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Abstract. A system of extensions of the Taub space and the NUT space with the
topology due to Misner is constructed having the property: for each incomplete geodesic
in these space-times, there is one and only one extension from the system into which the
geodesic smoothly continues. Next, the notion of hypermanifold is introduced which is a
generalization of tangent bundle of a space-time, and an untrivial hypermanifold is con-
structed that contains the tangent bundles of the Taub and NUT spaces as proper sub-
manifolds, and within which almost all geodesies are complete. Locally, the hypermanifolds
do not yield anything new, but they provide much broader choice of global properties
than any four-dimensional space-time manifold.

1. Introduction

A significant feature of Einstein's theory of gravitation is that the
local characteristics of a space-time, measurable in a small neighbour-
hood of a point, are closely related to the properties of the solution as a
whole, and that these global, topological properties may be untrivial, in
fact very impressive, and sometimes quite complicated. This is of in-
valuable importance for such a global theory as cosmology is, where the
general relativity provides a language even to formulate problems, to
say nothing about their solutions.

On the other hand, the choice of topologies as actually implied by the
theory in particular solutions is sometimes restricted enough, so that
closed time- or light-like lines violating the last rests of causality in
physics cannot be avoided [1].

With the progress in mathematical tools, the interest of physicists in
this field increases. We mention the papers of Penrose [2], Hawking
[3-5], and Geroch [6], where the famous singularity theorems have been
stated and proved: if some more or less verifiable conditions are fulfilled,
then a kind of singularity of the given space-time is inevitable. These
conditions are highly general in that no special space symmetry and no
explicit state equation of matter are assumed. The singular space-time
is defined as follows: 1. The space-time is not extendable, or, there is no
space-time including the original one as its proper sub-manifold. 2. There
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are time- or light-like geodesies that cannot be extended to an arbitrary
length of their affine parameter.

It is not difficult to see that the definition includes what is commonly
understood under the singularity, namely the unbounded curvature or
mass density at some points: in fact, these points must be cut out from
the space-time or else this would not be a differentiable manifold, and,
then, all geodesies approaching the points remain incomplete. Never-
theless, the definition includes quite different cases as well. One can
imagine that the incompleteness of a relatively small number of geodesies
would be innocuous, if, at all, of physical interest [1]. Another example
is the so-called Misner's singularity, which is exhibited by the Taub-
NUT space: the curvature is regular everywhere and still some geodesies
are incomplete and maximal within a compact1 region of the space.
The aim of the present paper is to investigate this singularity in some
detail, in a hope that this may add to a better understanding of the nature
of singular spaces.

In 1951, Taub proposed a homogeneous, non-isotropic, expanding,
empty model of the Universe [7], hereafter called the Taub space. The
model can possess a topology S3 x(z1 ? z2), where we denote the three-
dimensional spherical hypersurface by S3 and the open interval of reals,
z t < z < z 2 , by ( z ί 9 z 2 ) . The closed hypersurfaces z = const are space-
like minimal invariant sub-spaces of the three-parameter group of
motions of the space. For z = z l s z = z2, the metric becomes singular.
Independently, another solution of Einstein's equations without matter
allowing a three-parameter isometry group, usually referred to as NUT
space, was found by Newman, Tamburino and Unti [8]. The metric is
static and displays singularities of two kinds. JVίϊsner has shown one of
them to be removable, if the topology of the minimal invariant sub-
spaces is chosen to be S3. (Another topology of these three-dimensional
hypersurfaces has recently been proposed by Bonnor [10]. The singularity
is maintained and can be interpreted as a rotation axis.) Then, there are
closed time-like lines, of course, and the topology of the whole space
looks like S3 x (z2, αo), the second singularity being at z2. Now, the two
spaces, Taub and NUT, prove to fit one another analytically along the
light-like three-dimensional hypersurface z = z2, in a similar way as the
inner and outer Schwarzschild solutions extend one another beyond
the hypersurface r = 2m. There are two different possibilities how to
sew the spaces together, the two famous Taub-NUT spaces coming thus
into being and beginning to provide "counterexamples to almost every-
thing" [11].

In fact, the Taub and NUT spaces are two-parameter families of
space-times. We denote the parameters by / and m, /^O, ra>0. The

1 Id est, no points are cut out.
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space-times corresponding to the value / = 0 are, respectively, the inner
and outer SchwarzsPhild solution. Nevertheless, for rfur study, we choose
the coordinates. z^ζv®% and <?«, which can only be introduced, if / >0.
The line element is given by

„ 4(z-.i)(z2-z)

4z2 + l

and Zi < z2 are fixed reals, zv = -//(8m2), z2 - m/l The metric (1) has
signature -2 and c^n be obtained from that in [12], Pq. (26) on reversing
signature and performing the transformation

ί = 2/z, v? = C, Θ = Θ, φ = <p, ^2/fc (i = 1,2).

