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Abstract. We show how the theory of continuous tensor products can be used to
construct, for commutation relations, translation invariant but not quasi-free states as
continuous tensor products of states for systems with one degree of freedom.

Introduction

Aswas shown by R. T. Powers in [6] § 5.3 for the case of anticommuta-
tion relations, all translation invariant states which can be constructed
as infinite tensor products of states for systems with a finite number of
degrees of freedom are quasi-free and consequently not very interesting
for physical applications; in this paper we show how the theory of con-
tinuous tensor products allows us to construct, in the case of commuta-
tion relations, translation invariant but not quasi-free states as continuous
tensor products of states for systems with one degree of freedom; we
consider only the nonrelativistic case since, unfortunately, we are not
able to carry out the same construction in the relativistic case.

§ 1. The Algebras Associated with a Real Symplectic Space

We consider a real symplectic space (E, o), i.e. a real vector space £
with a non-degenerate symplectic form o; we call representation of (E, o)
every mapping U of E into the unitary operators of a complex Hilbert
space such that

(i) for each x in E the mapping R s h-+ U (hx) is strongly continuous

(i) U(x+y)=e"YU(x) U(y).

With a real symplectic space one can associate several algebras:

1) The von Neumann algebra 7y, defined in [2], § 1.3; when E

is finite dimensional g , is nothing but .#(H) where H is the space
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of the Schrédinger representation of (E, 0); in the general case /g,
is the von Neumann inductive limit of the algebras .7 , with F a finite
dimensional subspace of E. There is a representation W of (E, ¢) into
sl , which has the following universal property: given a Hilbert space H,
the mapping © »7o W is a bijection between the normal representations
of o/ , in H and the representations of (E, o) in H.

2) The Banach -algebra Ay , (which is similar to the algebra con-
sidered in [5]; 4 , is the Banach space I'(E) whose elements are complex
functions on E satisfying ). |f(x)| < o0, equipped with the norm

xeE

£ =211l

the multiplication
(fo) (@)=}, e ™) f(x)g(y)
xty=z
and the involution
[*x) = f(—=x);

we denote by J, the unitary element of Ay , defined by

6x(y)={1 if y=x

0 if :
then hyFx;

5x+y = eia(x’y)éxay;

given a Hilbert space H, the mapping n 7 is a bijection between
the representations of Ag . in H such that h -7(d,,) is strongly continuous
for each x € E and the representations of (E, ¢) in H. In particular there
exists a unique morphism T: A , —.2/; , such that the diagramm

T
AE,U——’%E,o
b w
E

is commutative; Im T is strongly dense in &y ,.
Concerning the states of .7, , and A , there are bijective correspon-
dences between
a) the complex functions y on E satisfying the following conditions
— p(0)=1
—che’“(x"xp’w(x —x,)=0 Vep..c,eC,  x; ..x,€E

— for each x € E the mapping R h-+> y(hx) is continuous; such a
function v will be called a generating functional,

b) the normal states ¢ of < ,;

c) the states y of Ag , satisfying: for each x € E the mapping h -(9;.)
is continuous.
These correspondences are given by y =@o W=y, x=¢°T.
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§ 2. A Particular Case of Real Symplectic Space

From now on we suppose E is a complex vector space of complex
functions on T'=1IR" which are continuous and with compact support;
and we set

a(x,y)=Im(x|y)=Im | x(t) y(t)dt Vx,yek;

we also suppose E is invariant under all translations. For every ¢t in T
we set

E =C,
oo, p)=Imaf Vo,BekE,,
oAy =Ag, 4
W, = the canonical mapping E,— </, ,
A =Ag,,, -

((E,, 0, is the symplectic space corresponding to a system with one
degree of freedom.)

Proposition 1. A , is isomorphic to the continuous tensor product of

the algebras A,; more precisely we have Ay ,~ (X)" A, where I is the set
teT

of all families t »A(t) 6, € A, with Ae Con L' + 1 and x € E.

