is the thermodynamic limit of the grand canonical pressure).

(b) Assume that

$dx\l-e-βφ(x)\<+oo

then, the pressure p defined in (a) is a continuous function of the density

Q = βz —— (inside of its interval of definition).

In Section 5 we study the infinite volume limit of correlation func-
tions. One does not expect that this limit will be unique (because of the
possible occurrence of phase transitions), but the following result is
obtained.

0.3. Theorem6. Let Φ be a superstable and lower regular pair
potential; assume that

$dx\l-e-βφ(x)\<+oo.

5 See Theorem 3.3 and Theorem 5.3. Part (b) of the present theorem was known in the
extreme cases of pair potentials bounded from above (Ruelle [13]) or very repulsive at the
origin (positive or hard core: Penrose and Ginibre [6] non integrably divergent: Dobrushin
and Minlos [3]). An attempt at bridging the gap between the two cases started the work
presented in this article.

6 See Theorem 5.5 and Corollary 5.3.

9 Commun. math. Phys., Vol. 18
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Let (A) be a sequence of bounded Lebesgue measurable regions of Rv,
tending to infinity in the sense that for every bounded A there exists nΔ

such that A C Λj if j^nA. Then one can choose a subsequence (A'k) of (Aj)
such that

uniformly on the bounded subsets of (lRv)m. The infinite volume correlation
functions obtained as limit satisfy the Kirkwood-Salsburg equations

m

-β Σ Φ(χi-χι) α> j

ρ(xl9...,xj = ze i = 2 X —ridxm+1 ...dxm+n

The other results of Section 5 are of a less elementary nature and are
only outlined here. A concept of infinite volume equilibrium state is
introduced. Such a state may be described by correlation functions
satisfying the Kirkwood-Salsburg equations. It may also be described
by a probability measure μ (on a suitable measurable space 9Γ) satisfying
"equilibrium equations" of a type already known for lattice systems
(Dobrushin [2 a], Landford and Ruelle [11]). The set Σ of (infinite volume)
equilibrium states is non empty, convex and compact7 and a Choquet
simplex*. The last statement means that every equilibrium state may,
in a unique manner, be decomposed into extremal equilibrium states.
If this decomposition is non trivial for a pure thermodynamic phase we
have an example of symmetry breakdown9. Let Σo be the set of equilibrium
states which are invariant under the effect of translations of Rv. This set
is non empty, convex, and compact. It is again a Choquet simplex and
this fact has the physical interpretation that every invariant equilibrium
state has a unique decomposition into pure thermodynamic phases.

For sufficiently small activity, Σ consists of just one point. In that
case the thermodynamic limit of the correlation functions is unique 1 0.
In general from every sequence (Λ^j of bounded regions of W tending to
infinity one can extract a subsequence such that the corresponding
correlation functions tend to some point of Σn.

7 With respect to the topology of uniform convergence on compacts of the correlation
functions.

8 See for instance Choquet and Meyer [2].
9 For a discussion of these concepts, see [14] Chapters 6 and 7, Lanford and Ruelle [11].
1 0 This was known, see for instance [14] Section 4.2. References are given in [14]

to the original papers of Ruelle and Penrose. The author has recently become aware of
earlier work (for positive potentials) by Bogoljubov and Khatset [1].

1 1 This may not give all points of Σ. One can however get all points oΐΣ by introducing
suitable "boundary effects", namely by prescribing suitable distributions of particles outside
of the Λu.
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1. Conditions on the Interaction

For all integers m^O and all xl9...,xmeWC, let U(xl9..., xJelR
u { + 00} U is thus a function on £ (Rv)m. We say that U is an interaction

m

if it satisfies the following conditions.
(IJL) Measurability. For each m, (x 1 } . . . , xJ-> U(xl9..., x j is Lebesgue

measurable.
(12) Permutation invariance.

U(xiι9'...9xJ=U(xl9...9xJ

for every permutation ( 1 , . . . , m) ->• (ft,..., zm).
(13) Translation invariance.

a9...9xm + a)=U(xl9...9xJ

for all a eW.
( U If yu . ;yneW and U(xu ...,xj= +co, then

U(x1,...,xm9yί,...,yn)= + 0 0 .

(I5) Normalization. If m = 0 or m = l ,
We say that the interaction U is stable if it satisfies the condition
(S) There exists B^tO such that for allm,xu ..., xm,

Let 0 < λ e R For every reΈv we define a cube

These cubes form a partition of 1RV. If X e (IRv)m, we let n(X, r) be the
number of points of the sequence X = (xl9..., x j which belong to Ά(r).

A condition stronger than stability is the following
(SS) Super stability. There exist A > 0, B ^ 0 such that if 0t is a finite

subset of Έv and

xί,...,xmeureί%Ά(r), X = (xl9...9xJ

then

Notice that a positive interaction is stable, that the sum of two stable
interactions is stable, and that the sum of a stable and a superstable
interactions is superstable.
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We write

XY=(xu...,xm,yu...,yn).

Let W(X9 Y) satisfy

U(X Y) = U(X) + U(Y) + W(X9 Y),

flφr,Y)=+00 if ( 7 ( X 7 ) = + o o .

In view of (I2), (I4), these conditions determine entirely the function W:

'Σ ( R T ) x (Σ (RV)m) - R u ί+<*>}•

If reΈv, we let \r\ = sup|rΊ. We say that the interaction U is lower
i

regular if it satisfies the following condition
(LR) There exists a decreasing positive function Ψ on the positive

integers such that

Σ w<+α).

Furthermore if M\ Of are finite subsets of Έv and

x l J . . . ,x m eu r e Λ .2(r), X = (xl9..., x j

-n(Xrf+-
2 ' :

We mention without proof the following easily verified result.

1.1.'Proposition. The conditions (SS) and (LR) are invariant under
linear transformations of W (in particular they are translation invariant
and independent of the choice of λ).

