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Abstract. We study quantum fields interacting by the interactions usually considered
in the theory of elementary particles. That is we take the interaction density to be a poly-
nomial P in the fields, and assume that P = P, + P, + P,,, where P, is a fourth order poly-
nomial in the boson fields only, P, is linear in the boson fields and P, is a polynomial in the
fermi fields only. After introducing a space and momentum cut-off in the interaction we
prove that the scattering operator exists for all values of the cut-off parameters. We then
introduce the scattering operators of relativistic quantum fields as weak limit points of
cut-off scattering operators as the cut-off is taken away.

I. Introduction

We consider in this paper a finite number of interacting boson and
fermion fields. We will assume that the interaction density is a real
polynomial P in the fields themselves, and that P is of the form P =P,
+P,+ P,. P, is a polynomial in the boson fields only, which is of fourth
order and as a polynomial of real variables P, is bounded below. P,
is a polynomial which is linear in the boson fields and of even degrees
in the fermion fields. P, is a polynomial of the fermion fields only, which
is of even degrees in the fermion fields. We shall refer to the three terms
in P as the boson self interaction, the Yukawa interaction and the weak
interaction respectively.

Let ¢(x) by any of the fields we consider. We then define the momentum
cut-off field by

b.(x) = st g:(x =) () dy .1

where g,(x)e C3 (R?) and converge to the d-distribution as ¢ tends to zero.
We shall assume that the free energy H,, defined as a self adjoint operator
on the Fock space &# with domain D, is such that all the free fields have
strictly positive masses. In that case we know that ¢,(x) is, in the boson
case a self-adjoint operator with domain containing D, and in the fermi
case it is a bounded operator on %. The cut-off interaction is now given
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in terms of the cut-off fields by
V= [ P(,()dx, (12)

x| =r

A

where P(¢,(x)) is the polynomial P with the cut-off fields substituted for
the fields. Since P is at most of degree four in the boson field, and all
the masses are positive, we see that V,, is a symmetric operator with
domain containing the domain of H3. The cut-off energy operator is then
defined by

H=H,+V. 1.3)
Let us write

Vot Vy+ V= [ Pd.(x)dx+ [ P(px)dx+ [ P,(¢.(x)dx.

lx|=r |x[=r Ixf=r

I\

Then we know that V,, is a bounded self adjoint operator and that V,
is a symmetric operator that is infinitesimally small with respect to H,.
Hence Hy+ V,+V,, is a self adjoint operator with the same domain D,
as H,. Let P," be the sum of the strictly positive terms in the polynomial
P,, and set P, =P, — P,", and

VitV = [ BY @) dx+ [ PT($,09)dx.

x| <r Ixl=r

IA

Since P, is a polynomial that is bounded below, it is easy to see that for any
6>0, 6P, + P, is also bounded below. Using now that all the boson
fields commute, we get from the formula above that 6 V," + V, is bounded
below. Therefore |V, |<d(V," +a), and since V,~ and V," commutes
this gives us that

Ve > <62V, +a)*.

Hence V,~ is infinitesimally small with respect to V,". Moreover since V"
is a positive polynomial in the boson fields, and therefore, represented as
a multiplication operatoron the spectral representation corresponding to
a maximal abelian algebra containing the operators e!%:™, where ¢
stands for any of the boson fields, we see that V,* is a positive self adjoint
operator on its natural domain of definition D*.

Lemma 1. H, and V," are positive self adjoint operators with domain
Dy and D,. Hy+V," is a positive self adjoint operator on its natural
domain D =Dy D, and there exist constants a and b such that

[Howll + V" wll <al(Ho+ V,+b) |
for allyp in D.
Moreover V,” + V,+ Y, is infinitesimally small with respect to Hy+ V',
and therefore H is a semibounded self adjoint operator with domain D.
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Proof. Since P," is a polynomial of degree four with positive terms,
we see that the proof given in Ref. [1] by Glimm and Jaffé that the space
cut-off ¢* interaction in two space time dimensions has an energy
operator which is self adjoint on its natural domain of definition; also
will work in our case. What is needed for their proof to work is indeed
that P," is at most of order four, and their proof then gives us that
H,+V, is self adjoint on D=DynD, and the norm estimate of the
lemma. For the proof of the moreover part we have already seen that
V,+V, is infinitesimally small with respect to H,, and that ¥, is in-
finitesimally small with respect to V,'. But the norm estimate of the
lemma then gives us that V,” + V,+V,, is infinitesimally small with
respect to H, + V,". This proves the lemma.