The regions, where the metric is non-singular, are z2 <
 z < °°> zι < z < Z2>

and -oo<z<z1; the corresponding manifolds being denoted by M1?

M2, and M3, respectively. The hypersurfaces z - coί^st are topologically
S3, and the coordinates C, <9, and φ are introduced similarly as tp, Θ, and
φ in [9]. ζ has the period 4π, Θ and φ behave like the usual spherical
coordinates. The manifolds Mί and M3 are equivalent to NUT space and

M2 to Taub space.
We briefly re-c0Uect some well-known information about geodesies

in these spaces [12] as written in the coordinates z, ζ, ®, and φ.
The first integrals of the geodesic equation are

4z 2 +l . -
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where κ = ±1,0 according to the kind of geodesic. From (2)-(5), it follows

p1 sin (9 cosφ -f p2 sin (9 sinφ + p3 cos Θ = p\\, (7)

the integrals being not independent. If p = j/p2 + p2 + pf φ 0, Eq. (7) is
non-trivial and has the following parametric solution

sin (9 cosφ = An sinα cosφ + ,421 sinα simp + A^ cosα,

sin6> sinφ = A12 sinα cosφ + ^L22 sinα sin ip + A^2 cosα, (8)

cos 6> = Aί3 sinα cost/; + ,423 sinα sin φ + ̂ 33 cosα,

where Atj is an arbitrary fixed orthogonal matrix having Det^ = 1 and
satisfying the relations pi = p - A3i, α is the constant, 0 ̂  α ̂  π, determined
by cosα = pn -p" 1 , and ψ is the parameter. Simple calculations give

Θ2 + sin2 Θφ2 = sin2αψ2 ,

2 _ 4p (9)
ψ ~4?TΓ

Then, (5) and (6) imply

where p± = p sinα, while from (4) and (5) we have

Λ _ P|| 4p v433 cos 6) -cosα cos2

( }

The formulae (2)-(ll) will be of use later.
In section 2, various extensions of Ml5 M2, and M3 are described and

their relation to incomplete geodesies is examined. In addition to the two
Taub-NUT extensions, a new one, denoted Pί9 is found for each Mf, so
that every incomplete maximal geodesic of Mf looses its maximality
within one and only one of the three extensions. Thus, a family of in-
complete geodesies is associated with each extension, and these families
turn out to be identical with the three classes of geodesies according
as P|| < 0, p|| > 0, and p\\ = 0.

In Section 3, extensions of the tangent bundle of Mf are defined and
shown to allow more geodesies to be complete than any extension of Mf

does, in such a way that one of these extensions is constructed and some
of its properties including the behaviour of geodesies are investigated.
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2. Complete System of Extensions

As it is well-known [9, 11, 12], each space-time M{ has two different
Taub-NUT extensions. Some basic information concerning these follows.

The metric is given by

ds2=-(2l

for the space which we denote by T1? and by

ds2 = -(2l)2 -2(dη + cosΘdφ)dz + U(dη + cosΘdφ)2

for the space denoted by T2. ξ and η are periodic coordinates with the
period 4π, related to ζ and to one another, in the regions M1? M2, and
M3 of T! or T2, by

zJ-(4z2 + l)lg |z-z2 |], (14)

-z1\--(4z2 + l)Wz-z2ΰ. (15)

Note that the coordinate lines ξ = const, <9, φ = const are light-like
geodesies with p = p|| = l, and the lines η = const, Θ, φ — const are
light-like geodesies with —p = p\\= — 1.

Let us denote the boundary of a set N in 7i by c^N, in T2 by 32N.
^M! and 32MX are regular three-dimensional closed hypersurfaces
z — z2, homeomorphic to S3, with metric

-(2/)2 -̂ ^ (rfβ2 -f sin2 Θ dφ2)

in the coordinates ξ, Θ, φ, and η, Θ, φ, respectively, the curves Θ,φ = const
being closed and light-like.

Theorem 1. For each geodesic y in M1? along which the integral p\\ > 0
(pi I <0), αnrf only for these geodesies, there is just one point pγ on d1M1

(d2Mί) such that py e dί {y} (py e d2 {y}). ({y} is the set of points lying on y).