We indicate now criteria under which (S), (SS), (LR) hold for inter-
actions associated with pair potentials. A pair potential is a Lebesgue
measurable function Φ :!Rv->IRu{ + oo} such that Φ( — x) = Φ(x); an
interaction Uφ is defined by

Uφ(xl9...,xJ= ΣΦ(xj-xd.

Clearly Uφ ̂  0 if Φ ̂  0. We say that Φ is stable (resp. superstable, lower
regular) if Uφ satisfies (S) (resp. (SS), (LR)). Propositions 1.2, 1.3, 1.4
below give criteria for stability, superstability and lower regularity. For
proofs, see [14], Section 3.2.
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1.2. Proposition, (a) If Φ' is the Fourier transform of a positive
measure with finite total mass, then Φ' is stable.

(b) // Φ" is continuous Ξ̂O and Φ"(0)>0, then Φ" is super stable.

In particular if Φ ̂  Φ', then Φ is stable12. If Φ is stable, then Φ + Φ"
is superstable.

1.3. Proposition. Let φ: [0, + oo)-»IR ί>e positive, decreasing, and let

J ί v " 1 dίφ(ί)< +oo.
o

// Φ{x)^ — φ(|x|) /or αW x, then Φ is lower regular.

1.4. Proposition (Dobrushin, Fisher, Ruelle). Let 0<dί<d2< + co
am? let

φ1:l0,d]-+JRv{ + co}9 φ2 : [d2, +oo)-^!R

ί?̂  positive, decreasing and such that

\tv~1dtφ1(t)=+oo, \f-1dtφ2{t)< +oo.
o d2

// ί/ẑ  pαzr potential Φ is bounded below and satisfies

Φ(x)^φi(\x\) for \x\£dl9

\Φ(x)\^φ2(\x\) for \

then Φ is superstable and lower regular.

2. Probability Estimates

In this section we shall obtain bounds on the correlation functions
and other quantities of interest (probability estimates). We assume that
the distribution of X is given by the grand canonical ensemble and that
the interaction U is superstable and lower regular.

Let A be a bounded Lebesgue measurable subset of 1RV with measure
|Λ|>0, let U be a stable interaction and let β>0, z>0. The grand
canonical probability measure is defined on £ Λn by its restriction

^ . . d x n (2.1)

to every Λn; here

Z= £ -ζ- Jdx 1...dxBέΓw* 1 *•>. (2.2)

1 2 There exist stable potentials which are not of this type (S. Sherman, private com-
munication).
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The convergence of Z is ensured by the stability of U. The probability
estimates (Propositions 2.6 and 2.7) will be preceded by technical results,
Propositions 2.1 and 2.5.

Given α > 0, we can choose an integer Po > 0 and for each j ^ P o an
integer lj > 0 such that

< α . (2.3)

We use the notation1 3

H = sup|r'|, (2.4)

\j] = {reW:\r\ilj}, [k\β = [fc]\[fl , (2.5)

F; = (2/,.+ l ) \ (2.6)

2.1. Proposition. Lei A>0, B^O, and let Ψ be a decreasing positive
function on the positive integers such that

Σn\rϋ<+oo. (2.7)
reZ v

// α is sufficiently small one can choose an increasing sequence (xpj) such
that ψj ^ 1, ψj-+ oo, and fix P>P0 so that the following is true.

Let n(-) be a function from Έv to the integers ^0. Suppose that there
exists q such that q^P and q is the largest integer for which

Σn(r)2^ΨqVq. (2.8)

Then rel9]

- Σ lAn(r)2-Bn(rϊ]+ Σ Σ ψ(Is " Ί) \i"M2 + \ n(s)2

< _ A y n{rf
 (2 9)

We choose a such that relq+1]

ΓΣ Ψ(\r\ft x [(1 + 3α) 2 v + 2 - 1] g 4 " (2 1 0 )
Lr J 4

There exists an increasing function ψ on the positive integers such that

, l imφ(/)=+oo, (2.11)
ί-*OO

1 3 The inverted slant (\) denotes set difference.
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and

Σv( | r im | r | )<+oo. (2.13)
reZ v

[Choose ψ* satisfying (2.11) and (2.13), then let ψ be the largest function
^ φ * satisfying (2.12).] We define \pj = ψ(lj), thus

l ^ ^ ^ l + 3 α . (2.l4)
Ψj h

The choice of P is made so that Lemma 2.4 below holds. Before proving
the proposition we introduce the definition

Ψk= sup Ψ{\s-r\)=ψ(lq+k+ί-lq+1 + l) (2.15)
re[q+l],sφ[q + k+l]

and we state a few lemmas.

2.2. Lemma. Let the conditions of Proposition 2.1 be satisfied by n( )
and q, and let k ^ 0, then

(a) Σ n(s)2£(Ψq+kVq+k-ψqVq),

(b) if Ψk is defined by (2.15)

Σ Φ ) 2 ^ Σ
fc=l

(a) follows from the fact that ^ is the largest integer for which (2.8)
holds; (b) is obtained, using (a), as follows

Σ n Σ »ω2

ΣWt-«Vn) Σ

fe=l

2.3. Lemma.

(a)

(b)
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(c) Letk^ 1, then

i ί +i + ί)(2lq+k+1-2lq+ί

Proo/ of (a).

