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Abstract. We prove that the λ(φ4)2 quantum field theory model is Lorentz
covariant, and that the corresponding theory of bounded observables satisfies all the
Haag-Kastler axioms. For each Poincare transformation {a, A] and each bounded region B
of Minkowski space we construct a unitary operator U which correctly transforms the field
bilinear forms: Uφ(x, t) U* = φ({a, A} (x, £)), for (x, t)eB. We also consider the von
Neumann algebra W(B) of local observables, consisting of bounded functions of the field
operators φ(f) = J φ(x, t ) f ( x , t) dx dt, supp/ C B. We define a *-isomorphism σ{atΛ] M(B]
->2l({α, A} B} by setting σ{a^Λ}(A}= UAU*. The mapping {a, Λ}-*σ(a^Λ] is a representation
of the Poincare group by *-automorphisms of the normed algebra Uβ2I(β) of local
observables.
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1. Introduction

Li. Discussion

We study the quantum field φ of the λ(φ4)2 quantum field theory.
This field φ satisfies the nonlinear equation

Q , λ > 0 , (1.1.1)

where φ3 is suitably defined. The construction of a field φ satisfying (1.1.1)
was carried out in [1-3]. The field φ(χ, t) is a densely defined bilinear
form on Fock space, and the values of this form are continuous in x
and ί. If f ( x , t) is a real °̂° function with compact support, then the
bilinear form

= Sφ(x,t)f(x,t)dxdt (1.1.2)

uniquely determines a self adjoint operator on Fock space. The field
(1.1.2) is local, so that φ(f) commutes with φ(g) i f / and g have space-
like separated supports. The field φ is space-time covariant. This means
that for a = (α, τ), there is an automorphism σa of the algebra of field
operators such that

where

The automorphism (1.1.3) is implemented locally by a unitary
operator [3].

Another desired property of φ is covariance under Lorentz trans-
formations, but this property was not established in [1-3]. Lorentz
covariance requires the existence of an automorphism σΛ of the algebra
of field operators, such that

σΛ(φ(f)} = φ(fΛ). (1-1.5)

Here fΛ is the function / transformed to the Lorentz frame moving at
velocity tanhβ,

(fΛ) (χ9 t) = f(x cosh/? - t sinhjS, t cosh/? - x sinhβ) . (1.1.6)

The group of Lorentz transformations Λ = Λβ satisfies the multi-
plication law

Acting on space-time, the Lorentz transformation is defined by

A(x9 1) = (x cosh β + t sinhβ, ί coshβ + x sinhβ) . (1.1.8)

In this paper we establish this Lorentz covariance. We prove the
existence of the automorphism σΛ of (1.1.5), and we show that σΛ is
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implemented locally by a unitary operator. Combining the spacetime
translation automorphism σa of (1.1.3) with the Lorentz automorphism
(1.1.5), we obtain covariance under the Poincare group. In other words
the automorphism

is a representation of the Poincare group,

(1.1.10)

In addition to the field operators themselves, it is convenient to
study bounded functions of the fields. We let B be a bounded region of
space-time, and 9ί(B) the von Neumann algebra generated by

(1.1.12)

The C* algebra of observables 91 is the norm closure of

UBSl(B). (1.1.13)

In [2-3] it was shown that the algebras $l(B) yield a theory of
bounded observables satisfying all the Haag-Kastler axioms, with the
possible exception of Lorentz covariance. Our results here on Lorentz
covariance of the field ensure Lorentz covariance of the local algebras.
Hence our results show that the algebras 91 (B) give a complete Haag-
Kastler theory in two dimensional space-time. The automorphism
σ(a,Λ} is an isomorphism of 21 (B) onto 21({α, A} B).

We now explain the basic ideas which motivate our construction. One
would expect that an operator of the form

M = M0 + Λ J :φ4(x): xg(x)dx, g(x)^Q , (1.1.14)

where g(χ)=l on a sufficiently large interval, is the infinitesimal
generator of Lorentz boosts in a bounded space-time region B. The
same physical ideas motivate the use in [1-3] of the locally correct
Hamiltonian.

): g(x)dx. (1.1.15)

Here M0 and H0 are the self adjoint generators of Lorentz rotations
and time translation for the theory with no interaction, that is for the
case λ = 0. One also expects that

[ΐ#,M]=P loc, (1.1.16)

where Ploc generates space translations in the region B. We would say
that Ploc is a locally correct momentum operator. For a locally correct
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momentum operator, we expect that

pH, Ploc] - Rloc , (1.1.17)

where .Rloc is localized outside the bounded region B. Thus for
supp/CB,

0. (1.1.18)

These commutators lead to the equation

liM,φ(f) ]=-φ(xft + t f x ) 9 (1.1.19)

which in integrated form states that

eiMpφ(f)e-iMe = φ ( f A β ) . (1.1.20)

In other words, the putative Lorentz transformation

) (1.1-21)
is implemented by a unitary operator that depends only on β and the
support of/.

In Section 2 we prove that it is sufficient to carry out the above
argument for space-time regions B lying outside the light cone, in the
region x>0. For such a region B, we can replace M of (1.1.14) by

Λί = <xH0 + J τ : {π(x}2 + ( Vφ}2 (x) + m2φ(x)2} : xg0(x) dx
0 2 „ (1.1.22)

o

which formally generates Lorentz transformations in B provided that

for x in a sufficiently large interval of the positive x axis.
In Section 2-6, we show that the formal ideas outlined above can be

made mathematically rigorous. We prove in Section 3 that the expres-
sion M of (1.1.22) defines a symmetric operator M on Fock space, and
in Sections 4—5 we prove that M is self adjoint. In Section 6 we prove
that M generates Lorentz transformations in B, by establishing the
co variance (1.1.19-20).

In order to define and gain quantitative control over the operator M,
and the other operators involved, we estimate the kernels of certain
Wick ordered monomials in creation and annihilation operators. In
[1-3], kernels are estimated with ^2 norms. Such norms are insuffi-
cient for our problem, and we find it convenient to introduce 52 1 — 5£ °°
norms on the kernels. For these new norms we find estimates that
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yield Fock space operator inequalities. We use these inequalities, along
with other inequalities, to define (1.1.22), to prove that M is self adjoint,
and to establish (1.1.19-20) as a mathematically rigorous theorem. The
results of Section 2 then ensure Lorentz covariance of the theory of the
algebra of local observables 21.

In this paper we do not consider Lorentz invariance of the vacuum
state of [4], or other questions concerning the physical representation.
The results of this paper combined with the results of [4] show,
however, that σ{a>Λ} is locally implemented in the physical representation
by a unitary operator.

An important feature of our proof is the use of operator inequalities
of the form

Hi Nj~ 2 g const (M + by, (1.1.23)

for; ̂  2, proved in [10] and in sections 4-5. Formal perturbation theory
suggests that (1.1.23) hold for the λ(φ2n)2 quantum field theory, although
somewhat weaker estimates are proved in [10]. We remark that with
higher order estimates established for the λ(φ2n)2 models, n>2, our
method should ensure Lorentz covariance for these theories.

12. Notation

We work on Fock space ,̂ the Hubert space completion of the
direct sum

φJV (1.2.1)
n = 0

The vectors in the n particle space 3Fn are represented by the
symmetric functions in ^2(Rn). We use the standard notation for
creation and annihilation forms on 3F . A summary of mathematical
properties of these bilinear forms and operators on Fock space is
given in [4, Section 3.2]. We use the domain 3) of smooth vectors on
Fock space,

9 = {ψ : ψ e Ĵ , ψ(n) e ^(Rn), φ(n) - 0 for n sufficiently large} . (1.2.2)

Here ^(Rn) is the Schwartz space of rapidly decreasing %>™ functions with
rapidly decreasing derivatives of all orders. The annihilation operator
α(fe) is defined on the dense domain 2 by

1 ) (fe 1 , . . . , fe π - 1 ) = ^φ

(">(fc,fc 1,...,fe l l. 1), (1.2.3)

and the creation form a(k)* is defined on Q) x Q) as the adjoint of α(fc).
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The time zero field φ(x) and its canonical conjugate π(x) are
valued forms on 3> x 2 defined by

φ(x) = (4πΓ* J e~ikx{a(k)* + a(-k)} μ(k)~*dk , (1.2.4)

and

(1.2.5)

where μ(k) = (k2 + ra2)^. The Wick powers of the time zero fields
:φ(x)":, :π(x)":, :(Pφ(χ))n: are also ^(R1) valued bilinear forms on
2 x 2. The Wick powers of the field φ are defined by

:φ(x)»: = (4πΓ* £ W J e-
ix(ki + '~ +*»>

-7"0 ίl 26)
.μ(fcj-^..μ(y--α*(/cj...α^

'a(-kj+ί)...a(-kjdkί...dkn.

The Wick powers of π and Vφ are similarly defined and the Wick dots : :
are extended to polynomials in φ and π by linearity.

The free Hamiltonian H0 is defined by

= Sa(k)*a(k)μ(k)dk.

The interaction energy density TJ(x) for our theory is

Tl(x) = λ:φ(x)4:9 λ>0. (1.2.8)

We also use the number operator

N = Sa(k)*a(k)dk, (12.9)

the fractional energy operators

Nτ = $a(k)*a(k)μ(k)τdk, (1.2.10)

and the momentum operator

P = $a(k)*a(k}kdk. (1.2.11)

The operator Nτ and P are essentially self adjont on 2.
The locally correct Hamiltonian

Hto) = H0 + TIto), ^(0^0, 0e*g>, (1.2.12)

is self adjoint and essentially self adjoint on 2(H%) [1-2].
Let / = [0, b] be a bounded interval in R1. The causal shadow of /

is defined as the region BtCR2,

{{x,t):a+\t\<x<b-\t\}. (1.2.13)
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If g( ) of (1.2.12) equals one on /, then H(g) is a correct λ(φ4)
Hamiltonian for BI. In fact, for (x, t) e #/,

φ(x, ί) = eίίHωφ(χ) <τ ί ίHte> (1.2.14)

is absolution of (1.1.1) and is independent of g( \ see [3]. If
f = fe<g*(βj), the bilinear form

\ = S φ ( x 9 t ) f ( x , t ) d x d t

uniquely determines a symmetric operators on the domain
and φ(f) is essentially self adjoint on this domain [3]. The bounded
functions of these self adjoint operators φ(f) generate the local von
Neumann algebras 9ί(B) described in Section 1.1.

2. Lorentz Covariance

2.1. The Main Results

Let ^ be the restricted Poincare group of transformations of two
dimensional space-time. For {a, Aβ} e&,

{α, Aβ] (x, t) = (α + xcoshβ -f tsinhβ, τ -f ίcoshβ + xsinhβ). (2.1.1)

On functions /(x, t) we define

We prove that the field φ of the (φ4}2 theory is Poincare covariant
in the following sense:

Theorem 2.1.1. Let BcR2 be a bounded set and let {a, A} e <8. Then
there exists a unitary operator U on ̂  such that for all fe%>o(B),

Uφ(f)U* = φ(f(aιΛ}). (2.1.3)

This equality holds in the sense of self adjoint operators.

In the case of space time translations, A = I, Theorem 2.1.1 is
proved in [3]. In this case,

where g( ) = 1 on a sufficiently large set depending on α and B.
We remark that it is sufficient to prove Theorem 2.1.1 for pure

Lorentz transformations {0, A}, since

{a,Λ} = {a,I} {0,Λ}, (2.1.5)

and {α, /} is implemented by an appropriate unitary operator (2.1.4).
Using Theorem 2.1.1, we define a norm preserving map

A}B) (2.1.6)
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by
σ(atΛ](A)=UAU*9 ΛeSI(B). (2.1.7)

Since
Ueίφ(f)U* = eiφ(fΛ\ (2.1.8)

the mapping (2.1.6) can be defined on all generators of 91 (B) and it
yields generators of 5l({α, Λ}B). Furthermore, all the generators of
21({α, Λ}B) are obtained in this manner. Since the mapping (2.1.8) is
unitarily implemented, it extends to a ^-isomorphism of the von Neu-
mann algebras 31 (B) and 2ϊ({α, Λ}B). Furthermore if U and U^ are
two different unitary operators satisfying (2.1.3), then

U f U φ ( f ) U * U l = φ ( f ) 9 (2.1.9)

so that σ{a9Λ} of (2.1.6) is well defined, and independent of the
particular choice of U satisfying (2.1.8). In this manner σ(a}Λ} is
defined as a norm preserving * -automorphism if the algebra

U.«I(B), (2.1.10)

and hence extends by continuity to a star isomorphism of the C* algebra
of local observables 91. Finally the mapping

{a,Λ}-+σlatA} (2.1.11)

is a representation of (S. To prove this, we note that

snce

τ τ Λ . a i , i a 2 , 2 >
Hence we obtain

Corollary 2.1.2. There fs representation &{a>A} of & by a group of
^-automorphisms of 21 swc/z

This is one of the Haag-Kastler axioms for the algebra 21 of local
observables for the λ(φ4}2 model. We note that the automorphism
σ{a,Λ} is implemented on 21 (B) by the unitary operators U of
Theorem 2.1.1.
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Remark. We will construct operators U = U({a, A}\ B) in The-
orem 2.1.1 with the following continuity: For {a, A} in a neighborhood
of an element of &, U({a, A}; B) can be chosen strongly continuous in
{a, A}.