Let w be the lower bound on the spectrum of H. A normalized
eigenvector with eigenvalue w will be called a vacuum of H.

Lemma 2. H has a vacuum vector Q. Moreover if m is the smallest
mass and ¢ is positive then H restricted to the spectral interval [w,m + w—g]
is finite dimensional.

Proof. In Ref. [1], Glimm and Jaffé prove that the space cut-off
energy operator has a vacuum. Their proof goes by approximating the
energy operator by the corresponding operator for the fields in a box.

This operator has a vacuum since it has a discreet spectrum. They then
prove that the operator restricted to the spectral interval [w,m+w —¢]
is the norm limit of the corresponding operator for the fields in a box
as the box tends to infinity. Hence the operator restricted to the interval
[w, m 4+ w — ¢] is compact being the limit of compact operators. Observing
now that we may choose w such that zero does not belong to the interval
by adding a constant to H, we see that the spectral projection of H on the
interval must be finite dimensional. By examining their proof we see
that it depends only on the fact that P is of atmost fourth order in the
boson fields. Hence the proof will also go thru in our case. For the
details we refer to Glimm and Jaffé. This proves the lemma.

Remark. Only in the case when we consider only boson fields can
we prove the uniqueness of Q. The proof of this is again a trivial adaption
from Glimm and Jaffé.

II. The Asymptotic Limit Fields

Let ¢(x) be any one of the fields under consideration, and let 5#
be the one particle space for ¢(x). We known then that 5 carries an
irreducible representation of the inhomogeneous Lorentz group, of the
positive mass type. Hence # may be represented as a L, space of func-
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tions from R? into a finite-dimensional vector space V, where V carries
an irreducible representation of So(3). The representation of So(3)
in V is of half spin for fermion fields and of integer spin for boson fields.

Since the Fock space & is the direct sum of properly symmetrized
tensor products of one particle spaces, we see that for 4 in # we may form
the linear operator y—h® vy for v in &, where ® stands for the properly
symmetrized tensor product. This operator is called the creation operator
a*(h), and it depends obviously linearly on A. a*(h) is closed and densely
defined and its dual operator is denoted by a(h) where & is a natural
conjunction in . It is easy to see that a(h) also is linear in A, since con-
jugation is an anti-linear operation. The following properties of a*(h),
where a* stands for a* or a, are well known or easily verified. a*(h) is
closed and densely defined with domain containing D,, the domain of
H#%, in the boson case. In the fermion case a*(h) is a bounded operator.
They satisfy the (anti) commutation relations

La(g), a*(W]+ = (g, h), 2.1)

and the estimates
lla*(g) a*(h) wl = Cligll 1Bl (Ho+ 1wl , 22
la* () wll = CiAl| |(Ho + 1)* | 2.3)

in the boson case. C depends only on the mass of the field ¢.
In the fermion case we have

la* (Rl < (Al - (2.4)
Since a* (h) is linear in h we may formally write

a'(hy= | a'(p) h(p)dp, (2.5

R3
where h(p) is the V valued function that represents  in the function
representation discussed above. a*(p) is then an improper multi-com-
pounded operator valued function, and only after integrated against

functions in # do we get operators. The field ¢(x) is related to the
annihilation-creation-operators a*(p) by

¢(x)=2"%2n)"* [ e'P*(a*(p) + a(—p))dp . (2.6)
This gives us that
¢.(x)=2"*Q2n) "% [ 7% §,(p) (a*(p) + a(—p))dp . 2.7

From the last formula we see again what we already know, that ¢,(x)is a
self-adjoint operator with domain containing D;.
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We will now study the annihilation-creation operators in the inter-
action picture, and we set

af(h) — e—itHeitHo a"(h) e-—itHo eitH. (28)

Since af (k) is unitarily equivalent to a*(h) we see that af satisfy the same
(anti) commutation relations as a*, and that af (h) is closed in the boson
case and bounded in the fermi case. Moreover since ¢''# leaves D invariant,
and D is contained in D, which is left invariant by e "Ho and D, is
contained in the domain of a*(h); we see that in the boson case D is
contained in the domain of a? (h).

Using now that e'Hog*(h) e~ ""Ho=g*(h, ), where + goes with a*
and — with a and h, = ¢'"Hoh; we may write (2.8) as

al(hy=e "Hg*(h, )", 2.9

Lemma 3. af(h) is a closed operator with domain containing D, and
a? (h) maps D into the domain of a}(g). The following estimates are uniform
int,h,gandpe D,
laf(g) ai () wll < allgll Al I(H +b)wll ,
llaf (B wll < all k|l I(H + b)* v .

