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Abstract Within the context of simple partial wave models for elastic scattering the
problem of uniformizing the partial wave amplitude and classifying its Riemann surface
is studied. Starting with the analytic continuation of the amplitude an analysis of the
Riemann surface is made through its group of covering transformations relative to a
simpler base surface. A model based on the Yukawa potential is studied in this manner and
the Riemann surface of interest is found to be the universal covering surface of the thrice
punctured sphere. The uniformization of the amplitude can be done explicitly in this case
by use of the elliptic modular function. In terms of the uniformizing variable, the original
discontinuity relations for the amplitude then reduce to functional equations involving
elements of the modular group.

I. Introduction

In high energy physics single variable analyticity is of particular
usefulness in the study of partial wave amplitudes for four-point functions
where the energy is the only complex variable of interest. Through
partial wave dispersion relations and the N/D technique, single variable
analyticity gives a method of calculating simple partial wave models
which can aid the qualitative understanding of many processes. The
simplest such models use two-body elastic unitarity together with some
assumed left hand cut from which information one must construct a
physically sensible amplitude.

Because the partial wave amplitudes are multivalued analytic
functions, the analyticity is most succinctly expressed through the
structure of the underlying abstract Riemann surface on which the
amplitude function is defined. Indeed, in the case of a partial wave model,
we may separate the problem of constructing the amplitude from that
of studying its Riemann surface. In this paper we will study a particular
partial wave model based on the Yukawa potential showing how the
classical results of the theory of Riemann surfaces enable one to perform
a detailed analysis of the particular surface underlying the model. In
this model we will find that the Riemann surface of the amplitude is the
universal covering surface of a sphere with three points removed, and
hence that the amplitude is uniformized by means of the elliptic modular
function.
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We will require only those classical results of Riemann surface theory
embodied in the uniformization theorem and in the notion of covering
surfaces of a Riemann surface. These results are expounded in detail in
several excellent books where full explanations may be found [1-4].
Much of our notation is borrowed from the work by Springer [2].

II. Analytic Continuation of the Amplitude and the Realization
of its Riemann Surface

Let us consider elastic two-body scattering. A partial wave amplitude
for this process is a multivalued analytic function g(E) defined in a cut
energy plane (physical sheet) where it has left and right hand cuts on the
real energy axis as in Fig. 1. It is further assumed to be real analytic,
g(E) = g(E\ and meromorphic in the physical sheet.

A partial wave model results if we specify the discontinuity of g(E)
across each of its two cuts and then construct an admissible amplitude
from this information. The right hand unitary cut occurs at energies
where physical scattering takes place. Assuming elastic unitarity or
using some inelasticity factor we can write the right hand discontinuity as

= g(E + ) - g(E_] = σ(E) \g(E)\2 . (1)

The left hand force cut has discontinuity

Όiscg(E) = g(E+] -g(E.) = ρ(E) . (2)

The basic specification of a model then consists of giving the functions
σ(E) and ρ(E).

Putting aside the problem of constructing g(E\ let us ask on what
Riemann surface it is to be defined. If we were given such a function
g(E) satisfying the conditions above, the procedure would be clear.
Namely, starting from some function element (a convergent power
series for g(E) about some point E) in the physical sheet, we would
analytically continue it through both cuts along all possible continuous
curves in the E-plane [2]. In this way we would obtain a collection of
analytically continued function elements and the ordered pairs (£,#(£)),

E - p l a n e

+
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where g(E) is some continued function element, would provide a standard
realization of the Riemann surface desired [2].

The first question then is how to analytically continue a given g(E)
through its cuts. The answer is well-known [5] and may be stated in the
following manner, where we denote the function elements of g(E) in the
physical sheet by gp(E). Assuming gp(E) given in the physical sheet, it can
be analytically continued through a point E0 on the left hand cut if and
only if, inside some small circle about £0, the discontinuity function
ρ(E) itself is analytic. The desired continuation, inside that assumed
circle, is

= gp(E)±ρ(E) (3)

where gp(E] is a function element of g(E) at point E in the physical sheet,
g(E) is the function element at point £ on a sheet reached by going
through the left hand cut at £0 either from above ( -f ) or below ( — ), and
ρ(E) is the function element arising from the given left hand discon-
tinuity function at the point £0. We may continue through the right
hand cut by applying the above result to the real analytic function

- for which
9(E)

Disc— I— = -σ(£). (4)

on the right hand cut. This result is stated here only for continuation
through an infinitesimal neighborhood of a point EQ lying on one of the
two cuts. To view the Riemann surface of g(E) globally we must do
more than this, namely we must continue the given function elements
gp(E] over all continuous curves in the £-plane. In general, g(E) will
possess a countable isolated set of singular function elements where it
may have poles or algebraic branch points [2]. However, in principle we
can always avoid these by small detours and thus carry out the con-
tinuation entirely by means of the regular function elements. Before
stating the result of this global continuation let us first rewrite the result
in Eq. (3) in a different manner.