2.2. Reduction of the Problem

In this section we reduce the proof of Theorem 2.1.1 to the form
that we analyze in the remainder of the paper.

Lemma 2.2.1. To prove Theorem 2.1.1 it is sufficient to establish the
following: Let A be a pure Lorentz transformation and let BcR2 be
a bounded subset of R2 with closure in {x>|ί|}. Then there exists a
unitary operator Ul on 3F such that for all /e^(B),

Uιφ(fiUf = φ ( f A ) . (2.2.1)

Proof. In Section 2.1 we observed that it is sufficient to prove
Theorem 2.1.1 in the case of pure Lorentz transformations. Let A be a
pure Lorentz transformation and BcR2 a bounded region. Then a
suitable space-time translation {α, /} e ̂  exists such that

{fl,/}»~CS+ = {(x,ί) :*>!*!}, (2.2.2)

where B~ is the closure of B. By hypotheses of the lemma, for
supp/C#,

supp/ { f l > / }C{α,/}BcS+,

and there exists a unitary U^ such that

Uίφ(f[a,I}) U? = φ((fM\0.Λ}) = φ(f{Aa,Λ]) (2.2.3)

by (2.1.12). As discussed in Section 2.1, space-time covariance was
established in [3] and the space-time translations are implemented in
bounded regions by unitary operators in Fock space, namely (2.1.4).
Let U(a) and [/( — Aa) be the unitary operators implementing space-
time translation by a and —Aa in the convex hull of

BuΛBu{α,/}Bu/l({α, / } B ) .
Then

U(-Λa)UίU(a)φ(n(U(-Λa)UlU(a))*

= U(-Λa)U1U(a)φ(f)U(a)*UfU(-Λa)*

= U(-Λa)Uιφ(f(atί})UfU(-Λa)*

by (2.2.3)

= U(-Λa)φ(f(ΛatA})U(-Λa)*
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Thus the operator

U=U(-Λa)UίU(a)

is the operator U required by Theorem 2.2.1, and the proof of the
lemma is complete.

Corollary 2.2.2. To prove Theorem 2.1.1, it is sufficient to establish
Lemma 2.2.1 for regions B' CR2 such that

B\jΛB CBj (2.2.4)

for the causal shadow Bf of a closed interval I of the right half line,
{x>0}.

Proof. Given B and A, we can choose a space-time translation
{α, 1} such that

satisfies (2.2.4) for an appropriate Bj. We now follow the proof of
Lemma 2.2.1.

We remark that the advantage of performing the Lorentz boost
in the causal shadow of /C{x>0}, is that a positive operator M can
be used to generate the Lorentz transformation. This operator will be
introduced and studied in the following sections. The positivity of M
allows us to use known techniques [2] to study the self adjointness
of M. In Theorem 6.1, we prove that there is a unitary operator

l/i - eiMβ

satisfying the hypotheses of Lemma 2.2.1 and Corollary 2.2.2. Hence
Theorem 6.1 completes the proof of Theorem 2.1.1.

3. First Order Estimates on the Local Energy Density

3.1. The Basic Inequalities

We estimate monomials in creation and annihilation operators in
terms of the operators JVτ,

Nτ = $a(k)*a(k)μ(k)τdk. (3.1.1)

We note that for τ^ l ,

Nτ^JΓ0, and N2^H2\ (3.1.2)
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For our first estimate we consider the bilinear form

W= Sa(k)*w(k,p)a{p)dkdp (3.1.3)

where the kernel w(k, p) is measurable and |w(fc, p)| is symmetric.
We define two ££ 1 — JS?°° norms on the kernel w, which may be finite or
infinite

M,(τ] = supMfcΓ' J |w(fc, p)| dp , (3.1.4)
k

M2(τ) = supμ(kΓ2<$\W(k,p)\μ(Pγdp. (3.1.5)
k

Lemma 3.1.1. // for some τ, M1(τ)<oo, then W is a bilinear form
on the domain @(N*) x @(N*)9 and N~*WN~* is a bounded operator
on 2F with

\\N-*WN-*\\^Mι(τ) . (3.1.6)

Remarks, a) The operator N~^ is defined on the orthogonal
complement of the no particle vector. Since W equals zero on the no
particle vector, we define WN~* to be zero on the no particle
vector.

b) If τ Ξ> 1, then (3.1.2) ensures that

HQτ/2WHάτ/2 (3.1.7)

is a bounded operator with norm less than M^τ).
Proof. Since the bilinear form W commutes with the projection

onto vectors with exactly n particles, it is sufficient to prove that for n
particle vectors ψE@(N*\ the following inequality of forms is valid:

\(y,Wv)\^Mι(τ)(ψ,Nτ\p). (3.1.8)

The existence of a bounded operator satisfying (3.1.6) then follows by
the Riesz representation theorem.

(ip, Wιp) = n$ϊp(p, k2, ...,kn)w(p,q)ψ(q,k2, ...,kn)dkdpdq

We use the Schwarz inequality in p and q,

\(ψ, Wψ)\ ^ n J |φ(p, k)2 w(p, q)\ dkdpdq
and by (3. 1.4),

|(V>, Wψ)\ ^nMM J |v>(p, k)2\ μ(p}τ dpdk = MM(ip, Nτψ) .

Lemma 3.1.2. // for some τ, Mt(τ) and M2(τ) are finite, then
W determines an operator on @(Nτ) such that WN'1 is bounded with

-1 1| ^ (Mt(τ) + M2(τ)) = M3(τ) . (3.1.9)
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Remarks. Since |w| is symmetric, N~1W is also bounded with a
norm less than M3(τ). If τ ̂  1, WH^τ is bounded with a norm less than
MM

Proof. As in Lemma 3.1.1, it is sufficient to prove that for n
particle vectors

We define \\Wψ\\ZM3(τ)\\Nτψ\\ (3.1-10)

^ p j + 1 , . . . , n

l9plψί9...9l_l9pl9l + i,...,J} ,

and note that n

\\wψ\\2 = Σ c f l .
J,! = l

For j = I = 1, and k = (k2, ..., kn), we have

C}J=fdkdq(\ίdpw(q,p)ψ(p,k)\)2

^$dkdq($dp\w(q,p)ψ(p,k)\)2.

By the Schwarz inequality

r, fe)2 w(r, g)| dr)

by (3. 1.4),

g M1 (τ) J dkdqdrμ(qγ \ψ(r, k)2w(r, q)\

and by (3. 1.5),

g M^τ) M2(τ) J dkdpμ(P)
2τ\ψ(p, k)\2 .

We also estimate CJ( for j φ I. Suppressing all but the essential
variables kjt p}, k, and ph we have

\Cμ\ £ίdkJdkldpjdPl\w(kJ,pj)ψ(pj,kάw(kl,ptψ(pl,kj)\ . (3.1.13)

By the Schwarz inequality in p, and (3.1.4),

\CjA rg M, (τ) J dkjdk^(k^^(kif'2(i \w(kj, Pj) ψ(Pj, fe/ldp/

by the Schwarz inequality in k,

g M^τXJ dkjdkldpjμ(kιγ\w(kj, Pj)ψ(Pp /

and by (3.1.4)

g M 1 ( τ ) 2 S d k l d p J μ ( k ί f μ ( p j γ \ Ψ ( P j , k ί ) 2 \ .
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Hence by (3.1.11)-(3.U3),

Γ μ(kjγμ(klγ\ψ(k)\2

273

and (3.1.10) is proved.
We now let

(3.1.14)

where w(fc p) is a measurable kernel. Let α^r, and define Ec(/c) by

Ec = μ(fc 1 ). . .μ(fc β ). (3.1.15)

Similarly, let /? ̂  s and define EA(p) by

EA = μ(Pl)...μ{pβ). (3.1.16)

, p)
Let

M4(τ) -

w(/c,

λτ/2

op (3.1.17)

where ||ι?(fe,p)||op denotes the operator norm of the kernel v(k,p) as an
integral operator from ^2(RS) to ^2(Rr). The norm || - ||op is dominated
by the Hubert Schmidt norm || - 1 | 2 .

We next give a lemma proved by Glimm [5, Theorem 2.4.3] for
the Hubert Schmidt norm. We present it here with a direct proof.

Lemma 3.1.3. // M4(τ) is finite for some α, β as above and for some τ,
then W is a bilinear form on @(N?/2Nδ/2) x @(Nτ

β/2Nε/2\ where a + δ = r,
= s.Also

l2Nτ-
βl2 (3.1.18)

is a bounded operator and
(3.1.19)

Proof. Let Ω, ψ be vectors with a finite number of particles and
wave functions in Schwartz space ίf. Then, if Ac(k) = αί/q) ••• a(kr) and
A*(p) = a(p1)...a(ps),

(Ω, Wψ) = J (Ac(k)Ω, w(k, p)Aλ(p)Ψ)dkdp,

and by the Schwarz inequality,

|(Ω, Wψ)\2 ^ (J \\Ac(k)Ω\\ \w(k, p)\ MA(p)φ|| dkdp)2

^M4(τ)2ίEc(kγ\\Ac(k)Ω\\2EA(PY\\AA(p)ψ\\2dkdp

^ M4(τ)2 \\Nf'2Nδ/2Ω\\2 \\Nτ

β/2Nε'2ψ}\2.
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The last inequality is proved as follows :

$Ec(kγ\\Ac(k)Ω\\2dk

ί£ Σ
n = 0 j = ί

= \\N?l2Nδ/2Ω\\2,

(
n + r \ α /n + r \δ

Y μ(/c. )τ Y M(fc/)° 1 when expanded,Z_J J I \ ί—J J I

nas -1 ; W '

r\

terms with all variables distinct. The existence of the bounded operator W
now follows by the Riesz representation theorem.

Remarks, a) We could choose any δ and ε, positive or negative,
satisfyingJ to

In that case (3.18)-(3.19) are replaced by

||(/ + NΓδl2N~aί2 WNτ-
β/2(I + AΓ)~ ε / 2 | | ^ const M4(τ) , (3.1.21)

where the construct depends on δ, ε.
b) If the kernel w(/c, p) is symmetric in the r creation variables or

in the s annihilation variables, the norm M4(τ) may be infinite even
though W is bounded. For symmetric kernels and α ̂  r or β ̂  s, we
can use a polynomial £c of degree α. Let

£c(α, τ) = £c(
α> τ & ! , . . . , fcr)

(r-α)!\ (3.1.22)

r!
The sum Y' in (3.1.22) extends over the :— monomials with no

(r-α)!
two of the / ! , . . . , iα equal, and 1 ̂  ij ̂  r. In other words, £c(α, τ) is the
average of those monomials in the expansion of

r

Σ v(k
i = l

that are products of energies of distinct variables. If τ = 1, α = r, then
Ec(α, τ) = Ec. Similarly let

s i
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By the same proof above, we obtain

Lemma 3.1.4. // α ̂  r, β g s and for some τ, σ

w(k, p)
M5(τ,σ) = <oo, (3.1.23)

/ op

is a bilinear form on Ό(Nΐ/2Nδ/2)xΌ(N^/2Nε/2) for any <5, ε
such that α-f β + δ + ε = r + s. Furthermore

W = (I + N)"δ/2N-Λ/2 WN'β/2(N + I}~ε/2 (3.1.24)

is a bounded operator with

\\W\\ ^ constM5(τ,σ). (3.1.25)

Remark. We note finally that w(fc l 5 . . . , fc r ;p 1 ? ...,ps) in (3.1.14) may
be a bounded operator on Fock space. In that case, we replace
|w(/c,p)| by i |w(fc,p)| | in (3.1.17) or (3.1.23). The Lemmas 3.1.3-3.1.4 are
still valid in the case a + δ = r, β + ε = s. We require that w(k, p) be
measurable in the sense that for all Ω e ̂ , (Ω, w(k, p) Ω) is measurable.