(We use the notations and definitions of [2], Ch. 3.)

First one must prove that ((4,),., I') is a continuous family of Banach
x-algebras in the sense of [2], § 3.4; the proof of the axiom (iii) of [2],
§ 3.2 1s very similar to that of [3], prop. 12; the proof of the other axioms
is trivial. Now the construction of the isomorphism is similar to that
in [3], Prop. 12; we only emphasize the fact that this isomorphism F
carries each element 6, € Ay , with x € E, into the element ® J,, € ®T4,;
we also recall that for each 1 in €N L' +1,

® ’l(t) : 5x(t) = H l(t) ’ ® 5x(t);

in particular if x, ye E:

® Gy ® Gy =® b0y
=® evixmméx(t)w(t)
= e U@ 6,140
=e @ 34y
F U ® by ® Sy) = "5, =6.6,. QED,
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Another Algebra Associated with (E, o)

As explained in [2], § 3.6 we can also construct the continuous tensor

product (X)"" .7, where I'" is the set of all families t ~A(t) - W,(x(¢)) with
teT

AebynL'+1 and x € E; we denote it by 75 , and set
W(x)=® W(x(t) VxekE;

we have
W (x+y)=e "I W' (x) W'(y);

moreover there is a morphism S:.e/; ,—.o/p , such that the diagramm
‘52{1,3,6 S ME,O'
N
E
is commutative.

Automorphisms of the Above Algebras Induced by Translations
Every element t of T determines an automorphism of (E, 0):
x px, with x()=x(t—1);

this automorphism determines in turn, as easily seen, automorphisms
%, By, v. of Ay 4, Ap. 4> Hg, . TESPECtively, such that

o (W(x) = W(x,)

B(6.)=0,,
7(W'(x) = W'(x);

recalling that Ay , and .o/ , are continuous tensor products, f, and y,
take the simpler forms:

lBt(® 5x(t)) = ® 5x(t—t) s
7@ Wilx(1) = ® W,_(x(t —1).

These automorphisms are compatible with the canonical mappings
Ag o=y , and Ay — Ay .

§ 3. Continuous Tensor Products of States

Consider a generating functional v on (E, o) of the form

w(x) = exp [ F(x(1)) dt]
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where each F, is a continuous complex function on E, =C with the follow-
ing properties:
(i) F(0)=0;
(i) the function a () = eF*® is a generating functional on (E, g,);
(iii) for every x € E the function t ~F,(x(t)) belongs to €, L.
The state y of Ay , associated with y is the continuous tensor product
of the states y, (of 4,) associated with v,; in fact for xe E

2(0,) = (x) =exp [ F(x(t)) dr]
= [T exp[F(x®)] = [ w:(x()

teT teT

= n X!(éx(t));
teT

but as we know ¢, is identified with ® 6, (cf. Prop. 1). (There is a similar
result for the state of o/ , associated with ). Moreover the represen-
tation associated with y is a continuous tensor product in the sense of [4].

If moreover F, is equal to some function F independent of ¢, the
state y is obviously translation invariant, i.e. invariant under all the
automorphisms f3,.

Examples. Let F° be a complex continuous function on € verifying

a) F°(0)=0,

b) exp F° is positive definite,

c) the function y° on E defined by y°(x)=exp[f F°(x(t))dt] is
positive definite;

set
Flo)=— 30> + F(2) VaeC;

then conditions (i) and (iii) above are trivially satisfied; as for condition
(i), it is known and easily verified that a ~exp(— % |«|?) is a generating
functional on (E,, g,) (the corresponding state is the Fock state; see also
[2], § 1.5); then for every «y,...a, in €, the matrix with coefficients

exp(ian&p) : lpt(“n - dp) = eXp(ianazp - % lan - aplz) : eXp(FO(O(" - ap))

is positive since the coefficientwise product of two positive matrices is
positive. Finally the same arguments prove that the function

x+>1p(x) = exp[[] F(x(1)) di]
=exp(— 3 [IxII>+ [ FO(x(1)) d1)

is a generating functional on (E, ¢); we can thus construct many continu-
ous tensor product states which are translation invariant.
In particular we can take F of the following form:

du(w); (1)