For a complex variable x, a linear fractional transformation Tx is
defined by

ax + b
Tx =

ex -f d

where α, b, c, d are complex numbers normalized by the condition
ad — be — 1. The transformation T may be represented by the uni-

modular matrix \ where the same transformation T is specified
\c d
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also by the matrix . The composition of two such trans-
\-c -d]

formations then corresponds simply to multiplication of the cor-
responding matrices. Now the result of the analytic continuation (3)
may be simply expressed as such a linear fractional transformation:

g(E) = gp(E) ± ρ(E) = L±(E) gp(E), (5 a)

i r (5b)

(5c)

Here L±(E) denotes a two-by-two unimodular matrix whose entries
are function elements at the point E rather than just complex numbers.
Eq. (5) expresses the continuation through the cut as a linear fractional
transformation of the physical sheet function element gp(E). Combining
(3) and (4), the continuation through the right hand cut is expressed as

= R±(E)g*(E)9 (6 a)

9 (6c)

where again R±(E) is a unimodular matrix of function elements. The
± subscripts on L and R refer to continuing through the respective cuts
from above (+) or below (—).

To continue globally we start at some point E in the physical sheet
with a given function element gp(E) and then continue it along some
continuous curve c. Each time the path c crosses a cut gp(E) undergoes
a linear fractional transformation as in Eq. (5) or (6). After crossing the
cuts several times the continued function element g(E) is expressed, by a
succession of transformations, in terms of the physical sheet function
element gp(E] and in terms of certain matrices of analytically continued
function elements of ρ(E) and σ(E). At the end of the continuation along
c we reach a function element

g ( E ) = T ι ( E ) T 2 ( E ) . . . T n ( E ) g * ( E ) (7)

where each T}(E) is one of the transformations L±(E\ R±(E). In this
expression the order in which the 7}(E) occur expresses the order in
which the cuts have been crossed on n occassions. Further, TJ(E) is a
matrix of function elements each of which has itself been analytically
continued along the curve c from that point on c at which 7}(E) arose
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due to crossing a cut. Finally, the function elements ρ(E) or σ(£) appearing
in Tj(E) have an additional dependence on the point E' where the cut was
crossed since we can specify ρ or σ to be quite distinct analytic functions
on different open connected subsets of the cut.

Ultimately we realize the entire Riemann surface of g(E) by the
collection of ordered pairs

(E9g(E)) = ( E 9 T l ( E ) T 2 ( E ) . . . Tn(E)g*(E)) (8)

plus the singular function elements discovered during the analytic
continuation. It is evident from (8) that the function elements in the
physical sheet gp(E\ which we assumed known initially, are dummy
function elements in a sense. Namely, by correlating the ordered pairs
(£, T^E)... Tn(E)) together with the curves c in the £-plane underlying
each sequence T± ... Tn, one could directly construct the Riemann
surface without referring to gp(E). Thus the structure of the Riemann
surface of g(E) may be determined directly from the assumed dis-
continuity functions in the model, ρ(E) and σ(E)9 without first con-
structing the function g(E).

III. Covering Group Analysis of a Potential Scattering Model

The realization of the Riemann surface of a model partial wave
amplitude through the ordered pairs in (8) is in general not of immediate
usefulness because of the complexity which may be involved in the con-
tinuation of the matrices 7}(E) when the functions ρ(E) and σ(E) have
branch points themselves. However, if the model is simple enough, these
complexities drop away and we can interpret the realization in terms
of covering surfaces. The associated covering groups then allow us to
completely characterize the topological and conformal structure of the
original Riemann surface.