Moreover af satisfy the same (anti) commutation relations on D as do a*
on Dy.

Proof. In the fermi case the lemma is trivially true due to (2.4). In the
boson case we have already seen that af(h) is closed with domain con-
taining D. By (2.2) a*(h) maps D, into the domain of a*(g). Since e~ !'Ho ¢i'H#
maps D into D,, a*(h) e ""He ¢! maps D into the domain of a*(g).
Therefore af (h) maps D into the domain of a*(g) e~ "*Ho ¢'"# which is the
same as the domain of af(g). Having proved that D is in the domain of
af(g) af(h) the commutation relations follows by unitary equivalence.
To prove the first estimates of the lemma, we get by (2.2) and LL.emma 1

laf (g) ai (1) wl = lla* (g) @ (h) e "o & |
< Cligl Il I(Ho + 1) e 5o e ]
=Clgll I I(Ho+ 1) " |
<aligl 1Al I(H +b) " ]
=al\g|l 1kl |(H +b) vl .

To prove the second estimate we use (2.3) to get

llaf(h) wll < C IRl [(Ho + 1)* e ] .

8 Commun. math. Phys., Vol. 18
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Since the only term in ¥ which is not bounded below is ¥, and V is in-
finitesimally small with respect to H,; we see that there exists a’' and b’

such that H, < a’'H + b'. This together with the estimate above gives us

llag () wll < allh|| [|(H + b)* e ||
=alh|| [|(H + b)* vl .
This prove the lemma.

If we introduce an orthonormal base I, ... I, in V, we may identify a
function f over R3, with an element in 2 in n canonical ways by setting
()= f(p)l,. Define f.(p)=2"*2n)"* e 7> §,(p), and let ¢*(x) be the
component of the field along /,. (2.7) and the (antl) commutation relations
then give us

[} (x), a* (WY1 ] | = I(£2, P (2.10)

where [, ], is the commutator in the boson case and the anticommutator
in the fermion case.

Let J#, be the dense subspace of # consisting of C®-functions with
compact support which is zero in a neighborhood of origin in R3. Let h
be in #,. The fact that h is C3 (R3) and zero in a neighborhood of zero
together with (2.10) gives us that for any positive n

hm Itl" sup (/3> bl = (2.11)

x_r

Lemma 4. Let h be in H#,, and let [V, a*(h,)] be the operator we get by
formally applying the commutation relations to commute V and a*(h,).
Choose b so large that —b is not in the spectrum of H. Then [V, a*(h,)]
(H+b)~! is a bounded operator which depends strongly continuous on t.
Moreover there is a constant C such that

LV a*(h)] (H + )™ < C supl(£3. hy).

Proof. Since h is in #, it follows from the general theory of Fourier
transform that (£, h,) = F,(x, t) is uniformly continuous in x and ¢

[V.d'h)1= | F(£x,0PY(¢,(x)dx, 2.12)

x| =r
where P™ is the derivative of P with respect to ¢”. In accordance with
the decomposition P=P,+P,+P,, we write P® =P+ P\, Since

P (¢,(x)) is bounded we get from (2.12) that [V,,, a*(h,)] is bounded and
normcontinuous in t. Moreover we get that ||[V,,, a*(h,)| < C suplF (x, B)|-

This proves the lemma for V,,. If a* belongs to a boson field then P(“)(q,’)s(x))
is a polynomial only in the fermion fields and the statements of the lemma
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for V, follows as for V,,. If a* belongs to a fermion field, then P{(¢,(x)) is
linear in the boson fields. Hence [|[P{(¢,(x)) vl < C||(Ho+ 1) | for y in
D,. Lemma 1 then gives us that for y in D [|[PO(¢,(x)) w| < C'|[(H + b) .
Therefore by (2.12) [V,, a*(h,)] (H + b) ™" is bounded and we get the norm
estimate of the lemma. Using the above estimate for P{(¢,(x))y and
(2.12) we see that [V, a*(h,)]w is strongly continuous in ¢ for v in D.
Hence [V,, a*(h,)] (H+b)~" is strongly continuous in ¢, and this proves
the lemma for V). Since the boson fields all commutes, we may use the
spectral representation with respect to the boson fields to give us that

IP(¢,(x)l < C(Py (p,(x) + 1),

where ¢ depends only on the polynomial P, and not on x. By (2.12) we
therefore get that

Vo RIS CouplRe o] [ (P (@) + 1) dx.

x|<r

Using now that the operators above commutes we get

Vs, a* (h )11 = C* lIFtHfo[ I (@ @) +1) dx}2 .