(b) follows from (a). Proof of (c).

lq + k+2

(2lq+k+1-2lqq + k+ί ~ ^Lq+1 ~Γ ->)

v + 1 / / // \ v + l

3α v + 1

2.4. Lemma. If P> Po is sufficiently large, we have

(a) Σ W ^ 4 '
s:\s\>lq+1-lq

k=l

(2/ + l )>(0 = [ l + Σ ((2/ + l) v -(2/

((2j+iy-(2j-iγ)^ψ(J)
J

S 4 [ψ(0) + Σ ((2; + l)v - (2/ -
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Therefore
00

1 = 0

ί 4 £ [ f 0 - ΨQ + 1)] Uθ) + Σ ((2/ + l)v - (2j - l)v) Ψ(/)1
z = o L j=l J

= 4 L(0) ίP(O) + Σ ((2/ + l) v - (2y - l)v) φ(/) f (/)]

= 4Σψ(\r\)Ψ(\ή)<+oo. (2.16)

Since r̂ ̂  P, when P -»• oo we have q -> oo and ίg+ x — /β -> oo, proving (a).
Using (2.16) we have also

^ Σ [Ψ(ΐ)-Ψ(l+Vβ ψ(ΐ)(2l+ l ) v ^0.
/=ig+2-iβ+l + l

This, together with part (c) of Lemma 2.3 proves (b). The sequence ψj
increases and tends to infinity, therefore (c) holds as soon as

( 1 ft R^ \
— p - + lj (1 + 3αΓ .

We come now to the proof of Proposition 2.1. We notice first the
inequality

[Σ fflΊ)] (VV 2 ^ ί + 2 - Ψq Vq) ύTΨqVq (2.17)

which follows from Lemma 2.3 (b) and (2.10). Let us write

Σ Σ Ψ{\s-r\)in{r)2 + n{sf]
re[q+ί] sφ[q+ί]

= Σ »w2 Σ n\s-r\)+ Σ κ(s)2 Σ n\s-r\)
re[q+ί\q] sφ[q + l] se[q+2\q+l] re[q+1]

+ Σ^)2 Σ n\*-r\)+ Σ Σ
s#[«+2]

Using (2.15), this is

Σ Φ

+Γ Σ \ q
l J k=l se[q + k+ 2\q + k+1]

Γ Σ ψ(s)\
ls:\s\>lq+ι-lq Jr
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Applying now first Lemma 2.2 (a), (b), then (2.17) and Lemma 2.4 (a), (b)
we obtain

Σ Σ f(|s-r|)[n(r
re[q+l] sφ[q+l]

+\ Σ
Ls:|s|>!,+ i-/

Therefore

ι efo+1]

Σ [»(

- Σ \^An{rf-Bn{r)
re[q+ 1] L Z

+ Σ Σ n\s-r\)\±n(r)2+±n(s)'-
re[q+l] sφ[q+1] L Z Z

*- Σ

[q+1] Sίέ^+l]

3
-An(r)2-Bn(ή- —

We use now the inequality

IB A

(2.18)

and then (2.8) and Lemma 2.4 (c) obtaining

- Σ
relq+ 1]

-An(r)2-Bn(r)- —

v fl

2B2

(2.19)

Proposition 2.1 is proved by (2.18) and (2.19)

2.5. Proposition. Let the interaction U be superstable and lower
regular.

(a) Given X = (xl9 ...9xn9...), suppose that there exists q such that
q^P and q is the largest integer for which

(2.20)
re[q]
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Let X' = (x'1 ?..., x'n) consist of the points of X contained in [q + 1], and
X" = (x"l9 ...,x'ή», ...) be the complementary subsequence of X. Then,

putting C = — A(l + 3 α ) - v ~ 1 we have

^~ΎA Σ n{X,r)2-CWq+ιVq+ι. (2.21)
* re[q+X]

(b) LetX = (xl9...9xn9...) satisfy

(2.22)
re[j]

whenj>k. Then

(2.23)

We prove (a). From superstability, lower regularity, and Proposition
2.1 we have

-U(X')-W(X\X")

S- Σ lAn{X,r)2-Bn{X,r)]
reίq+l]

+ Σ Σ
re[<r+l]

n ( Z , r ) 2 . (2.24)
]

On the other hand (2.20) and Lemma 2.3 (a) yield

U i 1 F g + 1 . (2.25)
^ relq+l] *

(2.21) follows from (2.24) and (2.25).
We prove (b). Using Lemma 2.3 (a) we have

Σ
re[j+l\fc]

^ (1 + 3α)»+' Σ tni) - Ψ(h+1)] Ψj Vj

- Ψ(l + 1)] φ(9 (2/ + iγ
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2.6. Proposition. We define the correlation functions for the bounded
Lebesgue measurable region A CIRV by

ρΛ{xu...,xm) = Z-1 Σ -ZΓ^-ΓΓ ί dxm+1...dxne~^v^ *»> (2.26)

if xl9 ...,xmeA9 = 0 otherwise. If the interaction U is super stable and
lower regular, there exists ξ such that

m (2.27)
forallΛ,m,xl9...,xm.

This will be proved by induction on m. We fix xl9 ..., xM, choose the
origin of coordinates of Έv such that xx e Ά(0) and write

Here ρ' is the contribution of those X = (xx,..., xn) such that, for ally ^ P,

(2.28)

and Q" is the contribution of the other configurations.
For the configurations satisfying (2.28) we have, using lower regularity,

Proposition 2.5 (b), and (2.16),

^ Σ y(IΊ)

= 2D < + oo . (2.29)

Therefore ' ^ ^ ( , ....xĵ zξ"-1. (2.30)

We write ρr/ as a sum over q, where ^ is the largest integer such that

re[q]

Let N(q) be the number of points xl9..., xm contained in [q + 1]. Using
Proposition 2.5 (a) and assuming ξ ^ z, we find

( 2 3 1 )
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where

E= Σ

converges because ψq+1 -» oo.
From (2.30) and (2.31) we obtain

Proposition 2.6 holds therefore with ξ = (eβD + E)z, which is ^ z .