3.2. The Energy-Momentum Density

The energy-momentum density tensor1 Tμv(x, ί) for the Ί(φ4)2

theory is a bilinear form on Fock space. The energy momentum vector
Pμ is formally related to Tμv by

p _ r j< (χ 5 £)dx, (3.2.1)

and the generator M of Lorentz transformations is formally related
to Tμv by

M = $T00(x,Q)xdx. (3.2.2)

The usual expression for the unrenormalized Tμv is a Wick ordered
polynomial in the time zero canonical fields φ and π. In this case the
Hamiltonian H = PQ defined by (3.2.1) is a bilinear form, but it is a
semibounded operator only for free fields [6],

In this section we show that for the λ(φ4')2 theory the integration
in (3.2.1) can be restricted to a bounded domain to yield a local energy
or momentum operator on Fock space. The local version of (3.2.2) can
be handled similarly. It is customary to write Tμv as the sum of a free
field part and an interaction part. Explicitly, we write the energy density as

T(x) = T00(x, 0) = Γ0(x) + Γ,(x), (3.2.3)
1 For a general introduction to the properties of the energy-momentum tensor

density, see for instance the book of R. Jost, "The general theory of quantized fields",
Amer. Math. Soc. (1965), pp. 27-31.
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where
T0 (x) = \ :π(x)2 + ( Vφ(x))2 + m2φ(x)2: , (3.2.4)

and
7I(x) = /:<j!>(x)4:. (3.2.5)

For the momentum density,

P(x) - T0 ! (x, 0) = \ :π(x) Vφ(x) + F<p(x)π(x): , (3.2.6)

there is no interaction term.
In order to avoid problems caused by sharp spatial boundaries,

we consider
T(g) = J T(x)0(x) dx = T0 (g) + T^g) (3.2.7)

and P(g) = ί P ( x ) g ( x ) d x , (3.2.8)

where #(•) is a real function in ^(Rl), the space of smooth, rapidly
decreasing functions. This is our local form of (3.2.1).

We establish here various properties of T(g) and P(g). We prove,
among other things that T(g) and P(g) are symmetric operators on a
reasonable domain. Since it is well known that the interaction term
T!̂ ) is a symmetric operator, our result pertains to T0(g) and P(g).
We expect that stronger results can be obtained. For instance we
expect that for g^O, the operator T(g) is bounded from below.
Thus we expect that it is possible to construct a physically acceptable
local energy that is affiliated with a bounded region of space.

We use different techniques to study the pure creation part of
T0 (g) and the particle number conserving part of T0 (g). This is also true
for P(g). We estimate the particle number conserving parts with
S£ 1 — J2?°° norms and the pure creation parts with «£? 2 norms. Thus we
define two separate parts for each.

For the local free field energy we write

T0(g}=Tf\g) + n2\g) (3.2.9)
where

and

τ(2)l ,
TO Λ9)=

μ(k^μ(k2)* J (3.2.10)

a*(k1)a(k2)dk1dk2

± ± -
μ(kίγμ(k2γ \ (3.2.11)

•{a*(kl)a*(-k2) + a(-k1)a(k2)}dkίdk2.

Similarly, for the local momentum we write
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where

(3.2.12)

• a*(kί)a(k2)dk1dk2

and

(3.2.13)

Theorem 3.2.1. The bilinear forms TQ(g) and P(g] define symmetric
operators on @(H0). The following operators are all bounded

(3.2.14)

(3215)

1, and P(2)(#)(/ + N)'1 . (3.2.16)

This theorem is an immediate consequence of the following two
lemmas and of Lemmas 3.1.1—3.1.3.

Lemma 3.2.2. The kernels of T0

(2)(#) and the kernels of P(2](g) are
ζ£2 functions.

Proof. We first note that

μ(kι)μ(k2) - k,k2 = \ (k, - k2)
2 - \ (μ(k1) - μ(k2))2 + m2

so
μ(k1)μ(k2)-k1k2 ^ const μ(kί-k2)

2. (3.2.17)

Using (3.2.17) we can bound the kernel of T^\g) in (3.2.11) by

r μ(k1)μ(k2)-k1k2-m2

const „,.., ..,, , „ „ ,. .! , (311g)

which is square integrable since g is rapidly decreasing. Similarly, we
bound the kernel of P(2)(g) by using the following inequalities:

\klμ(k2)-k2μ(kl)\^2μ(k1)μ(k2)^2μ(k,-k2)
2, if fc1fc2<0, (3.2.19)

and
\k1μ(k2)-k2μ(k1)\^μ(k1)μ(k2)-kίk29 if k,k2^Q. (3.2.20)

20 Commun. math. Phys., Vol 17
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The inequality (3.2.19) is clear, while from

\k1μ(k2)\^μ(k1)μ(k2),
and

we derive (3.2.20) when \kίμ(k2)\>\k2μ(kί)\, and by symmetry it is
valid in general. Thus by (3.2.17) and (3.2.19-3.2.20),

\k1μ(k2)-k2μ(kί)\ ^ const M/q-fc^2. (3.2.21)

Hence the kernel of P(2\g) in (3.2.13) is bounded by

'klμ(k2)-k2μ(kl)const i - k2)

^ const \g(k, - k2}\ μ(kί - k2)
2μ(klΓ*μ(k2Γ*,

which is square integrable, as is (3.2.18).

Lemma 3.2.3. The kernel of T^}(g) and the kernel of P(l}(g] have
finite M!(T), M2(τ) defined in (3.1.4H3.1.5) for τ ̂  1.

Proof. Both the kernel of T$\g) and the kernel of P(1}(g) are
dominated by

const \g(kι -k2)\μ(krf μ(k2)* .
Thus

Miίl) ̂  const supMfc)'1 J \g(k - p)\μ(k)*μ(p)*dp .
k

Since μ(p)* ^ const μ(k — p)^ μ(k)^ and g is rapidly decreasing,

M! (1) ̂  const sup j \g(k - p)\ μ(k - p)* dp
k (3.2.22)

^ const .

Similarly, M2(τ) is finite for τ ̂  1. This completes the proof of the lemma
and the proof of Theorem 3.2.1.

For the remainder of this section we define a momentum cutoff
operator T0κ, and we establish properties of T0κ that will be useful later.
It is convenient to assume that

, (3.2.23)

and we do this in the following. We will use the cutoff function

-I

G Ϊ C(fe 1,fe 2)=—— j h(p — kί)h(p — k2)dp (3.2.24)

For K < oo, Gκ(k±, fc2) 6 ̂ (K2), and

î r ί/c /r ^ — π (k Jί" ^ f3 2 251
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We define
TOK(g)=T&(g)+n2

K\g) (3.2.26)

by replacing g(k± - k2) in the kernels of T^(g) defined in (3.2.10)-(3.2.11)
by Gκ(/c l 5/c2). If κ<oo, then the T^κ(g) have <e2 kernels and so Γ0κ(0)
is essentially self adjoint on @(N), since vectors with a finite number of
particles are analytic vectors. We write

g ) , (3-2.27)

defining <5T0ίC, and similarly we define δT^(g).

Theorem 3.2.4. a) The bounded operators

δT^I + H.Γ1 and (J + H0)-*5T0<^/ + H0)-* (3.2.28)

converge strongly to zero as κ-κx).
b) The kernel of δT$(g) has an J£2 norm that is O(κ~ε) for any

ε < -j. Thus
\\δT$(g)(I + N)-1\\£0(κ-<), ε<i (3.2.29)

c) ASK-* co,

l ^0(0. (3.2.30)

Proof, a) We note that the kernel of δT$ has bounded norms
(3.1.4)-(3.1.5) for τ = 1, and these bounds are uniform for K ̂  oo. Thus the
operators (3.2.28) are uniformly bounded, and it is sufficient to prove
convergence on a total set of vectors, namely vectors in @(H0) with
exactly n particles. It is sufficient to prove the strong convergence of

$ on this domain. For ip an n particle vector in

Σ ί
7 = 1 |p |> fc I A*VV PVίJ

2

(3.2.31)

^ const I £ J dp$dq\h(p-kj)h(p- q}\
1.7 = 1 |p |>κ

The right side of (3.2.31) is monotonically decreasing as κ-»oo. Since

μ(^ ̂  const μ(p -
»

and since h is rapidly decreasing,

w(fc,«) =
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is a kernel with finite norms (3.1.4)-{3.1.5) for τ = 1. But the right
side of (3.2.31) has the form (W|φ|)2, where \ψ\E@(H0) since ψ is.
Hence by Lemma 3.1.2, the function W\ψ\ is ^2 so that (3.2.31) is
uniformly bounded by an 3? 1 function. By the dominated convergence
theorem, the integral of (3.2.31) tends to zero as τc-»oo, which completes
the proof of strong convergence.

b) The kernel of δT$(g) is bounded by

w(fe,p) = constμ(fc-p)2μ(fc)"ίμ(pΓi f \h(q-k)h(q-p)\dq . (3.2.32)
\q\>κ

By (3.2.20) we write

^ const μ(pΓεμ(/c -p)ε,

Then

|w(/c, p)| ̂  constμ(/c - pΓ1 " ~ ε

• f dq\h(q
\q\>κ

^ constμ(κ)~ * +εμ(k -

• J dq\h(q-k)h(q-p)\μ(q-k)-μ(q-p)* + ε.
\q\>κ

We can now use the Schwarz inequality in q and the rapid decrease of h
to bound the integral over q by a constant. Thus

which is J2?2 for any ε>0, and has an <£2 norm that is O(κΓ*+ε) for
any ε > 0. This proves statement b of the theorem.

c) The proof of this estimate is carried out by estimates on the
kernels of δT$(g) and δT$(g). The estimate on the kernel of
δT^\g) is similar to the above, but we estimate the J*?2 norm of
w(/c,p)μ(/c)~ iμ(p)" i for the w of (3.2.32). We then get an J^2 norm
that is O(κΓ* +ε), and Lemma 3.1.3 in the case α = 2, β = 0, τ = 1 for the
creation part or α = 0, β = 2, τ = 1 for the annihilation part yields

||(/ + HoΓ1δT^)(flf)(/ + H 0Γ 1 | |gO(κ-*+ β). (3.2.33)

The estimate on the kernel oϊδT$(g) will be made with the norm (3.1.4).
We find that M1(τ = 2) is O(κ~~1}, so that by Lemma 3.1.1, and remark b
following it,

\\^0(κ-^. (3.2.34)
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We now prove this estimate on the kernel of δT$. The kernel of
δ To2(g) is dominated by

wκ(fe, q) = const μ(k)* μ(q)^ J \h(p -k)h(p- q)\ dp ,
\P\>κ

and
^ const μ(k)2 J \h(p-k)h(p - q)\

\p\>κ

^ const μ(κΓΐμ(k)2 J \h(p-k)h(p- q)\
\p\>κ

• μ(p-kf μ(p-qfdpdq

or by the Schwarz inequality

J wκ(k, q)dq ^ const μ(κ)~^ μ(k)2 .
Thus

which completes the proof of (3.2.34) and the proof of the theorem.
It is convenient to write T0κ(g) and δTOK(g) in another form. We

define the following operators with J£2 kernels on the domain

Bι(p) = - f Λ(p - k)μ(k)*a(k) dk , (3.2.35)
2π

B2(p)=^-ίh(p-k)kμ(kΓ*a(k)dk, (3.2.36)
2π

(3.2.37)

Then for g = h2, and K ̂  oo, on the domain

1 Γ V
2 - κ / = ι

and
1 3

We also define

i = l,2,3, (3.2.40)

which are also operators on 3>(N*). Note that

0. (3.2.41)
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The operators At(p) are related to the operator T0κ(g) without Wick
ordering. For K < oo, define

TOK(9) = Σ ί A&ΓAMdp Z 0 . (3.2.42)

An easy calculation shows that

TOK(g) = Γ0κto) ~ (Ωo, T0ιeto)Ωo) (3.2.43)

where Ω0 is the no-particle vector. Since

(Q0, TOK(g) Ωo) = J Gκ(p, p)μ(p)dp , (3.2.44)

where Gκ is defined in (3.2.24), we have for κ<oo that T0κ is bounded
from below and

O. (3.2.45)

Theorem 3.2.5. Let ε > 0 and g, g1 be positive as above. Then there
is a finite constant b such that on @(HQ) x

for all O ^ K ^ O O , (3.2.46)

O, (3.2.47)

0, (3.2.48)
and

εN + TO (ff) + T,to!) + b ̂  0 . (3.2.49)

O/ course these inequalities are also valid with H0 in place of N.

Proof. The positivity of δT$(g) is a consequence of the representation
(3.2.38). In order to prove (3.2.47) we write

εN + T0(g) = εN + δ 1™(g) + δ T$(g) + T0κ(g) .