Jx]=

Hence for win D,
IVe, @ (h )1 wl SC'IF ]l 1V, + Dyl -
By Lemma 1 we therefore get for y in D that
IV, a*(h)] pl < C"| F )l I(H + B)

which proves the norm estimate of the lemma for V. To prove the strong
continuity we see that (2.12) gives us the formula

[V a* ()] = [Vy, a*(h)]= | (F(£x8)— F(£x,9) P (@.(x) dx.

x| <r

In the same way as above this gives us that

I[Vb,a”(ht)]—[Vb,a“(hs)]IZ<C2||Ft—Fsto[ § (Pb+(¢e(x))+1)dX]2-

Ix|<r

And again in the same way as above this gives
([V4, @ (h)] = [Vy, @ (h)] y| < C'| F, = Fill, I(H + b) =],

which gives the strong continuity of [V,, a*(h,)] (H +b)~!. Since V=1V,
+V, +V,, this completes the proof of the lemma.

Lemma 5. Let h be in 5, and v in D, then
t
@m—dm)y=—ifdse B[V, a*(h. )] e p,
0

where the integral is a strong integral.
8*
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Proof. Let y, and v, be in D. Consider the function of one variable ¢
given by
(1, af(h) py) = (e~ Mo ey, a*(h) e Mo e ). (2.13)

Consider also the function of two variables s and ¢ given by

(e—iSHo eisH VY1, ait(h) e—itHo eitH wz)

o . . 2.14
— (a#(h)* e—tHo elsH w17 e—ttHo eltH wz) . ( )
By Lemma 3 both functions are well defined, and for s =1¢ (2.14) is equal
to (2.13). Since D C D, we see that (2.14) is differentiable with respect
to s and ¢, and the partial derivatives are given respectively by

d (0 iV &M py, al(h) €™M0 &M py) 213)
an
(a* (h)* e7isHo gist yp,, @7 iHHo (7 1 ) (2.16)

Since ¢*H 1, is strongly continuous in the natural topology on D, it
follows from Lemma 1 that Ve'*¥ v, is strongly continuous, and therefore
that e sHo VeisH y is strongly continuous. Moreover since ¥ y, is
strongly continuous in the natural topology on D, Lemma 1 gives us
also that it is strongly continuous in the natural topology on D,. Since
e 'sHo js strongly continuous and uniformly bounded in the natural
topology on D, we get that e *sHe ¢'sH , is strongly continuous in the
natural topology on D,. By (2.3) we therefore get that a* (h)* e~ 'sHo ¢isH 1,
is strongly continuous. In this way we get that both the partial derivatives
(2.15) and (2.16) are continuous. By a theorem from real analysis we then
know that (2.13) is differentiable with derivative equal to the sum of (2.15)
and (2.16) for s=t. Hence

d I i
' (w1, af () o) = (Ve py, a*(hy) € p,) (2.17)

+ (a#(hit)* ey, iVetH Vy).

We have introduced the operator [V, a*(h,)] as the operator we get by
formally commuting ¥ and a*(h,). Hence for v, and vy, in D we have

(1, [V, @*(h,)] va) =V, a*(h,) ¥2)
— (@) w1, Vps).
Using this we may write (2.17) as

d p . —i i
' (w1, af () wy)= — iy, e "MLV, a*(hy )] € w,).
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By Lemma 4 the right hand side is continuous in ¢, hence

(1/)1: (a,(h)— a“(h)) 1Pz) =—i g ds(py, eIV, a*(hyy)] et V,)-

But this is Lemma 5 with a weak integral instead of a strong integral.
Using now that the weak integral is equal to the strong integral whenever
it exists, and that Lemma 4 gives us that the strong integral exists; we
have completed the proof of Lemma 5.

Theorem 1. Let A be the one particle space of one of the fields and
a*(h), hin A, the corresponding annihilation — creation operators. For y e D
and h in #, a} (h) w converge strongly as t tends to + 0o. The limit operators
are closable and we denote their closure by a’,. (h). a* (h) and a . (h) are then
adjoints of each other. The domain of a’ (h) contains the domain of
(H + b)}, and a*.(h) maps D into the domain of a’ (g). There are constants
a and b such that

las (h) wll < [l (e + b)Y,
la% () a% (h) wll < llgll 1Al I(H +b) vl ,

in the boson case; and | a* (h)| £ ||h|| in the fermion case. Moreover, a*. (h)
satisfy the same commutation relations on D as do a*(h) on D, in the
boson case. In the fermion case a* (h) satisfy the same anticommutation
relations as a*(h). Furthermore H and a*. (h) satisfy the same commutation
relations as do Hy and a*(h) in the sense that

et ay () e " =ay(h),
et at () et = at (i)

If @ is an eigenvector of H. Then a,(h) ®=0 for any of the limit annihila-
tion operators a.. (h).