2.7. Proposition. Let the interaction U be superstable and lower
regular. There exist y > 0 and δ real such that the following inequalities
hold uniformly in A

(a) ρΛ(X) S expΣ l-yn(X, rf + δn(X, r)] , (2.32)

(b) let Λ be a bounded Lebesgue measurable subset of Rv and
xl9 ...,xmeA9 we define

ρ^(x1,...,xJ = Z-1 Σ-^-ΓV f dxm+1...dxHe-'υ<* f
n^m \n — m)\ (Λ\Δy*-m \Δ.30)

if xί,..., xm e A, =0 otherwise then

)-]. (2.34)

Clearly (2.26) and (2.33) imply ρ™Δ ̂  ρΛ. Therefore (b) follows from (a).
To prove (a) notice first that, by Proposition 2.6,

Therefore iϊ n{X,r)^ψί

P

/2V1t
12 for all reΈ\ (2.32) is satisfied provided

y, δ are chosen such that

\ogξ + γψ^2VP

lί2^δ. (2.35)

We fix y = — βA and complete the proof of (2.32) by induction on the

number of r e Έv such that n(X, r) Φ 0. Suppose that there is r 0 e Έ such
that n(X,ro)>ψpj2Vp12. Changing the origin of coordinates in Έ we
may take r0 = 0; we have then

Σn(X,r)2>xpPVP.
re[P]

Therefore, if we denote by X'q the subsequence (of N(q) elements) of X
contained in [g + 1 ] and by X'q

f the complementary subsequence,
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Proposition 2.5 (a) yields

( 2 3 6 )

Notice that, by (2.35), z^ξSe6; since N(q)>0 we may write z" ( ί )

^ze~δeN(q)δ. Introducing also the induction hypothesis and γ= ~τβA

in (2.36) we find

QΛ(X)

l } 1 - r z ) Vq+1]

= Eze~δ exp ̂  [ - yn(X, rf + δn(X, r)]

but we have Ez^ξ^ eδ, concluding the proof.

2.8. Corollary. With the notation and assumptions of Proposition 2.7,
the grand canonical probability that

(2.37)

is less than

exp [ - (γN2 - λv eδ) cardX\ . (2.38)

Taking A = vre@£(r) in (2.34), we find indeed that the probability to
be estimated is less than

X -y-(card^. λv)1 Qxpl-yN2 c a r d ^ ] (eδ)1.

2.9. Corollary. Let the interaction U be superstable and lower regular.
There exist g>0 and d^.0 such that, if A is any bounded Lebesgue
measurable subset of W with diameter L^λ, then the grand canonical
probability of finding more than m particles in A is less than

exp
m2

(2.39)

We first increase A to a set of the form A[β) and notice that
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Applying Corollary 2.8 we find that the probability to be estimated is
less than

m2 ... Λ . 1 Γ m2

But a probability being also less than 1 we may replace this estimate by
(2.39).

3. Thermodynamic Limit for the Pressure

In this section we prove the existence of the thermodynamic limit
for the grand canonical pressure in the case of a superstable and lower
regular interaction U.

3.1. Lemma. // & is a finite subset of Z v, we write Am = ure@£(r)
and let Zm be the corresponding grand partition function. Let N be chosen
such that

00 i

Suppose that t%, £f are finite subsets of Έv, that ffl1,^1 CΈ are their
first projections and that r1 < s1 whenever r 1 e M1, s1 e Sf1. The following
inequality then holds

j$? ύ logZ^ + logZ^ + Iog2

_ J _ _ « Λ / - 2 Γ V V α r ( u r | \ i V V ψ(U — r\\\ Π 2 )

Let Λ(0 = {r6Λ:s 1 -r 1 ^/ for some s1

for some r1 e &1}. The grand canonical probability that

re0t{l)

is by Corollary 2.8, less than exp[-(yiV2 - λveδ) card^(/)] and similarly
with 0ί{\) replaced by £f{ΐ). Therefore, except for a set of probability
less than

00

Σ exp [ — (γN2 — λveδ) car<
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we have for all /', I"

Σ n(Y9 s)2^N2 cardSf(/")
se5"(I")

and hence

- W(X, Y) S \ Σ Σ ^d5 ~ '"I) ln(X, r)2 + n(7, s)2]

^ Σ « ( ^ . ' )2 Σ n\s-r\)+^r Σ<γ>s? Σ

^'ΓΣ Σ n\s-r\)+Σ Σ

This shows that

^ ^ i Σ Σ S"(|s

proving the lemma.
3.2. Remark. Repeated application of Lemma 3.1 yields

k 1 k

S Σ logZ .̂ + (/c-l)log2+—βΛT2 Σ Σ Σ ψ(\s-r\)
7 = 1 2 7 = 1

k

<Σ . + Iog2 + 1 i9JV2 Σ Σ ""(I* - r\)} •

We may of course also apply Lemma 3.1 with the first coordinate direction
replaced by another one; repeated application of this yields

logZ^+log2+i-v/W2 Σ Σψ(\s-r\)}. (3.3)
7 = 1

3.3. Theorem. Given a1 > 0,..., av > 0 and a = (a1,..., αv) we vvπ'ίβ

αi /or i = l , . . . , v }

let Za be the grand partition function computed for the region Aa.
If the interaction U is superstable and lower regular,

converges to a finite limit βp when a1,..., av—• oo.
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Since Z is an increasing function of A, it suffices to prove the theorem
for a of the form Iλ where the components Z1,..., Γ of I are integers >0.
We write

Aιλ=A(l), Zιλ=Z{ΐ).

Let

logZ(Z). (3.4)

We shall arrive at a contradiction by assuming that the sequence (Q
tends to infinity and that

[Δ logZ(Q = πf>π. (3.5)

Write ε = π' — π. We may, according to (3.4) choose Zo such that

Δ logZ(Z 0)<π+yε, (3.6)

lΌ) log2+-vi9JV2 Y y y ( | s - r | ) < 4 (3-7)

Because Z is an increasing function of A, we may modify (Q such that
Ẑ  is now a multiple of Γo for all i, α and

liminfί[]

in contradiction with the following inequality derived from (3.3), (3.6)
and (3.7)

sφΛ(l0)

4. Continuity of the Pressure as a Function of Density

4.1. Proposition. Let the interaction U=UΦ be associated with a
pair potential Φ which is superstable and lower regular; assume that

ldx\l-e~βφ{x)\<+oo.