If we rewrite the relations (9)-(ll) in the coordinates z, ξ, Θ, and φ
(z, η, Θ, and φ), the proof will be quite analogous to that of Theorem 3
as given in the Appendix. We do not write it explicitly.
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Theorem 2. For each geodesic y in Mί with p\\>§ (p\\<§\ there is a
unique smooth extension beyond the boundary dίMί (d2M1) into the
region M2.

Proof. Each Taub-NUT space is a locally regular pseudo-Riemannian
manifold. Every point and direction determine a unique geodesic. The
desired extension is the geodesic passing through the point p,, whose
existence is assured by Theorem 1, in the direction defined at the point
by y.

Analogic considerations for remaining regions and boundaries yield
similar results.

The Theorems 1 and 2 assert that the geodesies in Mf may be divided
into three families according as p j , >0, p ( ) <0, and PH = 0. For each of
the first two families, an extension of Mf exists, within which all in-
complete maximal geodesies of the family, and only these, may be ex-
tended. Now, we try to construct an extension for each M£ having this
property with respect to the family characterized by p\\ = 0. The exten-
sions we shall arrive at are the minimal ones with the desired property;
they display many unusual features.

Forgetting of the metric we have a differ en tiable manifold from Γ1?

on which the three submanifolds with boundaries, Pi, P2,P3, can be
defined by means of coordinates z, ξ, <9, φ (for the definition of a manifold
with boundary, see [14], p. 30 and ff.):

In this way, the topological and differentiable structure of P/ is uniquely
determined. Next, we change the notation on P , and write ( in place of ξ,
so that the metric can be introduced by Eq, (1) in all points of P , where
(1) makes sense. Denote the resulting spaces by Pf. Clearly, P. are not
any submanifolds of T1? but it is not difficult to show that Mi is an open
submanifold of Pi9 i = 1, 2, 3. If we introduce the symbols JM l5 /4M2,
and A M3 for the closed submanifolds of P1; P2, and P3 defined by the
relations z = z2; z = z l5 z =^ z2; z = z1? respectively, then the set AMi is
the boundary of the open set M{ in the topological space Pb and
Pi = Mi\jAMi, for each i2.

Now, we state two theorems concerning the space Pt; their proofs
can be found in the Appendix. In P2 and P3, analogous theorems hold
and their proofs are quite similar; I drop them.

2 Since the appearence of the paper [16], it is not so unusual to consicίer a space-time
with a boundary, on which, moreover, no metric in the common sense is defined. On the
other hand, the boundary AM, of the space Pf does not fall under the notion of ^-boundary.



Extensions of Taub and NUT Spaces 115

Theorem 3. For each incomplete maximal geodesic y in M1 characterized

fry P| I — 0, and only for these geodesies, {y} has just one limit point on AMί.

Accordingly, each geodesic y of this sort approaches a unique point
py on ΔM1. Adding this point to y, we could define this to be an extension
of 7 in Pj. It is a problematic construction, because there is no metric
defined in the points of AM{. But it is unique, and, moreover, it has the
following interesting property:

Theorem 4. Let y be a geodesic on Pt that cuts A M^ in a point py. Then,

there is a unique geodesic y on P1 which cuts AM1 in the same point py and
which matches y at least C1-smoothly in py

3.

This theorem suggests that each geodesic segment incomplete in
M1 can be smoothly extended by another segment of this sort, both being
joined together by a point of AMί. While the geodesies extended in this
way on Pt and P3 are space-like, so that their loops are not extraordinary
strange, on P2 we have some interesting phenomena.

Example 1. The curve in P2 given by

Z1

Jt~Z2 Z2 — Zi . _ ,, ..
z - — + sin 6>, C = 4 o > 9 = Ψo

is a light-like, smooth, closed geodesic with p± = — p sinφ0, p2 — p cosφ0,
and p3 = PI \ = 0, z and Θ being periodic with the period 2 π. For Θ = ± π/2,
the curve reaches the boundary points.

Example 2. Along the time-like geodesic with p ( | = p1 = p2 = 0,
p — p3 = |/3/4/, we can set ζ = (0, Θ = π/2, and we obtain the relation

dz
dφ

whose solution is given by

Bz2 -h (Azί - Bz2) en

AB
A + B + (A - B) en 2 l / - - ( Φ ~ Ψo)

where A = J/l + z2, 5 = 1/1 + zj, and cn(x) is Jacobi's elliptic cosinus
(see, e.g., [15], p. 491) with

AB
3 In fact, by taking higher derivatives, we could see that the curves match C°°-smoothly

one another.
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The function z(φ) has the period - ^ J——, where K(k) is the complete
yAB

elliptic integral, φ has the period 2π. If /~Γr7~ *s a rational, we
7Γ y AD

have a smooth closed loop, in general intersecting itself in some points,
and if the ratio is irrational, we have a curve dense in the two-dimensional
surface Θ = π/2, ζ = (0

We shall see in the next section that this behaviour of geodesies on
PI is, in a sense, similar to that on hypermanifold and could be regarded
as a certain limiting case of the latter for /?||->0.