Proof. Let us first assume that 4 is in #,. From Lemma 5 we then get
that the convergence of af(h)y is implied by the convergence of the
following integral

VIV, a*(h)] (H +b)™* &“#(H + b) || ds.
0
By Lemma 4 this integral is bounded by

C f sup|(f,, bl ds |[(H +b) pl]

which by (2.11) converge as ¢t tends to infinity. Hence a (h) y converge for
all i in . Since #, is dense in # and by Lemma 3 a’(h) v is uniformly
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bounded in h, we get by uniform boundedness that af (h) y converge for
all hin . To see that the limit operators are closable we consider for
and v, in D the identity

(@ (W) w1, v2) = W1, a,(B) v,).

By strong convergence this gives us that
(lim af()wy, vo)=(v1, im a@)yp,).

Hence tligp a’(h) has a densely defined adjoint and is therefore closable.

Denoting the closure by a’ (h), we also get from the identity above that
a* (h) and a(h) are adjoints. From Lemma 3 and the strong convergence
we get that |a® (h) w|| < k) |(H + b)? y| for v in D. Using now that
a*.(h) is a closed operator this gives us that the domain of a* (h) contains
the domain of (H + b)* and that the same estimate is valid for i in the
domain of (H +b)?. Let p; and y, be in D. Then (y;, a*(g) & (h) v,)
= (a¥(g)* vy, a}(h) ;) converge to (a% (9)*,, a’ (W) v,). By Lemma 3

(w1, ai (g) ai (W) wo) < llgll 1Rl w4l I(H + ) w,ll,

l(@% (9)* w1, aL (W) w)l < llgll 1A lwll I(H +B)w,ll -
But this implies that a, (h) v, is in the domain of a* (g), and that
la% (g) a% (h) w,ll < allgll Rl [(H + b) p,] -

That ||a® (k)] < ||| in the fermion case follows by strong convergence
from | af(h)| < | h||. The anticommutation relations in the fermion case
follows by strong convergence and uniform boundedness from the anti-
commutation relations for af (h). In the boson case we have proved for y,
and y, in D that (py, af(g) a; (h) w,) = (4 (9)* vy, af (k) p,) converge to
(@4 (9)* w1, a% (B) p,) = (1, a4 (9) @t (W) w,). Hence (i, [af(g), af (h)] v,)
converge to (v, [a% (g), a% (h)] y,). This proves the commutation rela-
tions in the boson case. To prove the furthermore part of the theorem we
observe that since e """# leaves D invariant, we have for  in D that

efaibye M yp=di_(hy)y.

hence

Taking the strong limit as s tends to infinity we get the two identities of
the theorem.

Let A be the eigenvalue of @. Then a,(h)p=e *H P q(h_)® and
lla,(h) @] = [la(h_,) @|. Since @ is an eigenvector of H it is in D CD,.
Therefore it is enough to prove that a(h,) converge strongly to zero on
D,. By the estimate |a(h) p|| < C|h| |[(Hy+ 1) | it is enough to prove
that a(h,) yp tends strongly to zero for & in a dense set in # and y spending
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a dense set in Dy. So let h be in #, and set v = a*(h,) ... a*(h,) o, Where
h,i=1,n, is in J#, and v, contains no J# particle. From the (anti)
commutation relations of a*(h) we then see that |a(h_,) y| tends to zero
faster than any inverse power of |t|. This prove the theorem.

II1. The Asymptotic States and the Scattering Matrix

In Section 1 we saw that there existed a vacuum state  of H. Since
Q is an eigenvector for H it follows from Theorem 1 that £ is annihilated
by all asymptotic annihilation operators a,(h). We now prove the
following lemma.

Lemma 6. a% (h) and a,(h) have the same domain of definition.
Moreover for anynand anyhy, ..., h,; Qis inthe domain of a% (h,)...a% (h,).