10 Commun. math. Phys., Vol. 18
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Then there exists F>0 independent of A, depending continuously on β,
z > 0 and such that

> (4.1)

where we have introduced the grand canonical average

/ γjθc\ ^ — • 1 V"1 γf/. f / 7 v /)v s>~βU(χi> •' >χn) (Λ 0\

\ίl / — Z-d 7 11 ~ I U Λ i . . . LIΛn tί . yΎ.Z*j

n^r0 n!

Let us define

4.2. Lemma. Under ίfe conditions of Proposition 4.1 there exists
F>0 independent of A, depending continuously on β, z>0 and such that

. (4.4)

Let us define

K{X,{yl9...9yJ)= f[ K(X9y}9 (4.5)
j=i

-l (4.6)

and note the Mayer-Montroll equations1 4

~£ 1

(4.7)
Using (4.5), (4.6) and Proposition 2.6 we have

Jΐ=[dy1 jdy2(l-e-βΦiy2-yί))
A A

00 γ

x Σ —r\dxί...dxnK({yuy2\{xί,...,xn))ρΛ(xu...,xn)

l\]. (4.8)

We prove now that \A\ is bounded by a constant multiple of (n). Since
<n> is an increasing function of z, it suffices to consider small values of z.
In particular, since lim ξ = 0 according to the estimates of Section 2,

z * 0

1 4 See for instance [9].
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we may assume that
00 1

Σ —Sdyi •••'
n= 1 •*

l|}-lgy. (4.9)

Using (4.9) and (4.7) with m = 1 we obtain

This result, together with (4.8) shows that

for some real F > 0 (the factor z2 is inserted for later convenience).
We come now to the proof of Proposition 4.1, using a method due

in its principle to Ginibre [6]. Let the functions Q and R be defined on
Σ

A

We have, using the Schwarz inequality and Lemma 4.2,

(F + I) 2 <rc>2 = (FQ + R> 2 ^ 2

proving (4.1).

4.3. Theorem. Let £/ze interaction U=UΦ be associated with a pair
potential Φ which is superstable and lower regular; assume that

$dx\l-e~βΦix)\<+oo.

The thermodynamic limit p of the grand canonical pressure pΛ

= β~1 \Λ\"1 logZ is a continuous function of the density ρ = βz —— (inside
oz

of its interval of definition).

Writing ρΛ = βz —-^-, we have
oz

β dpΛ \dz ° ) dz dz

j8 dp ~ l+F

10*
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5. Equilibrium Equations for a Classical Continuous System

We say that a family (σ™) where A runs over the bounded Lebesgue
measurable subsets of 1RV and m over the positive integers is a system of
density distributions if it satisfies the following conditions.

(DO) σj1 is a positive Lebesgue integrable function on Δm and

σ^(xh, -..,XiJ = θA(xi, ...,xjfor every permutation (1, ...,m)-+(il9...9ij.

( D l ) Normalization

oo I

. . . , jcJ = l . (5.1)

(D2) Compatibility: if Ac A', then

00 i

•"9χm)= Lt ~zτγ J "Xm+1 . . . dxm+nσ™ " ( ^ i , • • • , * w + π ) . (5.2)
n= 0 ^ (Δ'\Δ)n

In particular (2.33) defines a system of density distributions.
We shall associate with each system of density distributions (σ™) an

(abstract) probability measure μ on a measurable space (#", £f). We let #"
be the space of functions X from Rv to the positive integers such that,
for any compact K C 1R\

Σ Ί

We consider the topology βΓ on 3C defined by the subbasis ($^χ) 1 5 ;
here K runs over the compact subsets of 1RV, A over the open sets such that
ΛcK,m runs over the positive integers and

xeK

We let 5^ be the σ-ring of Borel sets with respect to the topology ?Γ.
It can be shown that £f is the σ-ring generated by the sets

iTβ

m = ίXe X : Σ X(x) = m\ (5.4)
1 XGB J

where B runs over the bounded Borel subsets of 1RV16.
Given A CIRV we let

(5.5)

1 5 I.e., the open sets of 5Γ are the unions of finite intersections of the sets Θ™κ. This
topology and the Borel structure derived from it have been used by Lanford [10].

1 6 This result is easy to derive, but we do not want to go here into the necessary set-
theoretical details; a proof will be published elsewhere.
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and define πΔ:X-+XΔby

[0 if x φ A .

If A is a Borel subset of 1RV, then XΔ e 5^ and π^ is a measurable mapping

where ^ = { S e < ^ : S c < Q . [We have ί ^ = f] Ψ*B%
1=1

where #(/) = {x φ A : |x| ^ /}, therefore ^ e 5 .̂ Furthermore the σ-ring
STΔ is generated by the sets XΔ n # i w with B C J and πJ * (ίζ, n # 7 ) = -#7,
so that π 4 is measurable.] We have for all X e 9£

(5.7)

and this relation identifies X with XΔ x X^y\Δ. It is readily seen that 1 7

(X, 50 = (3Γ* ̂ i ) x (XκΛΔ, S^ΛΔ) (5.8)

/"o°

Given any zlClRv, we define a mapping ω^: /j] ^ m ) - > ^ by

c ΰ j ^ ! , . . . , ^c j= Σ βx. where ex(y) is 1 when x = y and 0 Otherwise; ωA

is^ontimiousjand, if ^χs.bQundeiits image is XΔ\hGt now A be a bounded
Borel subset of lΐFand S e π J x ^ "we"define y

^ - - — • - ρ v )

σΔ(ω^πΔS) (5.9)

where σΔ is the measure on Σ Am which has the restriction
m = 0

—j-σ^(x1? ...,xjdx± ...dxm to 4 m . It follows from (D2) that the r.h.s.

of (5.9) is independent of A, furthermore (5.9) determines the measure μ
on (X, ίf) completely because the ring generated by the # 7 consists of
sets of the form S e π Δ

 1 £fΔ and the extension of μ from this ring to 9*
is unique (see Halmos [8], Section 13, Theorem A). We have thus
associated a measure μ to every system of density distributions (σj1).
Conversely, μ determines (σΔ) completely.