3. Taub-NUT Hypermanifold

None of the three extensions of the Taub and NUT space described
in the preceding section has been geodesically complete. The question is
natural, whether there is a broader, perhaps even geodesically complete,
extension.

We have seen that the Taub-NUT extensions might be constructed
in the following way: all light-like geodesies with p = p^ = l are in-
complete and can be shown to form a three parameter congruence, say,
CΊ. They may, therefore, serve as coordinate lines. In such a coordinate
system, the metric is not singular at z = z l5 z = z2 and has a unique
analytic extension, namely T±. Similarly, for —p — p^= —1, the con-
gruence C2 is obtained which yield the extension T2. This implies that
the extensions of the Taub or NUT spaces including extensions of all
geodesies of the congruence Ct must contain at least the boundary of
that space in 7). In particular, the extension of M1 in which the geodesies
of Cί and C2 should all be a little longer than in Mλ would have to contain
M! and both boundaries d1M1 and d2M1. Such an extension, however,
does not exist. It is not difficult to see that every neighbourhood of a
point z2, ξ2, 6>2, φ2 on d1M1 in M1 contains a point lying in any neigh-
bourhood of any point z2,η2,Θ2, φ2 on d2M1 we can choose. Then, the
space would not be Hausdorff4.

In [16], an attempt has been made to discard the requirement that
space-times be Hausdorff, and, indeed, a more complete non-Hausdorff
manifold has been constructed. But this generalization is too drastic, e.g.,
it would allow for manifolds with geodesies having more than one con-
tinuation.

There is another, weaker, generalization, which does not exhibit these
pathological features. We know that the boundary 51M1 is cut by those

4 What could be done would be to choose another topology for diMl, for example,
to identify all points of d^M^ differing only in ξ with one another and with those of d2M1

differing from them only in η, so that we would have a cusp there.
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geodesies only, for which p\\ > 0. Because of (11), the component ζ of their
tangent vector approaches +00 at dlMί. Similarly, d2M1 is cut only by
geodesies, whose ζ tends to — oo at the boundary. In a space (of more
dimensions than four, of course) where ζ could be introduced as an
independent differentiable coordinate in addition to z, ζ, <9, and φ, both
boundaries would possibly be topologically distinguishable: the points
"near them" would have, then, "very different" coordinate ζ.

Thus, we are led to the notion of tangent bundle (for exact theory, see,
e.g., [13, 14, 17]). Tangent bundle TM of a space-time M is an eight-
dimensional differentiable manifold, whose points are pairs consisting
of 1) a point of M 2) a tangent vector to M at the point. The preceding
considerations suggest that there should be a well-defined boundary of
TMi stroken by geodesies with p\\ Φ 0, and that this boundary is likely to
form, together with TM1? a Hausdorff space. Accordingly, we might
expect that there is some relatively regular extension of tangent bundle
of the Taub or NUT space, within which all geodesic with PH Φ 0 could
be extended.

If we have a manifold M with differentiable coordinates, say,
x1, x2, . ..,x", in some open region on it, we can describe the tangent
vectors at the points of the region by means of the local coordinate
systems as induced there by these coordinates (see, e.g., [13], Chap. 4),
Denote the corresponding components of a vector x1, x2, ..., x". In such
a way, we have the coordinates x1,*2, ...,x", x1, x2, ...,xn on the TM,
which may be shown to be differentiable, and which we shall call the
canonical coordinates. Then, the coordinate transformation

vi __ f ifγί γ2 «\ _ ι jy — j VA t Λ ? 5 Λ )•> l — A ? Δ-> - - •> n •>

on M induces the transformation

on TM.
Now, choose the coordinates z, ξ, <9, φ, z, ξ, <9, and φ on TT1? z, η, <9,