Since δT$ is positive by (3.2.46) and TQκ(g) is bounded from below by
(3.2.45), we need only prove that εN + δT$(g) is bounded from below.
By Theorem 3.2.4b, the ̂ 2 norm of the kernel oΐδT$ is 0(κΓ*). Thus

NΓn £0(κ-*) (3.2.50)

and for sufficiently large K, (3.2.50) is less than ε. Hence εN
+ ε ̂  0, and (3.2.47) is established.

The bound (3.2.48) is the semiboundedness result of Nelson [7] and
Glimm [8], Although they proved that eHo + T^i) is also bounded
from below, the same proof can be carried through with N replacing H0 .
Combining (3.2.47) with (3.2.48) yields (3.2.49).
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4. Second Order Estimates

In Section 3 we proved mainly linear estimates on the operators
T(g) and P(g\ the local energy and momentum. In this section we
prove estimates that are quadratic in T(g). These estimates give us
better control over T(g) and are an essential ingredient for the self
adjointness proof of the next section.

The main result of this section is a second order estimate on
operators of the form

#0 + Γ0 foo) +7^) (4.1)

where g0 and g1 are spatial cutoffs satisfying (3.2.23). For #0 = 0, such
an estimate was proved in [1], see also [2, Proposition 1].

Theorem 4.1. Let c>l. Then there is a constant b < oo such that for

(H0 + 1)2 + β2 To to0)
2 + T, tox)

2 ^c(H0 + βT0 too) + Titoi) + b}2 , (4.2)

as a bilinear form on 2 (Hi) x ®

We remark that each operator H0,T0to0), and TjtoJ is defined

Lemma 4.2. Let ol and ε > 0. Then there is a constant b < oo such

T

andforallQ^β^l,

T0 to) HO + HO TO to) ̂  - εH2 - 6 (4.3)

(4.4)

(H0 + /? TO to) + b)2 = (H0 + 1)2 + £2 TO to)2

l)) (4.5)

as bilinear forms on @(H0) x

. We expand (H0 + βT0 to) + b)2 to find

where β1=βb(b-lΓ1- For b sufficiently large, H0 + βl T0 to) + ft/4 is
positive, for the proof of Theorem 3.2.5 gives an estimate that is
uniform for 0 ̂  & rg 2. Hence it is sufficient to prove (4.3) to establish
(4.4), for if

HO TO to) + TO to) HO ̂  - 4εH2 - y , (4.6)

we choose ε and b so that

4ε<l and J r & 2 > y + l .
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We write
(4.7)

and we prove (4.6) separately for each term in (4.7).
Using (3.2.40H3.2.45) we write

H0TOK + TOKH0 = -2H0J Gκ(k,k)μ(k)dk + H0f0κ+ TΰκH0

^-&H2

Q- const + H0 T0κ + TOKH0

= -εH<;-const 4

+ Σ ί {[ίί0,
1 = 1 -K

Note that the kernels occurring in Ai(p\Aί(p)*,\H(),Aί(p)~] and
[H0,Ai(p)*'] all belong to ^(tf1) for fixed p. The J*?2 norms of these
kernels are uniformly bounded on compact intervals in p. Thus each
of these operators is defined on 3)(N*) and maps &(H0) into 2(H%). As
a consequence, each term in (4.8) is defined. Since

f ^(p)*ff04(p)dp^0, (4.9)
— K

we need only bound the commutator terms. By the above remarks on
the ̂ 2 nature of the kernels, the operator

(/ + HO)"* f {[H0,^(p)*]
— K

is bounded for any K < oo, so that

Σ ί {[Ho^i(P)*]^

^ -const (H0 + /) (41°)

^ —£UQ — const .
Thusby(4.8)-(4.10)

HO TO K+TO K# 0^-2ε# 2- const, (4.11)

which is the contribution of T0κ to (4.6).
By Theorem 3.2.4 b, the kernel of δT£2

κ\g) has an ̂ 2 norm that is
£>(*:"*). Hence

and for sufficiently large K,

Ho^To^
which is the contribution of δ Tj^ to (4.6).
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Finally, for δ T0

(* } we write

(4.12)

By Theorem 3.2.5, the first term on the right of (4.12) is positive, and we
now study the double commutator. Since neither δ T^κ

} nor Hj changes
the particle number, we restrict attention to vectors ΨE@(HQ) with
exactly n particles. Let <5ί(fc l 5 fc 2 ) be the kernel of δT$(g).

Then

(4.13)
(/c l5 ...,kn)ψ(p9k2, . . . 5 /cJdi(/c l 5 p)/t(p 5 k l 5 ....k^dpdk^ . . .αk π ,

where
λfok^ka,. . . ,^)

' w \i / « \1^|2

V , , f t Λ l -'μ(p)+ Σ/<W)} (4.14)

1 + M(p)-Mfcι) ,

If μ(p) — μ(kl) ^ 0, we use the inequality for x ^ 0

(l + x)*-l^ix
to prove

μ(kl))2. (4.15)

Since λ(p, kl9 . . ., kw) = λ(kl9p, . . ., few), the bound (4.15) is valid for all
p, fe1? ... , fe n . Since

|μ(p) - μ(/Ci)| g const μ(p - fct) ,
we have

λ(p, fe!,...^^^ const μ(p-ktf. (4.16)

Suppressing the variables k2,...9kn in (4.13) we have by (4.16), the
Schwarz inequality, and the symmetry of |w(fc, p)|,

^ const ^ίj lipίfe^όίίfc^p)!/!^ -p}2dpdkί .

As in the proof of Theorem 3.2.4, the kernel δt(klyp) is dominated by

const \g(ki-p)\μ(k1^μ(p)^.

Thus we have the J^1 — «JSf °° estimate

f \δt(k, , p)| μ(/ct - p)2 dp ^ const μ(kί) ,
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and so, by Lemma 3.1.1,

= const (ip, H0 \p)

cons
Thus for (4.12),

HO δ 7£> + δ 7&>H0 ^2H$δ T&Ht -εH2

0- const

i; — εH2, — const .

This establishes (4.6) as an inequality on D(H%) x ®(H$). It extends by
closure to @>(H0) x @(H0), and this completes the proof of the lemma.

We remark that these methods can be used to prove that

W(τ, n) = (ad H^"(T^(g)) , τ ̂  1 , n = 1, 2, 3, . . . ,

is an operator on @(H0), and that W(τ, n)Hΰl is bounded.

Lemma 4.3. Let ε > 0 and K < oo. Then t/iere exisίs α constant b«x>
such that on 9 (Hi) x 0(Hg),

T,T0κ + T0κ T, ̂  - ε(Hg + T,2) - fe . (4.17)

Proof. Using (3.2.40)-(3.2.45), we have the identity

Tι T0κ + T0κ Γ, = - const T, + Γ, Γ0κ + T0κ T,

= - const T, + Σ f {^((P)* ϊi/liίp) + 4((p) T ;̂(p)*} dp

1 3 κ

 i = 1 ~ κ (4.18)

+ T Σ ί {[^<(P), [̂ (P)

which follows from

+ A*A)B = 2ABA* + 2A*BA + [A, [/I*,

We give a lower bound on each term on the right side of (4.18).
Clearly for any % > 0,

- const ̂  ̂  - ε! Tϊ2 - const .

Furthermore, by (3.2.48), for ε2 > 0,

(4 19)
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By the remarks following (4.10) on the ^2 nature of the kernels
occurring in At(p), we have for |p| ̂  K < oo, and any ε3 > 0,

- const At(p)*Ai(p) ^ - const (N + /) ̂  - ε3H
2

0 - const , (4.20)

and

^ - ε2 const (N + I)2 (4.21)

^ - ε2 const (HQ + I).

Thus we can choose ε 1 ?ε 2,ε 3 sufficiently small so that after summing
(4.19)-(4.21) over ί and integrating over |p| rg K, we obtain for (4.18),

T/Toκ + To.T^ - — ε(H2

0 + T/)- const

We note that [^i(p), [^i(p)*, TJ] and its adjoint are sums of second
order monomials in creation and annihilation operators with j^2

kernels that have uniformly bounded ^ 2 norms for |p| ̂  K, In this
interval of p,

[AM IA&)*, TJ] + [^(p)*, [^iίp), TJ]
^ - const (N + I)

^ —CίN2 — const .

Thus by choosing βi sufficiently small, we obtain from (4.22) the following:

T, T0κ + T0κ T, ̂  - ε(H2 + T2) - const , (4.23)

which is the desired inequality (4.17) and completes the proof.

Lemma 4.4. Given ε > 0 there exists a finite constant KO such that for
K>K0

^-ε^+Tf + I), (4.24)

as bilinear forms on £^(ί/o) x

Proof. For any ε > 0
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By Theorem 3.2.4 b, δT$ has an ^2 kernel with norm O(κ~*\ Thus
for fixed ε>0,

~

^~ε(\\H0ψ\\2+\\ψ\\2)

for K > KQ — τc0(ε). Thus for K > KO ,

which completes the proof.

Lemma 4.5. Given any ε > 0, there is a constant KQ < oo suc/z that for

K>K° TJTV+δ T^T, ̂  - ε(H2 + /) , (4.26)

as bilinear forms on ®(f/o) x @(HQ).

Proof. We consider δT$ as (3.2.39) and write

ftT^ j B&rT
\p\>κ

+ ί {[^^(pΠ^W (4.27)
Z i = l \p\>K

+ Bi(p)*lBi(p),TJ}dp.

The integrals over p in (4.27) are absolutely convergent as weak
integrals of bilinear forms on ®(Ho) x ^(^o) We note that for any

"1 - ~ 5 _

i = i W > κ ' 3 (4.28)

^ - % Σ ί Bι(P)* #*<(P) dp-bδ T0

(iJ,

using (3.2.48). By Theorem 3.2.4c,

-bδT0

(1

κ

)^-0(κ-1)(H0 + /)2^-ε2(H^ + /), (4.29)

for K sufficiently large. Since the right side of (4.28) commutes with
the projection onto vectors with n particles, it is sufficient to bound it
below on such vectors. By Theorem 3.2.1, or Lemma 3.2.3,

X f (Ψ,Bί(PrNBi(P)ψ)dP

i = l |p |>κ

= 2(n-l)(φ,δΓ0

(iV) (4.30)

^ const (n — l)(φ, HQψ)

^ const(ψ, HQ\P) .
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Inserting the bounds (4.29)-(4.30) into (4.28), we have for sufficiently
small εί and ε2,

£ J Bί(p)*TlBi(p)dp^-~z(H2 + I } . (4.31)
i = l |p |>κ *

We now use Lemma 3.1.4 to bound the commutator terms in
(4.27). We write out

(4-32)

Tlr = Sb(kl9...,k4)a*(k1) ... fl*(fcr)α(-fcr+1) ...a(-k4)dk (4.33)

and

. (4.34)
for a constant c. Let us write jB( of (3.2.35)-(3.2.37) as

Bi(p) = $h(p-k)bί(k)a(k)dk, (4.35)
where we note

Let \bi(k)\^μ(k)^ (4.36)

>κ (4.37)
- J WiΛ/ί! , . . . , /c4; κ;) α*(/q) . . . Λ*(fe r)fl(-fc r + 1) ...a(-k4)dk,

where w ίr is the symmetrization in k1 , . . . , kr of

• J
\p\>κ

Thus using (4.31) we write for (4.27)

T,δ Γ0<i> + δ Γj1; T, ̂  - 4- ε(«o + 1) + Σ Σ ( WirM + ̂ r(κ)*) - (4.39)
*> i = l r = 0

We will use Lemma 3.1.4 in the case of r creators, (4 — r) annihilators,
α = min (2, r), β — min (2, 4 — r), τ = 1 and σ = 1 to prove that

} , δ<$. (4.40)

Assuming this result, we have for all ί and r,
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Exchanging α and β gives a similar bound for Wir(κ)*. Thus for
sufficiently large K, we conclude from (4.39) that,

T,δ T$ + δ T$ T^- ε(H2

Q + /) , (4.41)

which is the desired bound (4.26).
We now estimate the kernel wίr of (4.38). Note that by (4.36)

\p\>κ

^ j dpίdq\h{p-k1)h(p-q)g1(q + k2 + k3 + k^\ (4.42)
\P\>κ

^ f\P\>κ

where

is a rapidly decreasing function. Since for 0 g ε ̂  1 ,

1^ (const) μ(p-k1)
εμ(pΓεμ(k1)^

we have by (4.42)

J dp \άq b{(q] μ(q)~* h(p - k,) h(p - q) g^q + k2 + k3 + k4)
\p\>κ

\p\>κ *'

ί)
εμ(κΓε f μ(p-kί}

ε\h(p-k1)\hί(p + k2+ - +fe4)
\p\>κ

^ const μ(k1)
ε μ(κ) ~ ε g2 (fcx H ---- + k4) ,

where
^2 (fe) = ί dp μ(p)ε \h(p}\ ^(p + k), (4.44)

is a rapidly decreasing function (independent of κ\ Thus for wίr, the
symmetrization of (4.38), we have by (4.36) and (4.43)

|w ί r ( fc 1 ? . . . , fc 4 ;κ :) |
4. \ (445)

-

and this bound is independent of i and r.
In applying Lemma 3.1.4 with α = min(2, r) and β = min(2, 4 — r),

we have

Since Ec(u, 1) EA(β, 1) is a homogeneous polynomial of degree α + β
in the μ '̂s, the most favorable bounds occur with ct + β = 4 and the
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least favorable bounds occur with α -f β = 2. In any case

E ΞΞ sup μ(ki) μ(k) ^ const £c(α, 1) EA(β, 1). (4.46)

We note, as in [1, Section 2], that

Ct H Γ AV4μ(fc;)2 ^ const Eμ(ki +
(4.47)

:g const Ec(oί, 1) £A(β, 1) μ(/q H h /c4).