. 1 . 1 2
Fo(a)z_“2|a]2+iv~<x+§<e‘w‘°‘_1_ W - ) +|Wl
C

Lt wi? ) wl?
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here u is real, v is complex, y is a finite positive measure on € — O, and
v-o=RevRea+ Imvima

and similarly for w-a; conversely if E is sufficiently large, for instance
if it contains all infinitely differentiable functions with compact support,
every FO satisfying a), b), ¢) is of the form (1) (see for instance [1], Ch. III).

§ 4. Quasi-Free States

Definitions. Given two real vector spaces ¥ and W denote by Z(V, W)
the vector space of all linear mappings V — W if W is a topological vector
space we endow Z(V, W) with the topology of the simple convergence;
we say that a mapping f: V — W is differentiable if for each x in V there
exists a linear mapping f'(x;.): ¥ — W such that for every y in V-

WY (f(x+hy)— f(x))— f'(x;y)  when h, real, tends to O.

By the above procedure we can define inductively topologies on # (V, C),
Z(V, £(V,Q)), etc.; as usual L(V, £(V,0)) shall be identified with the
set of all bilinear mappings V x V—C and so on; we thus can speak of
a mapping f: V —C which is infinitely differentiable, and we have
FALCTS TR N
- }lig(l)h—l[f('lil)(x+hyrx; yl’ yn—l)—f(n_l)(X;yl’ yn—l)];

moreover for every X, Y, ... y, the function
“4'1’ hn\)Hfl\X_"' hlyl e F hnyn}

is infinitely differentiable and we have
it Pn
Oh%t---ohr
= f(p1+.4.+pn)(X;y1’ y17 yn’ yn)

T
p,-times  p,-times

Sx+hyy;+ - +hnyn)|h1=-"=hn=0
(2

Returning to our (E, o) we denote by E° the set of all real functions in E;
let i be a generating functional such that y|E° is infinitely differentiable;
denote by U and ¢ the representation of (E, o) and cyclic vector determined
by v such that yp(x)=(U(x) £|£) V x € E: let A(x) be the self-adjoint gener-
ator of the one-parameter group h —U(hx).

Lemma 1. A(x,) ... A(x,) & exists for every x, ... X, in E°.

Proof. a) The domain D of A(x) is the set of all # in H such that the
expression h™'(U(hx) — I) n has a strong limit when h— O; but one can
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replace strong by weak; in fact let D’ be the set of all » such that
h™Y(U(hx)—I)n has a weak limit; D’ is a linear subspace containing D;
set

A'n=w-lim(ih) ' (U(hx)—I)n for each neD’;
A’ is easily seen to be a symmetric operator which extends A(x); then

A'= A(x) and D' =D.
b) We now prove that the expression

B=(hy ... h) {(U(h,x) = 1) ... (U(h,x,) = I)

has a weak limit when h;, ... h, tend to O. Denoting by T the canonical
mapping Ag ,—H we have {=T(6,) and

B=(h,..h)"" Y (=1)""PU(hx;)... Ulh,x;)- T(3o)
B

=y o h) Y= PU G X+ hi, X:,) - T(0o)
=(hy o h) T (=) PTGy by x) -
Let us prove first that (B|T(6,)) has a limit for every y in E; we have

(BlT(éy)):(hl'”hn)_.lz(_l)n_pX(é—yéhi,x:,+~-~+h,px1,,)
=(hy...h,) ' (=1 Pexplio(y.h;, x;, + - +h; X; ) o
(= y+h x4 )
=(hy...h) 1Y (=1)""P9(0,...h;,O,... h; ,... 0)

ip

where we have set
@(hy, ... hy)=explio(y. hyxy+ -+ hx)] p(=y+hix + - +h,x,);
it is known (and easily verified) that (3) converges to
"
Ohy .. 0h, |y= i p =0