φ, z, ή, (9, and φ on TT2, and cut out the two six-dimensional hyper-
surfaces z = z1; z = 0 and z = z2, z = 0 from both TT± and TT2. The two
eight-dimensional differentiable manifolds obtained in this way will be
denoted by T[ and T'2, respectively. Next, glue T[ and T2 together to
form a space T in the following manner: Ύ[ and T2 will be sub-spaces of
T and each point of T' will lie either in T[ or in T2 or in both. The regions,
where T[ and T2 will cover one another, let be TM1; TM2, and TM3, and
the transformation between the coordinates ξ and η of the same point
let be given by (15). We must show that such a glueing up is possible, i.e.,
that T' is a differentiable, Hausdorff, manifold.
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There is a countable basis B(T ) of the topology of T (i = 1, 2),
because T is a manifold [13, 14]. The sets B(T[] and £(T2) can have a
non-zero intersection, as systems of sub-sets of T". Their union is a
countable basis of the topology of T'. Then, the functions z, ξ, η, 6>, </?,
z, ξ, ή, Θ, φ can provide the local diffeomorphisms of T' in E8. T' is Haus-
dorff, as we can see from the following considerations. Let us take a pair
of points p, q, and distinguish the following cases:

1) The points differ at least in one of the coordinates z, ξ, η, Θ, φ,
z, ξ, ή, Θ, φ. More precisely, if we denote this coordinate X, then we can
write \X(p) - X(q)\ > 0. Choose ε = %\X(p) - X(q)\ and define the ε-neigh-
bourhood Up of the point p by the usual inequalities of the type z(p) — ε
< z < z(p) -f ε, etc., and, in the same manner, the ^-neighbourhood Uq of
q. Then, Up and l/q are open, have no points in common and p e Up,
qεUq.

2} Let the following equations hold

Φ) = z(ti = Z 2> Z(P) = ̂ (ί) = A,

ξ(p) = ^2
= Θ(q),

Then, there is ε > 0 satisfying
i) (A-ε)(A + ε)>0,

ii) within the interval (z2 — ε, z2 + ε), U is a monotone function of z,
and an open neighbourhood Up of p such that the following relations are
obeyed by the coordinates z, z and ξ of each point in Up:

z 2 -ε<z<z 2

Similarly, there is an open neighbourhood Uq of q where

z2 — ε < z < z2 + ε, A — ε<z<A + ε, ή2 — ε<ή <ή2 + ε.

By means of (15) and (16) we find

ή = ξ + 2U-lz, (17)

from which the following inequalities can be derived for the coordinate
ή of the points in Vpr\Vq\

ή2 — ε<ή

A
z>z 2 : ή<-~2 1 2ε z2-z1 + ε 2(z2-z1 +

A 4(z2-ε)2 + l 4(z2-ε)2+l
z<z 2 : '

2ε z2 — zί— ε 2(z2 — zl—ε)
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under the assumption that A > 0, and

. \A\ 4(z2 + ε)2 + l 4(z2 + ε)2+ί
z>z2: 2ε z 2 - Z l +ε

\A\ 4(z2 - ε)2

2ε z2-Z l-

2(z2-z1 +ε) '

+ 1 | 4(z2-ε)2 + l

- ε 2(z2 -zl-ε)

under the assumption ^4<0. Infer that ε<z 2 — z l5 because 17 is not
monotone in the whole interval (zl5 z2). Thus, clearly, there is always
ε > 0 small enough 5 to ensure that Upr\Uq = 0.

3) The same equations holds as in 2) with the exception that
z(p) = z(g) — Zj. The case is completely analogous to 2) and need not,
therefore, be explicitly analyzed here.

Thus, T is shown to be Hausdorff, and, consequently, a differentiable
manifold. T' is, however, much richer in properties; it is a certain gener-
alization of tangent bundle of a space-time.

Definition 1. Hypermanifold H is an eight-dimensional differentiable
manifold, on which a set system S is given. The elements of S are called
simple sets and satisfy the following axioms:

1) S is an open covering of H.
2) If M e S, JV 6 S, then MnJV e S.
3) For each Me 5, MΦO, there is a four-dimensional pseudo-

Riemannian differentiable manifold, π(M), such that Me Tπ(M).
4) If πM: Tπ(M)->π(M) denotes the natural tangent bundle pro-

jection of Tπ(M)6, then πM(M) - π(M).

5) If MeS, NeS, JVcM, NφO, and πM |N denotes the restriction
of the map πM to the set JV, then πN = πM\N, and π(]V) is a pseudo-
Riemannian submanifold of the manifold π(M).