If X e X, r e Έv, we write n(X, r) = £ X(x). We say that a measure μ
xεl(r)

on (X, Sf) is tempered if it satisfies the following condition
(T) μ is carried by the union over N of the sets

(5.10)

17 The product of two measurable spaces is defined in Halmos [8], Chapter VII.



150 D.Ruelle:

This definition is invariant under linear transformations of R v; SN is
a Borel subset of 9C. <r?

5.1. Lemma. We write Λ-^og if every bounded subset A of W is

eventually contained in the bounded Borel set Λ.IfXeSΐ'we let [ X l i ^ Σ Λm

be such that ωA([XL) = πΛ(X).

Let the interaction U =Uφbe associated with a pair potential Φ which
is superstable, lower regular, and a Borel function18.

IfXe (Rv)m, a Borel function W(X, •) is defined on SN by

W(X,Y)=limW(X,lYlΛ). (5.11)
yl->oθ

The proof is immediate. In view of this result we may now introduce
the following condition for a probability measure μ on (βC, £f).

(E) Equilibrium Equations, μ is tempered and, if φeL1 (S£, μ) and A
is a bounded Borel subset of W,

\μ{dX)φ{X)

= Σ ^T idxi-dxm ί
m=o ml Δm %

These equations express that if we map fr Am\ x %^ΛΔ onto X by

writing ^
Δ

JA\

then μ is the image of e~βw\_μγ x/i 2] where μ1 has the restriction

z""

m!

z
— _ e - β u ( x u ..χm)dχ1... dxm to Am a n d μ2 is the restriction of μ to 9CτΛΔ.

5.2. Proposition. Let the interaction U=UΦ be associated with a
pair potential Φ which is superstable, lower regular, and a Borel function;
assume that

$dx\l-e-βφ{x)\<+oo. (5.13)

Let (σ™) be a system of density distributions, and μ be_the associated
probability measure. Assume that there exist γ>0 and δ real such that

S exp Σ l-yn(X, r)2 + M*, r)] . (5.14)

18 It is necessary here to assume that Φ is Borel, but Lebesgue measurability is all that
will be needed later for states satisfying the equilibrium equations.
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Then μ is tempered. Furthermore
(a) Let XeAm, A bounded, then exp[-βW{X, [-jj] is bounded

uniformly in X and A by a μ-integrable function. In particular,
exp[ — βW(X, •)] is μ-integrable.

(b) We define correlation functions by

ρ ( x i , . . . , x j = Σ —r ϊdxm+1...dxm+nσ2+H(xl9...9xm+J (5.15)
n = 0 n i A"

for xl9..., xm e A, and we write

K((xί,...,xJ,(yί,...,yn)) = f\K((x1,...,xm),yj) (5.16)
7 = 1

l. (5.17)

1/ the correlation functions satisfy the Mayer equations19

ρ(XY) = zme-βv(X)-βW^Y) £ ^-μv1...dvpK(X,V)ρ(YV) (5.18)

P=o P-

where X = (xί,...,xm), Y={yί, ...,yn), V={vl9..., vp), then μ satisfies the
equilibrium equations

(c) Conversely, if μ satisfies the equilibrium equations, then the corre-
lation functions satisfy the Mayer equations.

From (5.14) we obtain (cf. the proof of Corollary 2.8)

X n(X,r)2SN2(2l+iγ
r: |r |*Z

^ 1 - exp[-(yiV2 - λyeι) (21 + l)v] ,

μ(SN)^ 1 - f exp[-0W 2 -Γe ' δ ){21+ 1)V]ι=o

£ 1 - Σ

1 when JV —> oo .

Therefore μ is tempered.
To prove (a) we notice that

^exp β Σ Σ *ί*,r)n(F,

1 9 See Mayer [12].
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Here $ = {reΈv: Ά(r)nΔ +0}. Since there are finitely many possible
choices of n(X, r), it suffices to prove that

Σn(X,r) Σ n(, s) Ψ(\s-r\)\

is μ-integrable or, using Holder's inequality, that

expΓm/? Σn( >
L sezv

is μ-integrable. Using the notation of Section 2, we decompose ΘC into
one piece such that for all j ^ P

re[j]

and for each q^P a piece such that q is the largest integer for which

We have

Σ ^ ( ^ , s) Ψ(\s\) ^ Ψ(0) Σ n(Y, s ) + Σ ίψd) ~ Ψ(l + 1)] Σ n(Y9 s)
seZv se[q) l^lq s:\s\£l

and therefore (see (2.29) and (5.14))

J/x(dF)expΓmj8 Σ n(Y9s) Ψ(\s\)]

+ Σ ^ " ^ ^ 9 Σ ^r(^Λvy(^

= (expm^D) Γl + Σ &η?(-γψq Vq + ΛV+ m / ϊ ! P ( 0 )F,)Ί < + oo .

The μ-integrability of exp[ — βW(X, •)] follows then from Lemma 5.1
and Lebesgue's dominated convergence theorem.