Let us now illustrate this procedure by analyzing a simple model
based on potential scattering. Specifically we ask for an amplitude g(E)
with right hand discontinuity due to elastic unitarity,

= 2i]/E, O^E^+oo (9 a)

with the positive branch of ]/£ chosen. For the left hand discontinuity
let us take that arising from the Born approximation for the Yukawa

e~mr

potential V(r) = g - :

(9b)
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where Pl is a Legendre polynomial. Since ρ(E) is a rational function of E
with no branch points, there is no difficulty in continuing ρ(E) along any
curve c while continuing the amplitude g(E). However, σ(E) has two
branch points and must itself be appropriately continued while con-
tinuing g(E).

The general function element reached along a curve in the £-plane is

g(E}=Tί(E}T2(£)... Tn(E)9P(E)

where each 7}(E) is a linear fractional transformation which is either

or their inverses L * , R * . The transformations L and R do not commute.
Since ρ(E) has no branch points, the matrix representing L(E) always
has the same form. However the branch points of σ(E) = 2i]/E cause
the matrix for R(E) to depend on the path of continuation. If R(E), or
R~l(E) occurs as 7}(£) in the sequence T±(E) ... Tn(E\ then the function
element of σ(E) which appears in 7}(£) must be that appropriate function
element which has been analytically continued along that part of the curve
c corresponding to the appearance of the transforms Tj+l(E)... Tn(E).
We know that R(E) must have one of the two forms

depending on the branch of ]/£. Thus if the transformation R(E) occurs
twice in succession, say as 7}(£) T j + 1 ( E ) in the sequence 7\ (£)... Tn(E\
we will have

because T j + i ( E ) represents an additional passage through the unitarity
cut (and an additional circuit of E — 0 by c) relative to 7}(£), producing
the sign change of j/E in 7}(£). So R(E) satisfies a relation

R(E) R(E) = R'l(E) R~l(E) = 1 (10)

which expresses the familiar fact that E = 0 is a branch point of order
one for the amplitude g(E). Since L(E) has no possibility of such sign
changes, no finite number of circuits of c around the left hand branch

m2

point at E = -- can ever return us to the starting function element.

m2
Hence the branch points at E = -- , oo, are logarithmic of infinite

order.
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Because the threshold branchpoint at E = 0 is algebraic of order one,
the Riemann surface & of g(E) is a branched unlimited covering surface

m2

[2] of the E-sphere with the logarithmic branch points — and oo

removed. Since & is branched and not smooth [2] relative to the E-sphere,
it is simplest to analyze & in two steps, first considering only the right
hand unitarity cut and then dealing separately with the left hand cut.
If we ignore the left hand cut by setting ρ(E) = 0, then the resulting
function gί(E) is only two sheeted, with the points (E,g{(E)\ and
(E, R(E)g{(E)) corresponding to the two different sheets of its Riemann
surface ̂ . Now ̂  has no logarithmic branchpoints and so is compact.
By a standard formula [2] we see that ̂  is of genus zero, that is, ̂  is
conformally equivalent to a sphere £f. If we now include the left hand cut
with its logarithmic branchpoints, we may regard the Riemann surface
^ of g(E) to be a smooth unlimited covering surface of ̂ 15 despite the
branching of $ relative to the E-sphere. In fact, given a point
(E, T^E)... Tn(E)gp(E)) on dt, then if an even number of factors 7}(E)
are either R(E) or JR~1(E), define the point to lie over the base point
(E, 0f(E)) on ^?1? while for an odd number of 7}(E) chosen from R(E) or
R ~1 (E), let the point lie over the base point (E, R(E) g{(E)) on ̂ . Relative
to the base surface ^19 $ now has no algebraic branchpoints, rather it

I m2 I m2

has branch points of infinite order at the three points ,g{\

m2

—-,R\ τ-01 τ~ K and (oo,0[(oo)) of ^?ι. Excluding these
4 \ 4 / \ 4 //

three points and remembering the conformal equivalence above, we see
that 9t is a smooth unlimited covering surface of some thrice punctured
sphere 5 .̂

Since ̂  is a regular covering surface of ̂ 1? we may now ask for the
cover group § of ̂  relative to the base surface 3t^ [2, 3]. In accord with
our definition above of ̂  as a covering surface of ̂ 1? a cover trans-
formation l)l of ξ> may be specified by

(E, g(E))—^-»(E, T! (E) T2 (E)... TΠ(E) ̂ (E))

where T^E)... Tn(E) is any finite sequence chosen from L(E\ R(E),
JJl(E), or ^"^E) such that only an even number of the 7}(E) are selected
from the pair R(E\R~1(E}. Defining composition of two such trans-
formations in an obvious way, we clearly get a group which serves to
permute all the points of ̂  lying above any one given base point in ̂ .
Using relation (10) any such sequence T t(E)... Tn(E) can be rewritten
as a finite product of the two elements L(E) and R(E)L(E)R"1(E).
Conversely, any finite product of these two will give an element of the
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Fig. 2

covering group. Thus the covering group § of ̂  relative to ̂  is a non-
abelian group generated by the two non-commuting elements L(E) and
R(E)L(E)R-l(E).