Thus by (4.45),

\wir(kl9...9k4;κ)\

(£c(α,l)£A(α,l))-

g const μ(κ)-ε ( X μ(fc/ ^(/cj..^^))-- (4.48)
\j=ι

Since #2(k) *s rapidly decreasing, the right side of (4.48) is square
integrable for ε < -| Thus

1 £c(α, If £A(jS, 1)

and by Lemma 3.1.4, (4.40) is valid. This completes the proof of the
lemma.

Proof of Theorem 4.1. We expand

ϊϊ(0ι) + ί&) (4.49)

+ i^2 + Γι(ft) (Ho + ̂ ^otoo)) + (̂ 0

Given ε > 0 and 6 sufficiently large, Lemma 4.2 ensures that the first
term on the right of (4.49) is greater than

(l-ε)(H2 + β2T0(g0)
2). (4.50)

Furthermore, for b sufficiently large, the proof of Theorem 3.2.5 ensures
that for 0^)8^1,

+ %b2:Q. (4.51)

Hence to prove the theorem it is sufficient to prove that for b
sufficiently large, the last three terms of (4.49) satisfy

(H0 + βT0(9o)) Ti(01) Z -ε(H0

2 + Γ,^)2) .
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We write T0 = TΌκ + δT$ + δT$. Then by Lemmas 4.3-4.5, for b
sufficiently large,

T0 to0) 71(0!) £ -β(//o2 + TiOh)2) . (4.53)

Hence we need only prove that for large b,

^b2 + (Titei) H0 + HO Tϊfch)) £ -εH0

2 . (4.54)

We expand

T,H0 + HO T, = 2HJ T,H* + [Hj, [Hj, Γ,]] .

Using (3.2.48),

Γ.HO + HO T, ̂  -εH0

2 - const + [Hj, [Hj, T,]] ,

and by [1, Theorem 2.1]

[HJ,[HJ,7;]]^-εH2- const,

which proves (4.54). Alternatively, a proof of (4.54) could be obtained
by writing

Γ,H0 + HO Γ, = 2 Jα*(fc) T,α(fc) μ(k) dk

+ J {[T,, α*(fc)] a(k) + a*(k) [T,, α(fc)]} μ(/c) rfk ,

and using the methods of the proof of Lemma 4.5.

5. Self Adjointness and a Fourth Order Estimate

In this section we study the operator

(5.1)

where α>0 and g0, g1 are spatial cutoffs satisfying (3.2.23). We prove
that M is self adjoint and is essentially self adjoint on many reasonable
domains. We can then use the spectral theorem to define operators
M", n > 2, and we prove an estimate for M4. It is sufficient to prove
self adjointness for the case α = l , since α~1g(0 and %~1g1 also satisfy
(3.2.23). In Section 6 we make special choices for α, gQ and g1.

The proof of self adjointness of M relies on the following lemma.
It concerns an operator B, relatively bounded with respect to A, with
an ,4-bound greater than one.

Lemma 5.1. Let A be essentially self adjoint on the domain
2 (A) and let B be a symmetric operator on 2 (A). If there exists a
constant a such that for all ψ e 2 (A) and all O^β^l,

\\, (5.2)
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then A + B is essentίallv self adjoint on @(A\ and its closure has
domain @(A~).

Proof. Let 0 rg y ̂  1 and a1 > a. Then ya^1 B is a Kato perturbation
of A Forψe@ι(A),β = Q,

Thus by [9, page 288], A + ya^B is essentially self adjoint on 2 (A) and
the domain of its closure is Q)(A'\ Thus by (5.2) with /? = αf1, we have
that ya^B is a Kato perturbation of A + a^B. Hence v4 -f αf1^ + ?)#
is essentially self adjoint on ®(A) and its closure has domain @(A~~).
Continuing in this manner, for any integer) satisfy ing jαf1 ^ 1, we prove
that γaϊ^B is a Kato perturbation of the essentially self adjoint
operator A+ja^B, so that A + aϊl(j + γ)B is essentially self adjoint
on Q)(A) and the domain of its closure is ζ$(A~}. By choosing the largest
such j, we have for some 0 :g y < 1,

aϊ1(j + y)=l, (5.3)

and so we establish the essential self adjoin tness of A + B.

Corollary 5.2. Let A and B be as in Lemma 5.1. Then A and
A + B have the same cores. If A is bounded from below, then A + B is
bounded from below.

Proof, if B is a Kato perturbation of A, the corollary is valid. The
proof of Lemma 5.1 exhibits A + B as a finite number of successive
Kato perturbations, and yields the corollary.

Theorem 5.3. Let α>0 and let gt = hf, ht e ̂ (jR1), h f^0, for

Q,l. Then M = aH0 + T0(gQ) + 7^) (5.4)

is self adjoint on^(//0)Π^(TI(^1)) and is essentially self adjoint onΉ

Proof. We let α = l . Let

We choose b sufficiently large so that A^L From [1, Theorem 4.1],
we known that A is self adjoint on ^(//0)n^(TI(^1)) and that A is
essentially self adjoint on #°°(.fiΓo) Let @(A} = (£CC(H0). The inequality
(5.2) is proved as follows: By Theorem 3.2.1, namely the boundedness

-of (3.2.14), | |Γ 0 (0o)V>ll ^ const || (H0 + /)v>| | - By Theorem 4.1, if ol and b
is sufficiently large,

21 Commun math Phys., Vol. 17
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Thus for ψε@(A) = # °°(/ίo) »

II ^o(#o) Ψ\\ ^ const \\(HQ + βT0(g0) + 7^) + ft)

which is (5.2). By Lemma 5.1, M is essentially self adjoint on
and M is self adjoint on

Corollary 5.4. TTie operator M of (5.3) /ιαs t/ie same cores as
operator a//0 +

Proo/. We use Corollary 5.2.

We now prove a fourth order inequality for M of (5.4). Such an
inequality was proved for the case gQ — 0 by Rosen [10].

Theorem 5.5. Let M denote the self adjoint operator aH0

+ Γ0(0o) + T\(9\) f°r α <wd 9i as above. Then Q)(M2) C &(H0N), and there
are finite constants b, c such that as forms on £^(M2) x ^(M2),

b)4. (5.5)

Proof. We will prove that @(NM)C@(NHQ) and that there are
constants b, c such that, for ψ E ̂ (JVM),

\\NH0ψ\\^c\\(N + r)(M + b ) ψ \ \ . (5.6)

The inequality of Theorem 4.1 extends to 3ι(M) x Q)(M] since by
Theorem 5.3, #°°(H0) is a core for M and the operators involved are
closable. Hence ^(M)c^(#0), so

and by (5.6) for new constants c1? c2, ^i and φ e

/)(M + fe)V||

As a first step to prove (5.6), we establish that #°°(#0) is a core for
(N + /) (M + ft), where ft is sufficiently large so that M + ft is positive.
It is sufficient to show that the range of (N + /) (M + ft) Γ#°°(H0) is dense,
for this operator has a continuous inverse. Hence the closure of its
inverse is the inverse of its closure. Let ̂ 0 denote vectors in Fock space
with a finite number of particles. By the proof of Theorem 4.1 of [1],
we have that °̂° (H 0) n ̂ 0 is a core for α/ί0 + Tλ(g^. Hence by Lemma
5.4, it is a core for M, so that
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is dense. However every vector in S>ί is an analytic vector for N, and
hence 3ιί is a core for N. We conclude that (N + Γ)^1 is dense; so
^(Ho) is a core for (N + I)(M + b).

It is sufficient to prove (5.6) for ψ belonging to a core for
(N + I)(M + b), so we show that as forms on #°°(H0) x #°°(H0)

H2

JN
2^c(M + b) (N + 1)2 (M + b). (5.8)

We note that it is sufficient to establish (5.8) for α = 1, since the constant
α may be absorbed into g0, g±, b and c. We let Γ= Γ0+ Γ, and note
that (5.8) is equivalent to showing that the following operator is positive

H2(N + 1)2 - c~lH2N2 + T(N + I)2T+ T(N+l)2 H0

+ H0(N + 1)2 T + b(H0 + T)(N + 1)2 + b(N + 1)2 (H0 + T)

+ 2b(N + 1) (H0 + T + $b) (N + /) + 2b[N, IN, Γ]] + T(N + 1)2 H0

Note that for sufficiently large b,

T(N + 1)2 T+2b(N + 1} (H0 + T + $b) (N + 1)

is a sum of positive terms. Also if c> j,

iH0

:(]V + /)2-c-1H0

!JV2^0.

Thus (5.9) is positive for large b if

0 (5.10)
and

$H$(N + 1)2 + T(N + 1)2 HO + H0(N + I)2 T + ±b2(N + 1)2 ^ 0 . (5.11)

To establish (5.10), we note that [N, 7^υ] = 0. Hence [N, IN, T]] is a
sum of Wick ordered monomials of degree two or four with ̂ 2 kernels.

(I + N)'1 [N,ΓJV, Γ]] (/ + NΓ1

is bounded and (5.10) is positive for large b. To prove (5.11), we note

/) (5.12)

+ (N + 1) [Ht [H* , TJ] (N + 1) + [[T, JV], N] H0

+ (N + 7)[[T,N],H0].
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By Lemma 4.2, we have for the first term in (5.12)

for any ε>0 and for some b1<oo. The second term in (5.12) is
bounded below by using (3.2.48)

^-£lH
2(N + I)2 - bMN + 1)2 (5.14)

for any ε > 0 and some b = b(ε).
In [1, Theorem 2.1] it is shown that for any ε>0 there is a b with

so we infer

(N + /) [//J, [#J, TJ] (N + I)^- \εH2 (N + 7)2 ~ b(N + 1)2 (5.15)

Since [T, N] contains second or fourth order Wick monomials with
5£ 2 kernels,

(/ + ΛΓΓ1 [[T, N] JV] (/ + NΓ1 - A

is a bounded operator. Thus for ψeΉ™ (H0)

^ const ||(N + ί)ψ\\ \\(N + l)H0ψ\\ (5.16)

+ const |

Finally we analyze (N + /)[[T, N], ίf0]. We write T=T 0 +T l 5 and
inspect these two terms separately. Let

where Dc and DA are respectively terms of the form (3.1.14) with
r = 2, s = 0 and with r = 0, s = 2. Each term has an J5?2 kernel. Applying
Lemma 3.1.3, we have that

H~l[D ,HQ] and [DA, HQ] H^1

are bounded forms on ^°°(H0) x <g"(H0). Thus

,

g const(||H0(N + /) ψ\\ \\Ψ\\ + \\(N + I)ψ\\ \\HoΨ\\)

\\2 + const ||(N + /)ψ||2.
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The remaining part of (N + /)[[T, AΓ),#0] contains the contribution
from [ΓI? TV]. Let

where Tlκ is defined as in (4.32)~(4.34), but the kernel (4.34) is multiplied
by the characteristic function of [kt : \kt\ ^κj = 1, 2, 3, 4}. Then
[[TIκ,]V],#0] is composed of Wick monomials with J2?2 kernels. As
in (5. 16)

(5.18)
+ const ||(Γ - '"•

Using Lemma 3.1.4, we analyze the high energy tail, δTlκ. It is a sum
of Wick monomials of degree four, and at least one variable kt is
greater than K in magnitude. By Lemma 3.1.4, and (4.47),

is a bounded operator, and an estimate of the kernels of [[<5 TI|C, JV], H0],
as in Lemma 4.5 or [1] shows that

Thus for sufficiently large TC,

H0]v)l
(5.19)

The inequalities (5.13)-(5.19) dominate the various terms in (5.12).
Added together, they show that (5.12) is bounded by

Thus (5.11) is valid for b sufficiently large and the proof of the theorem
is complete.