Proof. From Theorem 1 we see that a* (h) are closable on D. Hence
the domain of a% (k) is the closure of D with respect to the norm
[(, (a+(h)* a% (h)+ 1) w)]*. The commutation relations in Theorem 1,
now gives us that the norm defining the domain of a¥ (h) is equivalent to
the norm defining the domain of a, (k). Hence a* (k) and a, (k) have the
same domain. Suppose that Q is in the domain of a¥ (h,) ... a% (h,_,), by
Theorem 1 we know that this is true for n=3; and let Z{" ! be the
smallest closed subspace containing a¥ (hy)...a%(h,_,) Q2. From the
cummation relations of H and a% (h) we see that #{" ! reduces H, hence
DAFEY is dense in F{~ V. Therefore a. (h) is _densely defined in
Z=9, and from the commutation relations for a+(h) and a% (h,)) we see
that a, (h) is uniformly bounded on #{"~ V. This gives us that Z{" 1 is
contained in the domain of a% (h). This proves the lemma. Set now

=Y Fp. 3.1)
n=0

It follows from the commutation relations for a* (h) that the sum above
is a direct sum. In fact #, is the Fock space constructed with af (k)
as annihilation creation operators and Q2 as vacuum. We have therefore a
natural identification of &, with & given by the “wave” operators:

W a*(hy) ... a*(h) Qo= at (hy) ... at(h) Q (3.2)

where Q, is the Fock vacuum. It is natural to identify a% (h,) ... a% (h,) 2
with the outdoing (incoming) n-particle state with the momentum
distribution given by hy, ..., h,.

The scattering amplitude for the cut-off interaction for n incoming
particles with momentum distribution g4, ..., g,, and m outgoing particles
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with momentum distribution A, ..., h,, is then given by

(@ (gy) ... a%(g) 2 a*(hy) ... a%(h,) Q) (33)
which by (3.2) is equal to
(WxW,a*(gy) ... a*(g,) Qo, a*(hy) ... a*(h,) Q). (3.4

Hence we get that the scattering matrix for the cut-off interaction is
given by
S=W*w, . (3.9)

Since W, are isometries we see that ||S|| <1, and it follows from the
commutation relations for H and a% (h) that

[S,Hy]=0, (3.6)

S is unitary if and only if #, = %_.

Let us now find the perturbation series for S. We shall assume that
all the fields involved are fermion fields. This assumption makes the
annihilation-creation operators as well as ¥ bounded. Let A be any
polynomial in the a*(h), and set A,=e "H ¢"Ho ge~itHo pitH  From
Theorem 1 we then get that A4, converge strongly (the convergence is
in fact in norm since we have only fermion fields) to A, as ¢t tends to
+ oo, where A is the same polynomial in a? (h) as A is in a*(h). Due to
the fact that all operators involved are bounded, we can easily prove
the following formula, corresponding to the formula in Lemma 5.

t
A=A—ifdse " esHo [V (s), A] e sHoglsH (3.7
0
where V (s) = e~ 'sHo yeisHo By iteration we get

A= SO(—i)" fef [V, ..., [V(ty), 4] ..]dty ...dt,.  (3.8)

0<t,<: <ty <t
Where the sum is norm convergent. (3.8) may also be written

i;‘adV(s)ds
A,=Te® A, (3.9)

where T is the time ordering and (adV)A=[V, A]. From (3.7) and
Theorem 1 we get

A, =A_—i [ dse HesHo[Y(s), A]e~'sHoelsH | (3.10)
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where the integral is strongly convergent. (3.7) and Theorem 1 also gives
us that

t
A=A_—i | dse "HsHo[V(s), A] e”sHo gsH (3.11)

where the integral again is strongly convergent. By combining (3.10) and
(3.11) we get

At=A_ —i j‘ ds e—isH {eiSHo [V(S), A] e—isHo}_ eisH

© 0
+(=9? [ ds | doeT TRV (g), e [V(s), A] €7 H0]

. e—iaHo ei(s+d)H .

From Theorem 1 we have that
{10 [V(5), A] e 0} = e ([V(5), AT} ¥,

hence we get

A, =A4_—i 0[0 ds[V_(s), A_]

+(—i)* [ ds | doe "HeoHo [V (o), [V(s), A]] e ""HoeloH .
By iteration we get the formula

N

Ap=Y (=17 [--f [Vo@)...[V_(t), A_] ... ]dt, ... dt,

n=0 nS =1
+ (=) [ T o [V (o), [Vity), ... [V(ty), AT ...]]