Now to prove b) it is sufficient, since the T(d,)’s are total in H, to prove

that B is bounded; we have

IBI|?=(hy...h,)"2% Y. (~1)”+"(T(5hnxl,+-~+hl,,x.,,)|T(5hhx,,+~-~+h“x,q))
i1 < <ip

j1<:+<lq
p,q=0,...n

=(hy ) S (= 1P Uy X Ay X =Ry X = — X )s

lp™ip J1 Jqa"Jq

writing out an expansion of the 3 and using (2) one can see that the only
terms which really occur contain h{'... hi» where a,, ... 4, are non zero
even integers; this establishes our assertion.

10 Commun math Phys., Vol. 17
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c¢) By the part b) we know that A(x,) & exists; then
w- hm hn X(U(hn— 1 Xn— 1) - I) : hn_ 1(U(hnxn) - I) . é

hn-1=h

= w-lim w-lim (the same expression)
hp,-1=0 h,=0

= hw-liir})hn—l(U(hn——l xn—i) - I) : A(xn)a

this proves that A(x,_,) A(x,) & exists; and so on inductively. QED.
By the above lemma we may consider the multilinear forms on E°

(Xl’ X") H(A(xl) A(X") é'é)a

they are called Wightman distributions and denoted by #/,; we have

w(h1x1+"'+hnxn) ( (h X1+ +hn n)élf)

:(U(hlxl) U(hn n)&‘é)

whence, by (2)
"
oh, ...oh ¥
="W,(x(,...X,).

w(n)(o;xl""xn): (h x1+ +hn n)|h1='~'=h,,=0

4)
Then one defines the truncated Wightman distributions #," by the follow-
ing recurrence formulae
W=,
W;,(Xl,... Znﬂ/r: 11 1""xi1,n,) W (x X

ny l,« 1 ir'n,)

where the sum is taken for all partitions £ of the set {1,2,... n} into
subsets

withn, + - +n,=n.
The state associated with y is said quasi-free if #;" =0 ¥ n=3 (cf.[7]).
Let us now suppose that p has the form p(x) =e®™ where w is an
infinitely differentiable mapping E —-C, with w(0)=0; we have
W' (x; ) =™ o (x;3y),
WX p1,y2) =P (x; y1) @' (x5 y3) + 0" (x3 y1, ¥5)]

and by induction

PG YY) = €Y 0 (X e i ) 006G Y )
P
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it follows that, by (4)
WX, ... X)) =1"0"™(0;X,, ... X,). (%)

Assume now that w has the form w(x)= [ F((x(t)) dt where F is a
complex function on € whose restriction to R is infinitely differentiable;
then, for x, y,, ... y, € E° we have

@(x +hy,) = [F(x(t) + hy, (1) dt

and by derivation under |:
/ d ’
0/ (1 y1) = @0 hy -0 =1 71 0) F (x(0) di:

then by induction

(X5 yys ) = FFO(x(0) - p1(0) ... p,(0) - dt;
by (5)

WXy, X)=1""-F"(0)- [ x,(t) ... x,(t) - dt .
We have thus proved the following:

Proposition 2. The state associated with a generating functional v of
the form w(x)=exp[f F(x(¢))dt] with F|R infinitely differentiable, is
quasi-free if and only if F™(0)=0 Yn=3.

Examples. We take F(x)= — 3 |o*> + F°(x) where F° is given by (1),
and suppose that

fwl"duw)y< +0  VYn=1,2,...;

if o is real we have, by setting v, =Rewv, w, =Rew:

1 )
F(oc)z—~oc2——u2<x2+ivloc+§(e””‘“—l— du(w);

iwyor 1+ w2
2

Lwl? ) wl?

whence, for n>3:
1+ |w)?
w|?

F™0)=1i"[w} du(w);

we see that the corresponding state is not quasi-free unless p is null
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