6. Local Lorentz Transformations

In this section we study the operator

. (6.1)

We impose certain conditions on α, g0 and 0 l5 and we then prove that M
is an infinitesimal generator of local Lorentz transformations. We
assume the relations (6.2)-(6.4).

α > 0, xgt(x) - hi(x)\ h^x) ^ 0, ht€ ^(R1) . (6.2)
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On a neighborhood of an interval / = [α, b] , we assume

α + xg0(x) = x = xgί (x) . (6.3)

For all xe R1, we assume

(x) = (α + x0oM) #ι M (6 4)

The conditions (6.2-6.4) are understood as follows. Condition (6.2)
means that M of (6.1) is an operator of the type dealt with in
Theorem 5.3. Therefore M is self adjoint and generates a one parameter
group of unitary transformations exp(iMβ).

The condition (6.3) ensures that M agrees locally with the formal
Lorentz generator of (1.1.14) and (1.1.22), and thus M is formally a
Lorentz generator for the space-time region

B! = {(x, ί) :a + \t\ < x < b - \t\} . (6.5)

The condition (6.4) is satisfied if α + xg0(x) = x is valid on the
support of gΐ. In other words the free part, αH0 + T0(x#0), is locally
correct on supp^. This restriction is necessary for technical reasons,
because our methods rely on the possibility of defining certain
multiple commutators between H(g1) and M. The condition (6.4) makes
the required commutators densely defined operators, rather than
bilinear forms. After analyzing operators M satisfying (6.4), we show that
this condition can be dropped. (See Theorem 6.16.)

We also note that (6.2) implies that / lies in the positive half line.
Of course, we can also consider

where gi(χ) = gi( — x). Thus M is a locally correct generator for
BI=B_I. Applying Theorem 5.3, we conclude that M is self adjoint, and
our proof of Theorem 6.1 is also valid for M. Thus the essential
limitation (6.2) is that we cannot use M to generate Lorentz trans-
formations inside or on the light cone. In Sections 2.1-2.2 we have
dealt with this problem, and we showed that it causes no difficulty.
Using space-time covariance, we can construct Lorentz transformations
in an arbitrary region.

Theorem 6.1. Let M satisfy conditions (6.2)-(6.4).
a) Iffe^(R2), supp/ C Bt and suppfΛβ C £/, then

) , (6.6)

(6.7)

as an equality for self adjoint operators.
b) // (x, ί) ε Bj and Λβ(x, t)eBl9 then
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in the sense of bilinear forms on <2)(M} x Q)(M\ These forms are
continuous in (x, f).

Remarks, a) In [3, Theorem 3.3.5] it is proved that for real
fe^^(R2\ φ(f) is a self adjoint operator, essentially self adjoint on a
variety of explicit domains. It is for this self adjoint operator that (6.6)
is valid.

b) Equation (6.6) entails the domain equality

) } . (6.8)

c) We write / = [α, b], and define the expanded or contracted interval

/sby / s =[f l - s , fe + s]. (6.9)

The conditions (6.2)-(6.4) are easily satisfied since we can choose gt so
that for some ε, 0 < ε < 0/3,

supp^C/ 2 ε, supp# 0C/ 3 ε (6.10)
and

= x, x e / 2 ε .

Hence (6.4) is valid. We can also let

g1(x) = ί , x e Iε
so (6.3) holds on /ε.

The Hamiltonian
(6.11)

is correct in the region Bj. We shall work with this particular choice
of the Hamiltonian.

Lemma 6.2. For M in (6.1)-(6.2) and H in (6.11)

(6.12)

-f fe)*), 9>(H) C 2((M + b)^) , (6.13)

where b is a constant sufficiently large so that H H- b and M + b are
positive.

Proof. By Theorem 5.5,

$(M2)C@(H0N) and

Also elementary estimates show that

and by Theorem 3.2.1, ^(ίf0)C^(T0(x^0)). Thus
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This proves (6.12).
It was proved in [3, Lemma 2.2.4] that

By Theorem 3.2.1, the same proof extends in a straightforward
fashion to show that

Since

the inclusions (6.13) hold.
We now introduce another local operator, defined for

P(f) = T0(/) - m2 J :φ(x)2: f(χ) dx . (6.14)

By Theorem 3.2.1 and the definition of j :φ(x)2:f(x)dx in terms of
Wick ordered monomials with ̂ 2 kernels,

®(P(/))D®(H0) (6.15)

For / real, P(f) is symmetric on @(H0).
In the next theorem, let M, given in (6.1), satisfy (6.2) and (6.4),

and let H be given by (6.11).

Theorem 6.3. a) For 1 = 2 , 3 , 4,

M:@(Hl)->@(H1-2). (6.16)

b) As operators on @

(6.17)

and as operators on

[iff, [iff, M]] = p - τ (xg0) - T, - - . (6.18)
\ UX j \ uX I

c) The roles of H and M can be interchanged in the following sense:

H\@(Ml}-+9(M1-2}, 1 = 2,3,4. (6.16')

The equality (6.17) holds on the domain ^(M3), and on

[iM, pM, H]] = T0 - ~ (xg0) + Γ, (xg,)
ax
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Remark. If condition (6.3) also holds, then the double commutator
(6.18) is formally localized outside a neighborhood of /. It is this
localization, made precise in the following, that results in M generating
Lorentz transformations in B j .

Proof. The case of (6.16) for 1 = 2 is covered by Lemma 6.2, which
also defines M as a bilinear form on &(H} x Q>(H}. From this and the
fact that P9P, and η are operators defined on @(H0N)D@(H2\ it
follows that the terms involved in (6.17) and (6.18) are defined as
bilinear forms on &(H2) x &(H2). In Lemma 6.6 we will prove that
(6.17)-(6.18) hold as bilinear forms on @(H2) x @(H2}. Assuming this,
we now prove parts a) and b) of the theorem.

Let χ, ψ e @(H3). We have

(Hχ,Mψ) = {χ9MHψ)-i(χ,P( — ( x g Q ) \ ψ ) . (6.19)
\ W* / /

Since, by Theorem 4.1 and Theorem 5.3

||(H0 + ί)Ω\\= const | |(H + b)Ω\\ (6.20)

for all Ωe@(H], it follows from Theorem 5.5 that

= const ||(Jf 0 + /) ί2|| + const ||N2Ω||
(o.zl)

c o n s t - f ,

for all Ωe@(H2). Let Ω = Hψι (6.21) yields the inequality

\(χ,MHιp)\ ^ {const \\(H + b f ψ \ \ } \\χ\\ . (6.22)

Since by Theorem 3.2.1 and (6.20)

χ,P--(xgQ)\ψQ ^ {const \\(H0 + l)ψ\\}\\χ\\
\ ax l I

^ {const \\(H + b)ιp\\}\\χ\\,

we have by (6.19) and (6.22) that

\(Hχ,Mψ)\ ^ {const \\(H + b)*ιp\\} \\χ\\ . (6.23)

Hence M\p e @((H Γ ^(H3))*) - Q)(E\ since H is essentially self adjoint
on @(H3). This proves part a) for / = 3. As a consequence, i[H, M~] is an
operator on @(H3) and by (6.19),

for all χ, ip e @(H3). This proves (6.17), since the χ's are dense.
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The proof of (6.16) for the case 1 = 4 and the proof of (6.18) are
similar. Let χ, ψ e 2>(H*). From (6.16) with 1 = 2,3, and the assumption
that (6.18) is valid as a bilinear form, we have

(H2χ,Mψ)= -(χ,MH2ψ) + 2(Hχ,MHψ)

-(χ,[/H,ΓjH,M]]φ)

= -(χ,MH2ψ) + 2(χ,HMHψ) (6.24)

By (6.23), (6.21) and the inequality

Ifc {P - T,} ιp)\ ^ {const(||(#0 + /) v>|| + \\(N2 + 1) ιp\\}} \\χ\\

= {const(||(H + b) ψ\\ + \\(H + b)2 ψ\\)} \\χ\\ ,

which follows from Theorem 5.5, we have from (6.24) the inequality

|^ {const ||(ff + b)4 ψ\\} \\χ\\ .

Hence Mψ e((H2 Γ ̂ (H4))*)-^(H2), proving (6.16) for the case 1 = 4.
Thus [iH, [ιH, M]] is an operator defined on ^(//4), and we find from
(6.24) that (6.18) holds.

The proof of parts a) and b) of the theorem is thus completed when
we establish the equalities (6.17)-(6.18) in the sense of bilinear forms
on &(H3) x @(H3) and @(H4) x 9(H4} respectively.

The proof of part c) of the theorem is similar. For example, we
replace the inequality (6.20) by

0 + /) Ω|| ^ const ||(M + b) Ω\\ (6.25)

for all Ω e @(M). This also follows from Theorem 4.1 and Theorem 5.3.
By Theorem 5.5, we replace (6.21) with

^ const \\(M + b)2Ω\\ .

To complete the proof of part c) of the theorem, we need to establish
(6.17) as a bilinear form on ^(M3) x ^(M3) and (6.18') as a form on

x

Lemma 6.4. As bilinear forms on @(H0) x .

A f \
(6.26)

and

[jToίAPfoH-Pl/^l-ToU^-l, (6.27)
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for /, g e ^(jR1). These equalities also hold iff = 1 or g ~ 1. For instance

(6.27')

Since &(H0) D ̂ (H)u^(M), ί/zβ equalities hold as forms on 2(H) x

Proo/. The operators Γ0, P, and P involved in (6.26)-(6.27) are
closable (symmetric), defined on @(H0) and bounded as operators
relative to H0 + /. Hence (6.26)-(6.27) are defined as forms on

0) x @(H0) and it suffices to establish equality on a core for HQ, e.g. on

9 - {φ e ̂  : φ(π) e ̂ (Rn), tp(n) - 0 for n large} . (6.28)

In momentum space, elementary calculations on 3) x 2 yield the
equalities. For instance

(6.29)

By a more length calculation,

[ί TW), ^"(fif)] + P2Ϊ2)(/), ϊ?2)(flf)] = P(1)(/0' - 9f)

The remaining calculations are similar.

Lemma 6.5. As bilinear forms on 3$(H0N) x $>(H0N),

= -4λ J/(x) h(x) : φ(x)3 π(x) : dx (6.30)
and

[IT, (h), P(/)] = - 7 — (fh) . (6.31)

These equalities also hold if f= 1.
7ί /0//OW5 by Theorem 5.5 that @(HQN) x ^(H0N)^^(H2) x

x ^(M2); so (6.30)-(6.31) Λo/d on @(H2)x@(H2) and on
x 2)(M2).

Proof. The operators T0, T! and P involved in (6.30)-(6.31) are
closable, defined on @(H0N), and are bounded as operators relative to
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(H0N + I). Furthermore it is easy to check by Lemma 3.1.3 that the
right hand side of (6.30) is a bilinear form on Q>(HQN} x ®(H0N), and

that (/ + H0Λ/Γ l ί : φ3 (x) π(x) : (fh) (x) dx(I + H^Γ1

is a bounded operator. Hence each term in (6.30)-(6.31) is a bilinear
form on @(H0N) x <$(H0N). It suffices to establish equality on 2 x ®,
as in the proof of Lemma 6.4, since ̂  is a core for H0N. On the domain
2 x ®, the equalities (6.30)-(6.31) are seen to hold by direct computation
in momentum space — as in the proof of the previous lemma.

Lemma 6.6. The equalities (6.17), (6.18) and (6.18') hold as bilinear
forms on &(H2) x @(H2) and on &(M2) x @(M2). (We are assuming
the conditions (6.2) and (6 A).)

Proof. As bilinear forms on @(H2)x@(H2) or

+ {[ϊH0, T,(x^)] + [i 71(00, ̂ ^o] +

To compute these commutators we apply Lemmas 6.4 and 6.5.

+ 4/1 J {x^i(x) - α^f^x) - x00(x) ̂ iW) : Φ3 W π(x) :

by the condition (6.4). Hence (6.17) holds on @(H2) x 9(H2) and on
^(M2) x ^(M2).

Similarly, using Lemmas 6.4 and 6.5, we compute in the sense of
bilinear forms on @(H2) x 9(H2} or on ^(M2) x

d . Λl Γ _ _/ a
-(χβo.

By condition (6.4),

and x — α — xgf 0 W = 0 for x e supp^i hence
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This proves (6.18). Similarly

iT0(xg0),

which simplifies to (6.18') by condition (6.4).
Again let M and H be given by (6.1) and (6.11) and assume that (6.2)

and (6.4) hold:

Theorem 6.7. // n^2,@(Hn) is a core for M and @(M") is a
core for H.