G<INS=- =l
¢ e IH do dt, .. diy (3.12)

where the integrals are strongly convergent and V_(s) is V(s) with a*.
substituted for a*.
This gives us perturbation series which express 4, as a function of 4_

A, = f (=i [ Vo). [V-(t),A_]...]dt,...dt,.(3.13)

n=0 thS- oSty

This may also be written shortly as

—i }0 adV - (t)dt
A, =Te -= A (3.14)
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From the scattering amplitude (3.3) we get then the perturbation series
given by

(@%(gy) ... a%(g,) 2, a*(hy) ... a* (h,) Q) (3.15)

where a* (g,) ... a% (g,) is given by
> (=i
n=0 tn

Using now that W_ given in (3.2) is an isometry we get that (3.15) is
equal to

| Vo), . [V-(t1), a% (gy) ... a* (g)] ...] dt, ... dt,.

=Sty

HIA &=y

L Lo V) Va6 @@ 1%, g

S sty

a*(hy) ... a*(h,) Qo) dt,...dt,,
which we may write short as

—i [ adV(t)dt

(Te == -a*(gy) ... a*(g) Qo a*(hy) ... a*(h) Q). (17)

(3.16) or (3.17) is then the perturbation series for the scattering matrix,
and we see that it differs from the usual perturbation series for the
scattering matrix in quantum mechanics, in as much as it involves ad V'
instead of V.

Lemma 7. If V is linear in the fields then S =1.

Proof. From (3.10) we see that a* (k) and a* (h) differs by a constant.
But since a, (h) Q=a_(h) 2=0, we see that the constant must be zero.
From (3.2) we then get that W, = W_. Since W, are isometries we get
from (3.5) that S = 1. (3.10) was derived only for fermion interactions, but
it follows immediately from Theorem 1 that for A = a*(h) it holds also for
general interactions. This proves the lemma.

Lemma 8. Let  be any positive real number. Let ¢(x) be one of the
fields and let # be the corresponding one particle space. Then there is a
dense subspace Hj; of A such that for any h in #

sup. I[p(x), a*(h)]L| < Ce ",

where C may depend on h.

Proof. For simplicity we shall assume that ¢(x) is a scalar field, the
proof for the other cases are almost the same. Then

[$(x), a*(h,)] = const. [ &@@+ix? hp) dp
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and
3 dx 2, .2
H=L (R |, w=|/p +m

w(p)*
-9+

. ) 1 _ e .
is a constant t1mes~|—e Alxl it is different from zero almost
x

Set h,(p) = with A =m. Since the Fourier transform of
T
everywhere. Hence the translates of ?2_41-77 spends a dense set in L, (R?).
Therefore h,(p) spends a dense set i#. Set

fx, )= [e*@*ixrp (p)dp, (3.18)

and p=(py, p;, p3).- Then the integrand is analytic in p; for |Imp,|<m.
By deforming the path of integration over p, by an ik where |k| <m, we
see that

|f(x, 1) S Ce ", (3.19)

Let now U, be the homogeneous Lorentz transformation which takes

: 1 1 1 1 . . .
X, into 5 (oc + ;) X+ 7( - 7) t, X, into x,, x3 into x; and ¢ into

1 1 1 1 . .
> (oc - ?) X+ > (o: + ;) t. If we in (3.18) substitute U, h, for h, we see
that (3.19) will become
If(x, O < Ce kGt x1+ 3@
If k, x; and « is positive we get that
|f (x, )| S Ce#adr, (3.20)

Let U, be the translation by r in the x; direction, and let U= U, U,.
If we substitute U h, for h, in (3.18) we see from (3.20) that we get

sup | f(x, t)] < Ce ¥e~#)r, (3.21)
x| <r

Since U is a unitary operator in J# it maps a dense linear subspace onto
a dense linear subspace. Hence Uh, spend a dense linear subspace.
. k 1 .
Choosing o such that > (oc — ——) = f# we see that the lemma is proved.
o

Theorem 2. If all the fields are fermion fields, and if we write the
interaction as AV, with the perturbation parameter A. Then for any positive
o there is a dense subspace #, of the one particle space H#, such that for
hin #,,a".(h) is a norm analytic function of 1 for 1 in the disc || < o.
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Proof. From (3.8) we get that the expansion of a¥ (h) in powers of 4
is given by

at (h) = 201"(—1')" [ [V@E...[V () a* (k)] ... ]dt, ...dt,, (3.22)

0=ty - Sty

and we shall see that the sum is norm convergent. We know that ||V| <a,
and from Lemma 8 there is a dense subspace #; of # such that for 4 in
Hp, ILV (), a*(h)]|| £b e, where f may be any positive number. Hence
we get that the coefficient of A" in (3.22) is in norm bounded by

. el tn—l gt _ b (2a n—1
oo [ e =5 )

So if 2a—is smaller than 1 we see that the sum in (3.22) is norm con-

vergent for 4 < a. This proves the theorem.