We come to the proof of (b). Notice first that if x 1 ? . . ., xm e 1RV, there
is a union of less than m cubes Ά(r) containing x1,...,xm; therefore
(5.14) yields

* = ξm (5.19)

where ξ = Qxp(δ + λveδ). We shall also use the estimate

ldy\K((xl9...9xJ9y)\

1=1

l-l

-β \e -βΦ(y-xι) _

(5.20)



Classical Statistical Mechanics 153

We introduce the notation

1 dV= Σ -\
p = 0 P-

S(±iYdXl...dx, (5.21)

so that (5.18) becomes

ρ(XY) = zm

Let A be a bounded Lebesgue measurable set and take x 1 ? . . . ,xme J ;
given ε > 0 we can choose a bounded Lebesgue measurable Λj Δ such
that

J dy\K(X,yy<ε.
We have then

, (v\,..., υ'q))\ ρ(YV(v\,..., v'q))

Szme(m+Zmn)βBξn{exp[_ξme2mβB

(5.23)

where M, 0 depend on m. Dropping the superscript m of σj* we have also

^m^ϊψ F)ρ(YF)

x'γϊ § dV K{X,V)§ dV σΛ{YW)
A

^ zme-βU(X)~βW(X,Y) £ dyr, e-βW(X,V") σΛ(γyη

= j dVzme-^^~βW^γv^σΛ(YV) (5.24)

(5.23) and (5.24) yield

Choosing now A' such that A C J ' C Λ, we find

- f rfF

or
Λ\Δ'

σΔ,{XY)- § dV - 1) (5 2 5 )
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Let φ be a bounded Borel function on X such that φ(X) = 0 unless
X X(x) = m and £ X(x) = n, then (5.25) yields

xeΔ xeΛ'\Δ

J M

If we let ΛL->oo and ε->0 and use Lebesgue's dominated convergence
theorem we obtain the equilibrium equations (5.12).

To prove (c) we choose again φ in (5.12) such that φ(X) = 0 unless
Σ X(x) = m and £ X(x) = n, with Ac A'. We write then the r.h.s. of

xeΔ xeA'\A

(5.12) as the limit when Λ^oo of the expression obtained by replacing
W((xl9...,xJ,Y) by W((xu...,xm\[_YU V XeA™, Ye{Δ'\Δ)\ we
find

Λ\Δ'

H m i
A-*co

Λ\Δ' Λ\Δ'

H m J dV'K{X,V) I dV"σΛ(YVΎ"). (5.26)

In deriving (5.26) from (5.12) we have used the fact that the convergence
as Λ-* oo is uniform in X and Y; this is seen in the r.h.s. of (5.26) using

Λ\Δ' Λ

0 ^ § dV"σΛ(YVΎ")^ § dV"σΛ(YVΎ") = ρA(YV).

In view of (5.14) and (5.19) we may perform the limit M'|->0 in (5.26),
obtaining

lim i dVK(X, V)ρ(YV)

5.3. Corollary. Let Φ satisfy the conditions of Proposition 5.2. If μ
is a probability measure on ($C, £f) the following conditions are equivalent

(a) μ is tempered and satisfies the equilibrium equations,
(b) μ is associated with a system of density distributions such that the

inequalities (5.14) hold (for some γ > 0 , δ real) and the correlation func-
tions satisfy the Kίrkwood-Salsburg equations:

Σ^Ύμvί...dvpK((x),(vί,...,vp))ρ(Y(υί,...,vp)).
"=oP (5.27)
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(b) Same as (b) but with γ, δ in (5.14) replaced by the constants γ9

δ of Proposition 2.7.
(c) μ is associated with correlation functions such that the inequalities

ρ(X) S exp Σ l-yn(X, rf + δn{X, r)]
r

hold (for some γ>O,δ real) and the Eqs. (5.27) are satisfied.
(c) same as (c) but with γ, δ replaced by the constants y, δ of Proposi-

tion 2.7.
// these conditions are satisfied, the correlation functions also satisfy

m (5.28)

with the constant ξ of Proposition 2.6.

Clearly (c)=>(c)=>(b) and (c)=>(b)=>(b) so there remains to prove
(6)=>(a), (a)=>(c) and (5.28).

We notice first that by iteration of the Kirkwood-Salsburg equations
(5.27) we obtain the Mayer equations (5.18). Let indeed X = (xί,..., x j
and use induction on m; writing X' = (x2, ...,xm) we find

ρ(XY)

= zme-βU(X')e-βW(X',(x1)Y)e-βW((xί),Y)

x § dVe-βw«Xί)>V)K(X', V)§dV Kdxά V)ρ(YVV)
= zme-βU(X)e-βW(X,Y) I d γ n K(χ9 yη ^yyη

where we have used

e~'*<"-*)K(X\ υ) + K((Xl), v) = K(X, v).

Therefore (b)=>(a) by Proposition 5.2 (b).
• Let now μ satisfy the equilibrium equations. We make the important

remark that the estimates of Section 2 for systems enclosed in a bounded
region A also hold for an infinite system described by a tempered
probability measure μ satisfying the equilibrium equations. In fact the
estimates in Section 2 were obtained by decomposing the grand canonical
probability measure in pieces defined by equations like (2.8), and then
applying the equilibrium equations. Since μ is tempered, the same
decompositions and estimates apply to it. In particular, corresponding
to Propositions 2.6 and 2.7 we obtain the inequalities (5.28) and

ρ(X) S exp Σ ί-yn(X, rf + δn(X, r)] .
r

Therefore (a)=>(c) by Proposition 5.2 (c).
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5.4. Remark. We have assumed above that Φ was a Borel function;
it follows from Corollary 5.3 that the meaning of the equilibrium equa-
tions is the same for two Borel functions Φ differing on a set of Lebesgue
measure zero. We may thus revert to the point of view that Φ is a (class of)
Lebesgue measurable function and that an arbitrary choice of a Borel
function in the class has been made in writing the equilibrium equations.

5.5. Theorem. Let the interaction U =UΦ be associated with a pair
potential Φ which is super stable and lower regular; assume that

$dx\l-e-βΦix)\<+oo.