Proof. 9(H2}t®(M) by Lemma 6.2. We prove first that &(H2) is
a core for M. Since &>(M2} is a core for M, it suffices to show that

3f((M Γ @(H2))~] 3 ^(M2) . (6.32)

We use the smoothing operator, for j = 1 , 2, 3, . . . ,

(6.33)

which has the properties

Ej:@(Hl)-+@(Hl + 1 ) , (6.34)

\\Ej\\ ^l, (6.35)

st. lim £; = / , (6.36)
and on

Let ιpe@(M2}. Since ^(M2)C^(H), Ejψe@(H2), by (6.34). Since
Ejψ-+ψ, the desired inclusion (6.32) would follow from

(6.37)

We now prove (o.J /) ίor ail φ e
First we show that for Ω e

-j~ (xg0)] EjΩ . (6.38)
dx I
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Each term in (6.38) is defined since 2(H2)C2>(M\ and P is defined on
2>(H}C9(H0). We now compute [£,-, M] on 9(H2). If ΩeS>(H2),

[£,, M] Ω = £,£7 l [£,, M] £7 ' EjΩ

where we have used Theorem 6.3, part a) and (6.17). Hence we have
established (6.38) on the domain 9(H2\ Let tpe^(M2),
Since M is self adjoint on @(M),

(EjMΩ, ψ) = (M Ω, Ejψ) - (Ω,
and

(MEjΩ9ψ) = (Ω9
Thus

(Ω, [M, £J φ) = ([£,., M]Ω,

Since Q}(H2} is dense,

- - Ef - (xg0) EjΨ , (6.39)
J

and (6.38) holds on
The convergence (6.37) now follows. By (6.36),

and

^ const — \\(H + b)Ejψ\\

= const— \\Ej(H + b)ψ\\

^ const— \\(H + b)ψ\\
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We have used the fact that φ e 2 (M2) C 2(H) C ®(H0) Hence by (6.39),

which proves (6.37) and establishes that @(H2) is a core for M.
The inequality (6.21) and the fact that &(Hn\ for n^2, is a core

for // 2 shows that

0 ((M Γ ® (#"))-)

Since Qι(H2} is a core, it follows that @(Hn) is also a core for M.
The proof that @(Mn) is a core for H is similar, and follows the

above proof by interchanging H with M.
In the following, we assume that M and H are given by (6.1) and

(6.11), and that (6.2), (6.3) and (6.4) hold.

Theorem 6.8. Let fe^(R2) have support in #/. Then φ(f) is
defined on

and, as an operator equality on £$

[f M, φ(/)] = - φ t + χ - . (6.40)

Remark. In [3, Section 3] it is shown, for / real, that φ(f) is
essentially self adjoint on &(Hn) for any rc^, and

φ(f) : ®((# + b)n)-+@((H + b)n~*} (6.41)

Proof. The terms in (6.40) are operators on ^(H3) since φ(f)
C ^(H2) C 2(M) and M® (H 3) C ®(H) C ® (φ(/)) by (6.41) and Theorem
6.3. In Lemma 6.14 we will establish that (6.40) holds on the domain
@(H5). Assuming this, we now prove the theorem.

Let φ e ^(M2). By Lemma 6.2, ^(M2) C ®(H); by (6.41), ψ e 2>(φ(f)).
First, we show that

(6.42)

Note that Mψe@(Af)C@((H + b)*)c@(φ(f)) by Lemma 6.2 and
(6.41). Also

Hence, by the assumption that (6.40) holds on Qι(H5}, we have for all

) = fc φ(/) Mφ) + i χ, φ ί + x - φ . (6.43)
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So
φ(f)ψE®((M

By Theorem 6.7, &(H5) is a core for M; so we have (6.42). Next we can
use (6.42) to rewrite (6.43) as

(χ, [M, φ(/)] ψ) = χ, i φ
\

Since £$(H5} is dense, this implies

proving (6.40) on the stated domain.
The next six lemmas complete the proof of Theorem 6.8 by

establishing (6.40) on the domain @(H5). We then show that Theorem 6.1
follows from Theorem 6.8.

We introduce the self adjoint operator

~ i H t i H t

= e~iHtMe

Since eίHt leaves @(Hn] invariant, we have by Lemmas 6.2 and
Theorem 6.3 that

and for 1 = 2, 3, 4
M (ί) : @(Hl}-+@(Hl~2) . (6.44)

Let fε^(R2} have support in B j . By (6.41) and (6.44),
φ(f)$(H3)C@(H2)C@(M(t)) and M(t}@(H3}C@(H)C@(φ(f)). More
generally, we can replace φ(f) by eiH*φ(f}e~iHt. Thus for ψ
and /E^(R3} with support in #/? we define the function

= (ψ,ίίM(t},φ(f)-]ψ)

= MO, DM, eίH W) <"' ίH'MO) ,
where

ψ(t) = eimιp . (6.46)

Let / = [α, fc], lr = [a — r, b + r] and let BIr be the causal shadow of /,..
We define

Hence the points of Bs have small times, and Bs translated by times
less than |s| lies in Bt.
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Lemma 6.9. // ψe3$(H5\ F(t) in (6.45) is twice continuously
differ entiable. If f has compact support in Bs, then for \t\ ̂  |s|,

F"(t) = 0 . (6.48)

Proof. We first prove the differentiability of F(ί). Let Δn(ε) be the
difference quotient for the nih derivative of eiHt at ί = 0. For instance,

Al(ε)=~(eiHε-I).
o

For φ e 2(H"\ and m + j Ξ n, as ε -> 0,

\\Hm{Δj(ε) - (i/OO ψ\\ = || (Δj(ε) - (ίHy} Hmψ\\ -»0 .

Hence, for ψe@(H"),Mellitψ is n — 2 times differentiable, since for

|| g \\{Aj(ε)-(iHγ}(H + b)2ψ\\^Q .

The function F(f) has the form

F(ί) = i(MeίH'ψ, eίmφ(f) ψ) - ί(eimφ(f) ψ, Meίm φ) .

For ψeSι(H5),φ(f)ψe£%(H4') and F(t) is three times continuously
differentiable.

~jt = (MHψ(t\ eiH'φ(f) ψ) - (Mψ(t), Heimφ(f) ψ)

- (eίl"φ(f) φ, HMψ(t)) + (eimφ(f) ψ, MH ψ(t)) . (6A9)

We now rearrange the terms in (6.49), using the domain relations of
Theorem 6.3. a)

dF
= (ψ, \H, M (ί)] φ(f) ψ) - (ψ(f) Ψ, [H, M(ί)] ψ)

(Xg0ήeίH'φ(f)ψ

by (6.17). We differentiate (6.50) as above, and writing P for

P [—:— (xg0] we obtain
\dx . ]

P'
d

2 \ / Λ \ ι N(6-51)

" α ' U χ
22 Commun. math. Phys , Vol 17
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We note that each term in (6.51) is defined. For instance,

HPeiHtφ(f)ψ

is defined since, for φ eQ)(H\ eίmφ(f)ψG@(H4), and by Theorem 6.3,

PeiHtφ(f) ψ = pΉ, M] eimφ(f) ip.

Both HM and MHmap^(#4) into @(H), so HPeίHtφ(f)ιp is defined.

H,P(—-(xg 0 )}\ is defined on Q)(E\ andLikewise the commutator

eίHtφ(f)ψ belongs to that domain.
Now, assuming that the support of / is contained in Bs and

|ί| ̂  s, we must show that F"(t) = 0.
The proof is based on the locality of

which is symmetric on 3>(H0N). By (6.3)

d2 d

in a neighborhood of /. We prove that S commutes with the von Neu-
mann algebra

W(I] = {expίiφίΛi) + iπ(Λ2)) : Λ f - ̂  e ^(R1), supp/z, C /}"

generated by the spectral projections of the time zero fields J φ(x) h^ (x) dx
and J π(x) h2(x) dx, ht e &>(&) , supp/ιt C /. We show that

[S, W(ΐ)~] 3ι(H2) = 0 . (6.52)

To this end, we modify [1, Lemma 3.3] as follows: Let 2 be the
domain (6.28) of well-behaved vectors. If χ1? χ2 e 2, a direct momentum
space computation (e.g. as in the proof of Lemma 6.4) shows that

) + π(h2))"χ2) = ((φfa) + n(h2))"Xl, Sχ2] . (6.53)

An easy computation yields

for constants A and B depending on χ e <2). Thus, the χ e Q) are entire
vectors for the operator (φ(h1) + π(h2)\ and the sum

= Σ ^expθV^ + MM^ (6.54)
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converges strongly. Now, we multiply (6.53) by f (n!)"1 and sum over n
using the convergence (6.54) to obtain

for χ f 6®. This equality extends to ;fce®(if0N) since 3) is a core for
H0N, S is defined on @(H0N) and

const |

Hence for χ e @(H0N), we have proved that 17 χ e ®(S*) and

We now prove that Uχ e @(H0N) if χ e ®(ίf 0N), so that

Sl7χ=ί/Sχ, (6.55)

since 5 is symmetric on 2(HQN). We give @(H0N} a norm,

the corresponding scalar product makes @(HQN) a Hubert space,
^L. We now prove that φ(hi) + π(h2) = B generates a one parameter

gΓOUP
ί/(α) - exp(ιαJB) - exp {ίαOpfo) + π(Λ2))}

on ̂  . This is equivalent to proving that

HQNΓ1 (6.56)

generates a one parameter group on Fock space. Since B is essentially
self adjoint on ,̂ and on this domain

B = B+ [NJFίo> B] (1 + HQN 1

= B + bounded operator ,

by Lemma 3.1.3, we infer that B Γ^ is a bounded perturbation of an
essentially self adjoint operator. Hence (B Γ^)~ generates a one parameter
group on Fock space, and

B
has a closure in ̂  that generates a one parameter group on ̂ .
Since the topology of ̂  is stronger than that of ̂ , the closure of
J B r ί J + JToJV)"1^ in ̂  is a restriction of £~ in & and the one
parameter group in ̂  is a restriction of the one parameter group
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generated by B~ in ̂ . This establishes that

U:@(H0N)-*®(H0N) (6.57)
and (6.55).

By passing to strong limits of linear combinations of such ί/'s, we
obtain (6.52) (on restricting to the domain @(H2)C@(H0N) via
Theorem 5.5). This makes precise the statement that S is localized
outside /.

We note that for each ί l 5 |ίj :g |s|, the spectral projections of

i φ ( x ) f ( x 9 t ί ) d x

belong to FF(/_|S|), where I_\s\ is the interior of /_ | s j ,

L}s}={x:(x,tι)eBs} = {x:a + \s\<x<b-\s\}.

The support o f / is contained in βs; hence the spectral projections of

H(t + tί} (6.58)

belong to W(ϊ]t]_]sl) [1,3,11]. For \t\<.\s\J]t]_}slClι so the spectral
projections of (6.58) belong to W(I).

We now can use the locality property (6.52) of S. For
ψ E 2(H 3), we have

and for φ(f) = J φ(χ, ί)/(x, ήdxdt, by (6.41)

eίHtφ(f)e-iHtιpe@(H2}. (6.59)

Thus from (6.52) and the localization of (6.58),

(Sχ9 eίH(t+t^ f φ(x) /(x, O dx e~i

for |ί|^|s| and supp/C^ s. By [3, Theorem 3.2.3] we can integrate
over t1 to obtain

(Sχ, eiHtψ(f) e-
iHtφ) = ( e i H ' ψ ( f ) e-ίHtχ, Sψ)

= (χ,Seίl"φ(f)e'ίH'ψ)

where the last inequality follows by (6.59) and the fact that S is a
symmetric operator on ^(H0N)^^(H2). From (6.60) we infer that

E ®((eiHtφ(f) e~im Γ
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and hence that

since by [3, Theorem 3.3.5], @(H2) is a core for φ(f). Hence from (6.60)
we conclude

eimφ(f) e~iHtSιp = SeiHtφ(f) e~imιp

for |ί| ̂  s|, supp / C Bs, and φ 6 2>(H 3) .
We now apply this relation to (6.51). In that case ψ(t) e 2(H 5

so
F'(f) = 0, for |ί|^|s|.