5 Now, cutting out the points with z = z2, z = 0 or z = z ls z = 0 can be explained.
Suppose, we should have taken TT^ and TT2 instead of T[ and T^ and perhaps still ΓP15

ΓP2, and ΓP3, and made an attempt to glue them all together along the regions TM1, TM2

and TM3. Then, we should have had one more sub-case: A = 0, and the Eq. (17) as well as
the derived inequalities immediately suggest that, in this sub-case, we should not have
found the desired ε, for which the two ^-neighbourhoods Up and Uq would be disjunct.
Therefore, if we wanted to maintain the Hausdorff property, we should have had to identify
all points with z = z 2 ,z = 0 o r z = z 2 ,z = 0 differing in the coordinates ξ, ζ, η, ξ, ζ, ή only.
Thus, the three six-dimensional hypersurfaces z = z2, z = 0 or z = z l5 z = 0 would shrink
into a four-dimensional one, with coordinates (9, φ, (9, and φ on it. Then, however, there
would be a cusp there, and the space would not be a differentiable manifold.

6 As already mentioned, every point of the tangent bundle TM of a manifold M is a
pair (p, up}, where p e M and up is a tangent vector to M at p. The map π : TM— >M defined
by π(p, MP) = p is a distinguished map of the tangent bundle and is called its natural pro-
jection.
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Definition 2. Two hypermanifolds H and H' with the systems S and Sf

of simple sets, respectively, are equivalent, if there is a map ψ : H-^Hf

having the following properties:

1) Ψ is a diffeomorphism with respect to the manifold structure of H
and H'.

2) If M e S, then <F(M) e S".

3) For each M E S there is a diffeomorphism and isometry
ψM:π(Ψ(M))-+π(M) such that ψ&\M = Ψ\MΊ.

Example 3. Given a manifold M, then every open submanifold H of
its tangent bundle TM is a hypermanifold; H is simultaneously its own
simple set.

Example 4. T' is a hypermanifold; its simple sets are T/, T2 and all
open subsets of T[ or T2. Note that there is no space- time M having
tangent bundle TM such that T C TM. This may be seen from the fact
that the projections of T( and T2 contain M^ud^M^ and M1uδ2M1, so
that the space-time would have to contain M1vd1M1vd2M1 and this is
impossible.

Our construction of the hypermanifold T' is strongly dependent on
coordinates: we have chosen the functions z, ξ, (9, φ on 7i and z, 77, Θ, φ
on T2 and all operations performed further on have been described
exclusively by means of these. What we have shown, therefore, is that
there is one hypermanifold T' for every choice of z, ξ, (9, φ on 7i and
z, η, (9, φ on T2. Of course, these coordinates as defined have certain
invariant properties: they fit the topology and differentiable structure
of T! and T2 and the line element is of the formal 2) and (13) in them. That
is to say, if we have another coordinates z, ξ, <9, φ on T^ and z', η\ Θ\ φ'
on T2 of this sort, then the maps ψ1:Tί-^ Tx and ψ2 : T2 -> T2 defined by

are diffeomorphisms and isometrics.
Choosing the coordinates z, ξ, (9, φ, z, ξ, (9, φ on TT l9 we cut out the

points with z = zl9 z = Q and z = z2, z = 0 and denote the resulting
manifold by T/. Similarly, the manifold T2' is obtained, if the points
with z' =_zl9 zf = Q and zf = z2, z = 0 are omitted from TT2. From
T/ and 77, we construct the_hypermanifold Tr/ on identifying each
point of T{ of coordinates z, ξ, ...,φ, zΦz 1 ? zφz 2 , with the point of

7 Every diffeomorphism ψ:M-+M' of differentiable manifold M onto M' induces a
diffeomorphism φ* : TM'-^TM (see [13], p. 82 ff.).
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T2", whose coordinates are given by

Z' = J, Θ' = Θ, φ' = φ, zf = z, <9' = <9, φ' = φ ,

Now, it is not difficult to show that T" is equivalent to T'\
The diffeomorphism ψ^ induces the diffeomorphism ψ* : TTj— >• TT1?

whose restriction to T/, φf T/ : T/ -> T/, is a diffeomorphism of T[ onto
T/. Likewise, we have the diffeomorphism ιp2 |T2 of T2 onto T2. But
T/ and T2 are two open submanifolds covering T"; their images, T[ and
T2, cover T'; each of the maps t/>*|Ti' and ψ^lT^ is one-to-one and
differentiable, and it is immediate that they are identical on 7i'nT2.
Therefore, the map ψ : T"-* r given by Ψ\ T[ = ψ* \ f/, !F| Γ^ = ι/>5 1 T£
is a well-defined diffeomorphism of T" onto T'. The two remaining con-
ditions of Definition 2 are obviously satisfied. Thus, the hypermanifold
T' is uniquely determined by our construction.