Next let us examine the base surface $v which is conformally equiv-
alent to a sphere £f. The mapping which takes ^l onto £f is the obvious
mapping from potential scattering, k = 1/E. & then is a smooth unlimited

covering surface of the fc-sphere with the three points k = i- — , — i — ,00

removed. We may normalize the /c-sphere by mapping — i — , i — , oo

respectively onto 0, 1, oo in the z-sphere

-> -2 \ 2

Finally, let us denote by ̂  this thrice punctured z-sphere with the
points z = 0, 1, oo omitted. By inspection we see that the fundamental
group gi of &Ί may be generated by the two curves q, c2 shown in
Fig. 2. q and c2 start from the same point and enclose respectively the
excluded points z = 0, 1 in a counter-clockwise sense. One sees that gt

is a non-abelian group generated by two non-commuting elements
q and c2. Thus the identification L(£)<->c2, R(E)L(JE).R~1(li)<-κ1 gives
an explicit isomorphism between §, the cover group of J>, and 51? the
fundamental group of the base surface &(. The cover group § is transitive
[2], that is given any two points on ̂  above the same base point on ̂ 1?

there is an obvious element f^ of § which carries one point onto the
other. Therefore, by standard theorems on the covering groups associated
with regular covering surfaces [2, 3], since § is isomorphic to g1? we may
conclude that ^ is the universal covering surface of ̂ .

To obtain ^ and ̂  in a canonical representation we can now use
the uniformization theorem [1,2] which tells us that we may map the
universal covering surface of the thrice punctured z-sphere one-to-one
and conformally onto some open upper half ω-plane. This new variable
ω will now serve as a global coordinate on both ^ and the base surface
&[. Because many points of ̂  lie above each point of ̂  this mapping
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will be a one-to-many mapping of the punctured z-sphere onto the
upper half ω-plane, with a countable sequence of points coy corresponding
to each point z. This mapping is classical in terms of ω and z, it is given
by the elliptic modular function [2, 6, 7, 9].

Here 2 ̂ Ί denotes the hypergeometric function. The elliptic modular
function itself, λ(ω), can be expressed in terms of theta functions [6, 8]

z - λ(ω) = Θ'(ω) (12b)
<93(ω)

The function λ(ω) has the real ω-axis as a natural boundary and takes all
complex values except 0,1, and oo in the open upper half ω-plane.

Since ̂  was not only a covering surface of 5 1̂? but also the Riemann
surface of our amplitude g(E\ the variable ω uniformizes g(E). That is,
in terms of ω, g(E) — g(E(ω)) = g(ω\ g(ω) is meromorphic in the upper
half ω-plane with no branch points remaining. Before sketching the
mapping from E to ω, let us briefly quote a few properties of λ(ώ). Since
many values ω^ correspond to the same z value, we expect λ(ω) to be
automorphic with respect to a discontinuous group of linear fractional
transformations preserving the upper half ω-plane [6]. This group is
Γ(2), a principal congruence subgroup of the modular group Γ(l) [6].
Γ(2) is simply described as the group of linear fractional transformations
of the variable ω generated by the two basic transformations

?)• "-(-11
One has z = λ(ω) = λ(Sω) = λ(Vω) and thus λ(ώ) is indeed automorphic
on Γ(2).

A canonical representation of ̂  is given by the quotient space
77

of the open upper half ω-plane H with respect to the group Γ(2).