From every sequence (Aj) tending to oo one can extract a subsequence (A[)
such that (for each m and bounded Lebesgue measurable A C1RV) the
following limit exists uniformly in xί9 ...,xm

limρ'Z>A(xί,...,xm) = σZ(xu...,xm). (5.29)
l-κχ>

Furthermore the probability measure μ associated with the system of
density distributions (σ%) satisfies the equilibrium equations.

If we put on L°°(zΓ) the topology of weak dual of U{Am) (with respect
to the Lebesgue measure), the set {φ: H^H^ ̂  1} is compact by the
theorem of Alaoglu-Bourbaki. In particular, using Proposition 2.7 we
find that a subsequence (A[) oΐ(At) may be chosen such that (5.29) holds
in the sense of convergence in the weak topology of L°°(zlm) for all m
and all A of the form { X G R V : |X| < n}, n integer >0. But using (D2) and
again Proposition 2.7 we see that the convergence holds for arbitrary A.
Notice that we have also for the correlation functions

ρ Λ ( u , m ) ρ ( 1 , , J (5.30)
l-+oo

in the weak topology of L°°((lRv)m). We shall now use the fact that the
correlation functions satisfy the Mayer equations 2 0

, V)ρΛ(YV) (5.31)

m

where X = (xl9..., x j , χΛ(X) = Π Lί(χd> a n d 1A is the characteristic

function of A. In particular we have the Mayer-Montroll equations

QΛ(X) = χA(X)zme-f}u^ jdYK(X, Y) ρΛ(Y). (5.32)

The mapping (xl9..., xJ^K((x1,..., x j , •) is continuous from (lRv)m

to 1} (0RV)Π) with the norm topology. Therefore the convergence of the
functions ρΛ in the weak topology of L°°((1RV)M) in the r.h.s. of (5.32) as
A->co implies the convergence of the l.h.s. uniformly on compacts.

2 0 See Mayer [12].
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We have thus shown that (5.30) holds uniformly on compacts. As a con-
sequence of this (5.29) holds uniformly and (5.14) is satisfied (use Pro-
position 2.7). Finally, taking yl->oo in (5.31) we obtain (5.18), and the
measure μ associated with (σf) satisfies the equilibrium equations by
Proposition 5.2 (b).

5.6. Theorem. Under the same assumptions as in Theorem 5.5, the
following topologies coincide on the set Σ of tempered probability measures
satisfying the equilibrium equations,

(a) the topology of uniform convergence of the σ%,
(b) the topology of uniform convergence on compacts of the correlation

functions,
(c) the topology of convergence of the correlation functions in Π° ((lRv)m)

considered as weak dual of L1 ((lRv)m).
Σ is compact for these topologies, and is a simplex in the sense of

Choquet.

By Corollary 5.3, every μeΣ is associated with a system of density
distributions (σ™) and correlation functions ρ such that

ρ(X) ^ exp Σ [-yn(X, rf + δn(X, r)] (5.33)
r

where γ, δ are independent of μ. In view of the relations

oo γ

σZ(xu...,xJ= £ —- J (-l)ndxm+ί ...dxm+nρ{xl9...,xm+j

the topologies (a) and (b) are thus equivalent.
Clearly (b) is finer than (c), but since the correlation functions satisfy

the equations

ρ(X) = zme-fiUiX)§dYK(X, Y)ρ(Y)

convergence in the sense of (c) implies convergence in the sense of (b).
Associating with μ the sequence of its correlation functions, we map Σ

homeomorphically onto a subset Z1* of the (compact) product

m=0

A limit point of Z1* again satisfies (5.33) and (5.18), therefore 21* is closed
and Z1*, Σ are compact.

Consider the linear space j£? of real measures on (#*, if) which are
tempered and satisfy the equilibrium equations. Σ is the intersection of the
cone Jf of positive measures in JS? with the hyperplane { μ : μ ( l ) = l } .
Notice that if μ e if, then |μ| e S£ (this follows from the positivity oΐe~βW

and the comments after (5.12)). With respect to the usual order on measures



158 D.Ruelle:

any two elements μuμ2 of if have a l.u.b. -y(μi+μ 2) + -y li"i —^2!

and g.l.b. — (μί + μ2) —TΓ IMI — μ2l? these are again in ££ and are therefore

the l.u.b. and g.l.b. with respect to the order defined in if by the cone Jf.
Since if is a lattice for the order defined by Jf, Σ is a simplex21.

5.7. Theorem. Under the same assumptions as in Theorem 5.5, and
for sufficiently small z the set Σ of tempered probability measures satis-
fying the equilibrium equations consists of a single point.

If a probability measure satisfies the equilibrium equations, Corol-
lary 5.3 shows that the corresponding correlation functions satisfy (5.27)
and (5.28). It is then known that if the following conditions are satisfied

^ - l l ] " 1 , (5.34)

e-βφ(χ)_1\yi (535)

the correlation functions are uniquely determined (see [14], Section 5.2).
According to the estimates in Section 2, ξ is an increasing continuous
function of z > 0 and lim^ = 0; therefore (5.34) and (5.35) hold for small z.

z->0

5.8. Theorem. The translations of W define a group of homeo-
morphisms of Σ. The set Σo of invariant points of Σ is non empty, convex
and compact; it is a Choquet simplex.

The set Σo is non empty by the theorem of Markov-Kakutani22,
and is obviously convex and closed. Let if0 be the space of real measures
on (β£, £f) which are tempered, invariant, and satisfy the equilibrium
equations; ΣQ is the intersection of the cone JΓO of positive measures
in J5fo with the hyperplane {μ:μ(l)=l}. Let μ+ and μ_ be the l.u.b.
and gib. of μ 1 ? μ 2 eif 0 ; then μ+ and μ_ are invariant and therefore
belong to if0 (cf. the proof of Theorem 5.6). This shows that if0 is a
lattice for the order defined by JΓ0, hence that Σo is a simplex.
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