Physical interpretation of hypermanifolds may be based on the
points 3) and 4) of the Definition 1, which claim, in fact, that a hyper-
manifold is, locally, equivalent to a tangent bundle of some space-time.
Since physical meaning is attached only to local properties of space-
times such as metric, connection, curvature, etc., the fact that a hyper-
manifold need not be, as a whole, a tangent bundle of any space-time
is not of so much importance: the projections π(M) of simple sets are
pseudo-Riemannian manifolds of usual physical interpretation. What is
generalized is only joining together these patches.

On the other hand, tangent bundle is something like the phase space
of a relativistic particle. More exactly, it includes the phase space as a
proper subspace, because there are also points in it with corresponding
tangent vector not unit or time-like. Thus, even a direct physical meaning
can be ascribed to the hypermanifold as a whole: it is a phase space of a
particle.

As an example, we generalize the notion of geodesic, the path of a free
particle, for hypermanifolds:

Definition 3. A curve 7 on hypermanifold H is a geodesic, if there is a
geodesic yM on π(M) such that γ(t) = yM(t)s on M for every simple set
M with Mn{y} Φ 0.

It is clear, that every geodesic has a unique extension or that every
curve has no more than one end point on hypermanifold — that is to say,

8 A curve C : [Λ, b] ->M of class Cfc, k > 1, on a manifold M determines a unique curve
C : [α, b~] -> TM of class C*"1 on TM such that C(f) is the tangent vector to C at the point
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no pathological features of the non-Hausdorff manifolds as mentioned
by Geroch in [16] exist here.

The geodesies on T are made from segments, whose projections are
nothing but geodesies on T1? T2, Ml5 M2, and M3, described by the
relations (2)-(ll).

Example 5. The geodesies with p\\ = 0 consist each of just one segment
which lies entirely on one of the simple sets TMί5 i = 1, 2, 3. They remain
incomplete within T', because they approach the points z = z l5 z = 0 or
z = z2, z = 0, which were cut out from T'.

Example 6. Time-like geodesies with p\\=p>Q (α = 0). The
Eqs. (2)-(ll) imply, for these values of constants, the following relations:

which read as transformed into the coordinates z, ξ:

> 1 1

In general, there are two values zί and z~2 for which z = 0, and p may be
chosen such that zl < zv and z2 <z~2. Then, we have a unique geodesic
segment on 7\ determined by Eqs. (18) and passing through the point
z = z^ξ = ξ^.

Another time-like geodesic with p\\= —p fulfills, in the coordinates z,
η, (9, φ, the following relations

and z reaches the value zero for z — zl and z = z2 again. We have a
unique geodesic segment on T2 passing through the point

and satisfying (19). The points z = z1? ξ~ξ^ and z = z1) η = ηί are,
however, identical according to (15), and the tangent vectors to the two
segments at the point are just opposite to one another (because of z = 0
is ή = ξ there); therefore, the two segments match smoothly one another.
Similar procedure can be repeated at the upper end points of the two
segments, where z = z2. In general, the points need not be identical, so
that we must use its own segment for each end point to go on. The case
can obviously occur, when such geodesic as extended step by step in this
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way fills up the two-dimensional surface z^^z ^z2, Θ = <90, φ = φ0,
so that it is dense there.

These examples show that there are still incomplete geodesies, but
their ammount is substantially reduced in comparison with either Taub-
NUT space; it is not difficult to see, that all geodesies having p\\ φ 0 are
complete. In this sense, we can say that the introduction of hypermani-
folds can help to reduce the singularity. Moreover, the remaining in-
completeness is not of the strange nature proper to that of the Taub-NUT
spaces: no geodesic of the hypermanifold is maximal and incomplete
within a compact region. Indeed, finite are only the geodesies approaching
certain points which had to be cut out from the hypermanifold.

On the other hand, on T', we have still worse behaviour of geodesies
with respect to the causality principle than on 7\ or T2, resulting in a
breakdown of the global time orientability. But this is due to the fact
that we have made too many identifications (for the sake of simplicity):
it is not necessary to identify T[ and T2 along all three regions TM1?