Lemma 6.10. Lei /e^(/?2) Λαue support in Bs. Then on @(H5) we
have the operator equality

Γj M(s), <?(/)] = [iM, φ(f)-] - s ί? - (xg0) , φ(f . (6.61)

Proof. Each of the six terms in (6.61) is an operator defined
on ^(//5), since φ(/) : 2(Hl)-^2(Hl'l\ M(s): @(Hl)->@(H1-2) for

/ = 2, 3, 4, and (by Theorem 6.3) P -- (*00) :

). Then

for F defined in (6.45). By Lemma 6.9, F has two derivatives. Hence
by Taylor's theorem with remainder,

' _ ? ! ' '

for some £, |ί| ^ |s|. Furthermore, by Lemma 6.9,

F(s) = F(0) + sF(0).
By definition,

and by (6.50),

F(0)=-i(v>,

This proves the equality

(ψ9 [iM(s)9 φ(f)~] ψ) = (φ, pM, φ(/)] φ) - 5 (φ, ίP j-f- (x^0)l <?(/)! V ^ ) ,

proving (6.61) by polarization and the density of 3$(H5).

/

5\
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The next step in the proof of Theorem 6.8 is to pass to the sharp time
limit of Lemma 6.10. We want to choose a sequence of functions
/„ e £f(R2) which pick out a time zero contribution in the limit.

Let
A ( f 9 t ) = S φ ( x ) f ( x 9 t ) d x (6.62)

and

9 t ) = ί π ( x ) f ( x 9 t ) d x 9 (6.63)

for φ and π the canonical time-zero fields. For real fe^(R2\ with
compact support, A(f9 1) and B(f9 1) are essentially self adjoint on
®((H + &)*).

Let /e %o(Bj) and let fn(x, t) e ^(R2) be a sequence of functions of
the form

f(x,s)δa(t)

with support in Bs and converging in the w* topology of measures to
f ( x 9 s)δ(t) as n->oo. For tpe^(H5), the vectors

M(s) φ, Mψ9 P

as in the proof of Lemma 6.10. Furthermore by [3, Eq. (3.2.8)-(3.2.9)]
the bilinear form φ(x, t) for (x, ί)eJ57 determines a bounded operator

bΓ* (6.64)

which is continuous in (x, t).

Lemma 6.11. Let fe^(R2) have support in BP Then, in the
sense of bilinear forms on 2)(H5)x

[iM(s)9 A(f9 s)] - [iM, A(f9 s)-] - s[iP9 A(f9 5)] (6.65)
where

(6.66)

Proof. Choose a w*-convergent sequence of measures fn

as above. Consider, for example, the first term in (6.61) as a bilinear form
on @(H5) x ^(H5). Let φ, χ e

- J (- ίM(s) χ, φ(x9 1) ψ) /(x, 5) δn(t) dx at (6.67)

+ ί (φ (x, t) I, iM(s) ψ) /(x, s) δn(t) dx at ,
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where on the right hand side φ(x, ί) is considered as a bilinear form on
9((H + b)*)x9((H + b)τ) continuous in (x, ί) by (6.64). Thus, by the
convergence of the /„, the terms on the right hand side of (6.67)
converge as n -» oo to

J (- zM(s) χ, φ(x) ψ) /(x, 5) dx + J (φ(x) χ, iM(s) ψ) /(x, s) dx .

This is the left side of (6.65), evaluated on χ x ψ. The other terms of
(6.65) are similarly obtained by passing to the same limit in (6.61).

In Lemmas 6.12-6.14 let fe^(Bj).

Lemma 6.12. As an equality of bilinear forms on Q)(H] x

(6.68)

where P is defined in (6.66).

Proof. Let 2 be the domain (6.28) of smooth vectors. We prove
(6.68) in the sense of bilinear forms on 2 x Q) by direct computation in
momentum space (e.g. as in the proof of Lemma 6.4):

which agrees with (6.68) because xg0 = x — α on a neighborhood of /,
while /(x, ί) vanishes for xφl.

Note that 2 is a core for H0 and

\(Pψ, A(f, s) ψ)\ £ const ||(H0 + /) ιp\\2 ,

for all ψe&(H0). Hence the equality (6.68) extends from 3) x 2ι to
x ®(ΉΌ)> since the operators involved are closable. Since

0), the lemma is proved.

Lemma 6.13. As an equality of bilinear forms on @(H2} x Q)

pM, A(f, s)-] = [iH9 A(xf9 s)-] = B(xf> s) . (6.69)

Proof. The proof is similar to the proof of Lemma 6.12.

Lemma 6.14. ,4s an operator equality on

pM,
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Proof. We first establish (6.70) as an equality of bilinear forms on
2(H5) x @(H5). Let ψ e 9(H5\ By Lemmas (6.11)-(6.13),

(ψ, [iM(s)9 A(f9 s)] ψ) = (ψ9 B(xf9 s)ιp)-s \w9 A ί— 9s\ψ\.

Substituting e~lHsψ for φ, we obtain

(ιp9 [iM, eiίίsA(f, s) e'ίHs] φ)
V J ΔΨ) (6.71)

= ke ί f f s |B(x/,s)-A(s-^,s)[e- ίHs

V)

But [3, Theorem 3.2.4] states that

$eiHtπ(x)e-imf(x,t)dxdt =

on @(H2) x @(H2}. Using this, we integrate (6.71) over s to obtain

(φ, [ΐM,φ(/)]φ)= - ψ, φ (ί—- +x-^- φ . (6.72)

Since Mφ(/), φ(/)M, and φ ί-^- +x-^- are operators on
\ σx d ί /

the operator equality (6.70) follows via polarization and the density of
@(H5). This completes the proof of Lemma 6.14, and hence it completes
the proof of Theorem 6.8.

We now proceed to use Theorem 6.8 to prove Theorem 6.1. We need
a simple uniqueness result for partial differential equations. In the follow-

ing proposition, we assume that F(β, x, t) and —r- F(j8, x, ί) are con-

tinuous in (β, x, ί), where the partial derivative exists for each (x, ί).

Proposition 6.15. Let BcR2 and for all f e #£(«),

3F
J — 08, x, ί) /(x, ί) dx dt = - j F(j8, x, ί) {x/, + tfx} dx dt. (6.73)

Then for all (β, x, ί) SMC/I fhαf /ty/3(x, ί) e β /or 0 ̂  γ ̂  1,

AO) (6?4)

= F(0, x coshjS +1 sinhjβ, x sinhjβ + ί coshβ).

Proof. Clearly (6.74) is a solution to (6.73). Thus we need only prove
uniqueness, and it is sufficient to prove uniqueness for the case
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F(0, x, ί) = 0. Write A = \x — — h t -r— > for convenience, and note that
[ dt dx\

-jp$F(β'9x9t)f(Λβ,(x9t))dxdt

= f rjjr (β'> x, 0 f(M*> 0) + F(β'9 x, ί) Af(Λβ,(x, f)) dx dt (6.75)

-0

by (6.73), provided f(Λβ,(x, 0) has support in β. Let

*ι= D Λ-/β.

), then (6.75) holds for all β' between 0 and β. So,

S F ( β 9 x 9 t ) f ( Λ β ( x 9 t ) ) d x d t = 0

for all / £ ̂ (Bi). Thus, in the sense of distributions,

FC8,x,f) = 0, (x , f )e£i . (6.76)

Since F is continuous, (6.76) holds everywhere in Bί. This establishes
uniqueness, and completes the proof of the proposition.

Proof of Theorem 6.1. Let ψ e ̂ (M2), let

F(j8, x, ί) - (e~ ίM/V, φ(x, ί) e-ίMβψ)

for all (j8, x, t) in jR3; and for / 6 ^(K2), let

= S F ( β 9 x 9 t ) f ( x 9 t ) d x d t .

By [3, Lemma 3.2.1], φ(x, ί) is a bilinear form defined on Q)((H +
x®((H + &)*), continuous in (x, t)εR2. Since @(M)C@((H + b)*) by
Lemma 6.2, F(jS, x, ί) is well defined and continuous in (x, t). Further-
more, F(β9 x, ί) is continuously differentiable in /?,

/Λ T-I

(β9 x, ί) - - (e-iMίiMv, φ(x, ί) e-ίM/?φ)

- (e-ίMβψ, φ(x, t) e~iMβίMψ) ,

which is also continuous in (x, t). One checks in the usual way that
this is the derivative of F. For example,

- {(H + bΓ*φ(x, t) (H + bΓ*} (H + b)-e-iM*ip
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exists in the strong topology since the operator (H + b)~*φ(x,t)(H + b)~*
is bounded, since ||(H 4- b)*ψ\\ ^ const \\(M + b)ψ \\ by Lemma 6.2, and
since e~iMβMψ is strongly differentiable with derivative —e~iMβiM2\p.

To show that the two definitions above for F(β, f) agree, we use
(6.41) and [3, Theorem 3.2.3]. By the usual argument,

(β, /) = (e~ίM

SF

By Theorem 6.8, we have that

dβ ^'J/ \ "'^\ dx dt,

8 3 (6J8)

provided that

supp/Cβ;. (6.79)

Hence, we conclude from Proposition 6.15 that

,x,t) = F(0,Λβ(x,t)), (6.80)

provided

U Λ ή e B , . (6.81)

That is, if (6.81) holds,

eiMPφ(x, t) e-iMP = φ(Λβ(x, ί)) (6.82)

in the sense of bilinear forms on @(M2) x @(M2). This equality
extends by closure to &(M)x@(M), since &(M)c9((H+b)*) by
Lemma 6.2, and

, t) e~iM^ip)\ = \(ψ, φ(Λβ(x, t)) ιp)\

Furthermore &(M2) is a core for H, by Theorem 6.7, and hence a core
for (H + b)*. Thus (6.82) extends to &((H + b)*)x®((H + b)*), and on
this domain we also have continuity of the form in (x, f).

We note that it is necessary to assume that

U Λyβ(x9t)eBj.
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However for the regions BI of (6.5), this is a consequence of

(x,t)eBl9 Λβ(x,t)eBι.

This completes the proof of Theorem 6.1, part b).
Finally, we prove the operator equality

if fe^(R2\ supp/usupp/^CBj. By Lemma 6.2, φ(f) and φ(fAβ)
are defined on ^(M2); by integrating (6.82) against /(x, ί), we prove
that (6.83) holds on 3)(M2\ Furthermore, for

)ψ. (6.84)
Since

\\φ(fAβ)V\\^ const ||(H + &)*vll

and ^(M2) is a core for # by Theorem 6.7, the equality (6.83) extends
by closure to 0(H) and (6.84) holds for ιpe@(H). Since ®(/f) is a core
for φ(fAβ) by [3, Theorem 3.3.5], we conclude that (6.83) extends by
closure to @(φ(fAβ)) and (6.84) holds for ψe@(φ(fAβ)). Thus

Similarly,

This proves (6.83) as an equality between selfadjoint operators,
completing the proof of Theorem 6.1.

Theorem 6.1 is sufficient for the proof of Lorentz co variance of the
λ(φ4)2 model of Section 2. We complete this section, however, with the
observation that the condition (6.4) is not necessary.

Theorem 6.16. // M satisfies only the conditions (6.2) and (6.3), the
conclusions of Theorem 6.1 still hold.

Proof. By (6.3) there is an ε > 0 so that

for xeI2ε=[a — 2ε,b + 2έ]. Let ̂  be a °̂° function so that χgί = hι
for hί'£Q,he&'9gί(x) = Q for xφI2ε, and gl(x)=ί for xe/ ε . Then
conditions (6.2)-(6.4) hold for the pair g0 and 0t and

is non-zero only in the complement of Iε. Let

M = <*Ho + T0(xg0)+T(

= M-M=Tl(xδg1).
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By Theorem 5.3, both M and M are essentially self-adjoint on
M satisfies the conditions of Theorem 6.1. It is known that δM is also
essentially self-adjoint on this domain (cf. [1, Theorem 3.1]). By
[1, Theorem 3.2], the spectral projections of δM commute with
for supp/CBj. Hence if £ is a spectral projection of φ(/),

eiMβ ge-ίMβ _ ftmίeiMβlneiδMβln\n gfa-idM β/n e~iM β/n\n

~ •

where we use the fact that

U
O ^ y ^ 1if

supp/usupp/^CB/.

Thus M and M generate the same transformations on the spectral
projections of φ(/), if supp/usupp/^ C #/.

By Lemma 6.2, Theorem 5.3, and [3, Lemma 2.24 and Theorem 3.23],

So

Since we can express φ(f) as a strong limit of an integral over its
spectral projections on its domain ^(φ(/)), we obtain, on

eίMβφ(f) e'iMβ = eiAβφ(f) e~iAβ

= φ(fΛβ) >

by Theorem 6.1. Since @(H2) is a core for φ(fΛβ), this equality extends
by closure to the domain @(φ(fΛβ)) Thus, part a) of Theorem 6.1 holds
for M satisfying (6.2)-(6.3). Part b) of Theorem 6.1 follows from this
since the form φ(x, ί) is continuous in (x, ί) on 2(M) x 2(M) and for

(φ, φ(f) ψ) = J (φ, φ(x, ί) φ) /(x, 0 dx at .
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