Theorem 3. If all the fields are fermion fields then there is a dense
subspace of F and a positive A, such that for yp, and v, in the dense
subspace we have that (p, Sy,) is analytic in A for A in the disc |A] < Ao.
The series expansion for (pq, Sy,) is given by (3.16) with AV substituted
for V.

Proof. By (3.3) the scattering matrix is given by (Q,a, (G ...
w.ay @y at(hy) ... a*(h,) Q). By Theorem 2 there is a subspace #, such
that if all g, ..., g, hy, ..., b, is iIn H#, then the operator is analytic.
Hence the question is only if Q depends analytic on A. Since V is bounded
we know from regular perturbation theory that Q is analytic in A for
[Al < 4. Hence if y, and v, is of the form A*Q, where A* is a polynomial
in a*(h) with h in 5, , we see that (yp;, Sy,) is analytic in A for |A| £ 4,.
Since it is analytic it is obvious that (3.16) is the series expansion. This
proves the theorem.

We may also use the asymptotic annihilation-creation operators to
get a description of the spectrum of H. Let V. be the subspace annihilated
by all a, (k). V, and V_ are closed subspaces since a.(h) are closed
operators, and due to the commutation relations between H and a¥ (h)
we see that V, are invariant subspaces for H. a* (h) and a, (%) have the
same domain, since a, (h)* = a* (h) so that

a; (1) ax (h)=ax (h) ax()* — (b, h) = a% (h* a% (W) — (h, ).

Therefore V. is in the domain of a* (h), and let V1 be the closed subspaces
generated by a¥ (h) V... From the (anti) commutation relations for a% (h)
we see that V1 are in the domain of a, (h) hence by the previous argument
in the domain of a% (h) and we may take V7 to be the closed subspace
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generated by a% (h) Vi. In the same way we construct V3, .... That V7
is orthogonal to VI for n+m follows from the (anti) commutation
relations for a% (h). That V, and V% are invariant subspaces for H
follows from the commutation relations between a¥, (h) and H. To see that

(3.23)

I+=

where we have put V9=V,, we observe that V7 is exactly the set of
vectors in & annihilated by all operators of the form a, (h,) ... ay (h,+ )
On the other hand due to the commutation relations between H and
a, (h) we see that any vector belonging to a finite spectral interval for H
will be annihilated by a,(h,)... a.(h,,) for n large enough. Hence

Y. V% isdensein & and since it is closed we get (3.23).

n=u

Theorem 4. % may be decomposed as a tensor product ¥ =F,. V.,
where V. are invariant subspaces for H containing the vacuum Q, and
F,. ®Q are the subspaces of incoming and outgoing particles. If w is
eigenvalue for Q then in the interval [w, m), where m is the lowest mass,
H has only eigenvalues each of which is of finite multiplicity. Relative to
the tensor decomposition & = %, @ V.., H has the form H=H,®1+1
® H .., where H, is the free Hamiltonian operating in %, and H, is the
restriction of H to V..

The proof of this theorem is already contained in what we have said.
For more details see Ref. [2].

To obtain a scattering theory for a relativistic invariant interaction
we now observe that for the cut-off theory ||S)| =1 and [H,, S]=0 for
all polynomials P and for all values of the cut-off parameters. Let S(P, ¢, r)
be the scattering operator for the interaction P and cut-off parameters ¢
and r. Let P, be a polynomial of the same type as P but the coefficients
in P, will depend on &. (P, is the renormalized polynomial)) Let &, go to
zero and 7, to infinity. Since the sequence S, = S(P, , &,, 7,) satisfy ||S,|| <1
and [H,, S,] =0, we may use weak compactness of the unite sphere in &
to find a subsequence ¢,, such that S, converge weakly to S. Due to
the weak convergence we have that ||S|| <1 and that [H,, S]=0. We
will call S a scattering operator associated with the interaction density
P(¢(x)). For any polynomial P we see that there always exists an associated
scattering operator S, although as we have seen S will depend on the
renormalization P,, and we may expect that unless the renormaliza-
tion P, is properly chosen the limit S will be trivial. From (3.16) we get
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the following formal perturbation series for S.

S= Z(—l)" [ ([P, ... [P@(xy), a*(gy) ... a*(g)] -] o,

x9<-- <x1

a*(hl) v @¥(hy) Qo) dx, ... dx,

where the integrations are in R* and ¢(x) is the free field at the time
point x. We see that this perturbation series is difference from the one
usually given in quantum field theory.
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