TM2, and TM3. Instead, we could glue together an infinite number of
copies of T[ and T2, each two neighbouring along one of the regions
only, into a ladder-like construction.
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Appendix

Proof of the Theorem 3. If there is such a point pr then its coordinates
are given by

z = z ζ = ζ2 = lim C(z), Θ = Θ2 = lim Θ(z\ φ = φ2= lim φ(z), (20)
Z->Z2 Z-+Z2 Z-*Z2

where £(z), Θ(z\ and φ(z) are coordinates ζ, Θ, and φ as functions of z
along the geodesic y. On the other hand, if the limits (20) exist, then the
point of coordinates z2, C2, <92, and φ2 is the desired point py. Therefore,
it is sufficient to examine the existence of the limits (20) for all geodesies.
Consider the following cases:

Eqs. (2)~(5) and (10) imply κ = — 1 and

Hence ζ = const, Θ — const, φ = const; the limits (20) exist and are
equal to the constants.

2) p Φ 0, p3 — PI I =0.

9 Commun. math. Phys., Vol. 17
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Eq. (7) implies either sin Θ = 0 or pί cos φ + p2 sin φ = 0. In the first
subcase, φ makes no sense, but we can set φ = 0. Then, from (5), ζ = const,
and Eqs. (2) and (3) give p1 = p2 = 0, but this is not compatible with
p φ 0. In the second sub-case, we have £, φ = const. Thus, the limits (20)
for and ζ, φ exist and are equal to the constants. Next, pl = εpsmφ2,
p2 = — εp cosφ2, where ε2 = 1, and from (2) and (3) it follows

which, together with Eq. (10), gives κ = — 1 and

2pldx
Θ(z) = Θ-ε J

where α = ]/4p2/2 — 1/4. The improper integral on the right side con-

verges except when p = (l/4/)|/4zfTΊ; then, however, the geodesic is
complete.

3) P 3 ΦP| | = 0.
Eq. (7) implies sin Θ φ 0, sin Θ2 Φ 0. From Eqs. (8) we have

sinΘ cosφ = An cosψ + A21 sinip ,

sin Θ sinφ = A12 costp + ̂ 22 sintp , (23)

cos Θ — A^ cos tp + ^423 sin ip .

Eqs. (9)-(ll) give κ = -1 and

]/(a - x) (a + x) (x - Zί) (z2 - x) '

cos Θ dx

These integrals converge except when p = (1/4/) J/ϊz2 +1, but then the
proper length diverges, too.

4) P, |Φθ,p 3 Φp,, .
Eq. (7) forbids Θ and Θ2 to be 0 or π and, from Eqs. (10) and (11), we

immediately see that the corresponding integral for £(z) diverges, while
the proper length remains finite.

5) P3 = P | | Φ O .
Eqs. (4) and (5) yield either cos Θ = 1, or

. pcosα 4pcosα cos (9
C = (7 4z2 + l "l + cosΘ"'
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and then, from (7), cos(9φ —1, cos(92φ —1. In the first sub-case, we
can set φ = 0, which, together with (2)-(5) gives

17 '

Clearly, in either case, ζ(z) must diverge. Q.E.D.
Proof of the Theorem 4. The components z2, C2, ®2> Φi* of the tangent

vector to y at py are given by

z2 - lim z(z), C2 - lim ζ(z) ,
z-*z2 Z-+Z2

(9 2 = lim <9(z), φ2 = lim φ(z) .
Z-»Z2 2->Z2

We can use the symbolics and the case division of the foregoing proof.
1 ) P = P|| = 0-
Eqs. (21) imply z2 = (2 = Θ2 = Φ2

 = 0> and the geodesic with opposit
tangent vector at py is just the same geodesic. We shall see, that it is
unique.

2) p φ θ , p 3 = p n = 0.
Eqs. (10) and (22) give

Hence, there are just two geodesies, for a given p, and their tangent
vectors are opposit to one another.

3) P3^P\\ = ̂
In order to have a unique description of y in a neighbourhood of pr

we set ψ2 = 0. Then, we define a parameter β by

. ~. n n 7i n n n n n .
p3=pSinΘ2COSβ, -π<β< -y, ~y<^<y,y<^^π.

Now, the matrix ^0 is uniquely determined. In particular, from (23)

Aίί = sin6>2 cosφ2, τ421 = — cos6)2 cosφ2 sinjβ — sinφ2 cosβ,

A12 = smΘ2 sinφ2, ^L22 = — cos<92 sinφ2 sinβ + cosφ2 cos/?,

A13 = cos(92, v423 = sin<92

and we have

4p cosβ
_P, ^2- 4
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Hence, the geodesies reaching the point py form a two parameter family,
and we see immediately, that for every γ with the parameters p, β there
is γ with the parameters /?, β = β + π (or β — π, in order that — π < β ^ π),
whose tangent vector at py is just the inverse to that of γ, and that y is
the unique geodesic of this property. Q.E.D.
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