This quotient space is easily visualized as in Fig. 3. The unshaded region
there including sides 1 and 2, but excluding sides 3 and 4, is a fundamental
region for Γ(2); that is, it contains no two points equivalent under Γ(2)
while any point of H outside this region is equivalent to one point inside
[6]. The transformation S takes side 4 onto side 1, while V carries side 2
onto side 3. Under the whole group Γ(2) the fundamental region is
translated in such a way as to cover completely the upper half ω-plane

77

[6]. The quotient space is simply the fundamental region with
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ω - p l α n e

0

Fig. 3

sides 1 and 4 and sides 2 and 3 identified. This clearly produces a thrice
punctured sphere ̂  the points left out corresponding to ω = 0,1, zoo.
One may show that λ(ω) takes each complex value exactly once in the
fundamental region except for 0,1, oo which are the limiting values of
λ(ω) if we take the following limits from within the fundamental region,
ω-H'oo, ω->0, ω-> + 1 [6, 8]. The group Γ(2) is isomorphic to the cover
group § and also to g1? the fundamental group of 5 ,̂ by the identification
V^L(E\ S<-+R(E)L(E)R-l(E).

The uniformizing map which takes us from £ to ω is given by the
equations

z = λ(ω)9 (14a)

k = im(z — Ί) = im(λ(ω) — ̂ ), (14b)

(14c)

The effect of this mapping is illustrated in Figs. 4 and 5. Having reduced
the Riemann surface ̂  of g(E) to its canonical form as an upper half
plane, we can now rewrite the discontinuity relations for g(E). Since the
uniformizing mapping has separated the two sides of the cuts in both the
E and k planes, the left hand discontinuity relation becomes a functional
equation relating the values of g(ω) on different sides of the fundamental
region,

g(ω) - g(Sω) = g(ω) - g(Vω) =
E(ω) ptί

m

2E(ω)
(15)
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Fig-4

ω- p lane

-1 0 +1

Fig. 5

Since g(ώ) is meromorphic in ω, (15) is valid for all ω in the upper half
plane, not just for ω on the sides of the fundamental region. To express
the right hand unitarity discontinuity we require an extra linear frac-
tional transformation of the upper half ω-plane,

W--
Ό -1

ί 0
(16)

The transformation W, a generator of the group Γ(l), corresponds to
the transformation of function elements R(E) which arose on analytically
continuing through the unitarity cut. Indeed, V and S= WVW~l

correspond directly to L(E) and R(E) L(E) R~1(E). As a transformation
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on the upper half ω-plane W interchanges the two pieces of the half plane
separated by the dotted semicircle in Fig. 5, mapping the semicircle
onto itself, 5<->6. Using FFthe unitarity discontinuity equation becomes

l). (17)
g(ω) 9(Wω)

The three equations of (15) and (17) are non-linear functional equa-
tions for g(ω). A lost function ansatz linearizes the equations. Setting

f(k]
and 0/r" 0/ϊ" J V ;

2i|/£

where S(E) is the S-matrix element and f(k) is the lost function, we
identically satisfy unitarity (17), while the two Eqs. (15) become

and
/*/ \ fγc/- Λ 0 M R 1Y\

IV. Conclusion

We have shown in this paper that in the simplest partial wave models
the assumed discontinuity relations for the amplitude already contain
the structure of the underlying Riemann surface. In particular, we have
demonstrated in a simple model how the analytic continuation off the
physical sheet leads to a classification of the Riemann surface based on
certain covering groups. In the model considered, this classification also
enabled us to explicitly uniformize the amplitude g(E) through a classical
mapping.

In principle, the methods used could be applied to much more
complicated models. However, the covering group description and the
uniformizing procedure become difficult to write out explicitly for even
moderately more complexity in the discontinuity relations. One exception
is the simplest relativistic generalization of the model discussed here,
namely equal mass elastic scattering with single particle exchange and
elastic unitarity. In this case also the Riemann surface and its uni-
formization can be analyzed relatively simply and explicitly. This
procedure will be described elsewhere.

In models where the uniformization can be done explicitly, the more
practical problem arises of whether the model can be most usefully
approximated in the E variable or in the uniformizing ω variable. In
some contexts it is helpful to employ a uniformizing variable for the
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unitarity cut alone, such as k = |/E in potential scattering, or appropriate
generalizations in relativistic situations [10]. However, by uniformizing
the amplitude with respect to both cuts, one has the possibility of
approximating the model amplitude in such a way as to preserve com-
pletely the topological and conformal nature of the underlying Riemann
surface, a procedure in marked contrast to the usual pole approximation
to the left hand cut in terms of the E variable. We hope to study this
question further for a soluble model similar to that studied above.
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