Extensions of the Taub and NUT Spaces and Extensions of their Tangent Bundles

Petr Hajicek
Institute of Theoretical Physics, University of Berne
Received February 10, 1970

Abstract

A system of extensions of the Taub space and the NUT space with the topology due to Misner is constructed having the property: for each incomplete geodesic in these space-times, there is one and only one extension from the system into which the geodesic smoothly continues. Next, the notion of hypermanifold is introduced which is a generalization of tangent bundle of a space-time, and an untrivial hypermanifold is constructed that contains the tangent bundles of the Taub and NUT spaces as proper submanifolds, and within which almost all geodesics are complete. Locally, the hypermanifolds do not yield anything new, but they provide much broader choice of global properties than any four-dimensional space-time manifold.

1. Introduction

A significant feature of Einstein's theory of gravitation is that the local characteristics of a space-time, measurable in a small neighbourhood of a point, are closely related to the properties of the solution as a whole, and that these global, topological properties may be untrivial, in fact very impressive, and sometimes quite complicated. This is of invaluable importance for such a global theory as cosmology is, where the general relativity provides a language even to formulate problems, to say nothing about their solutions.

On the other hand, the choice of topologies as actually implied by the theory in particular solutions is sometimes restricted enough, so that closed time- or light-like lines violating the last rests of causality in physics cannot be avoided [1].

With the progress in mathematical tools, the interest of physicists in this field increases. We mention the papers of Penrose [2], Hawking [3-5], and Geroch [6], where the famous singularity theorems have been stated and proved: if some more or less verifiable conditions are fulfilled, then a kind of singularity of the given space-time is inevitable. These conditions are highly general in that no special space symmetry and no explicit state equation of matter are assumed. The singular space-time is defined as follows: 1 . The space-time is not extendable, or, there is no space-time including the original one as its proper sub-manifold. 2 . There
are time- or light-like geodesics that cannot be extended to an arbitrary length of their affine parameter.

It is not difficult to see that the definition includes what is commonly understood under the singularity, namely the unbounded curvature or mass density at some points: in fact, these points must be cut out from the space-time or else this would not be a differentiable manifold, and, then, all geodesics approaching the points remain incomplete. Nevertheless, the definition includes quite different cases as well. One can imagine that the incompleteness of a relatively small number of geodesics would be innocuous, if, at all, of physical interest [1]. Another example is the so-called Misner's singularity, which is exhibited by the TaubNUT space: the curvature is regular everywhere and still some geodesics are incomplete and maximal within a compact ${ }^{1}$ region of the space. The aim of the present paper is to investigate this singularity in some detail, in a hope that this may add to a better understanding of the nature of singular spaces.

In 1951, Taub proposed a homogeneous, non-isotropic, expanding, empty model of the Universe [7], hereafter called the Taub space. The model can possess a topology $S^{3} \times\left(z_{1}, z_{2}\right)$, where we denote the threedimensional spherical hypersurface by S^{3} and the open interval of reals, $z_{1}<z<z_{2}$, by $\left(z_{1}, z_{2}\right)$. The closed hypersurfaces $z=$ const are spacelike minimal invariant sub-spaces of the three-parameter group of motions of the space. For $z=z_{1}, z=z_{2}$, the metric becomes singular. Independently, another solution of Einstein's equations without matter allowing a three-parameter isometry group, usually referred to as NUT space, was found by Newman, Tamburino and Unti [8]. The metric is static and displays singularities of two kinds. Misner has shown one of them to be removable, if the topology of the minimal invariant subspaces is chosen to be S^{3}. (Another topology of these three-dimensional hypersurfaces has recently been proposed by Bonnor [10]. The singularity is maintained and can be interpreted as a rotation axis.) Then, there are closed time-like lines, of course, and the topology of the whole space looks like $S^{3} \times\left(z_{2}, \infty\right)$, the second singularity being at z_{2}. Now, the two spaces, Taub and NUT, prove to fit one another analytically along the light-like three-dimensional hypersurface $z=z_{2}$, in a similar way as the inner and outer Schwarzschild solutions extend one another beyond the hypersurface $r=2 \mathrm{~m}$. There are two different possibilities how to sew the spaces together, the two famous Taub-NUT spaces coming thus into being and beginning to provide "counterexamples to almost everything" [11].

In fact, the Taub and NUT spaces are two-parameter families of space-times. We denote the parameters by l and $m, l \geqq 0, m>0$. The

[^0]space-times corresponding to the value $l=0$ are, respectively, the inner and outer Schwarzschild solution. Nevertheless, for cur study, we choose the coordinates $z_{,} \zeta_{,}, \Theta$, and φ_{1}, which can only be introduced, if $l>0$. The line element is given by
$d s^{2}=(2 l)^{2}\left[U^{-1} d z^{2}-U(d \zeta+\cos \Theta d \varphi)^{2}-\frac{4 z^{2}+1}{4}\left(d \Theta^{2}+\sin ^{2} \Theta d \varphi^{2}\right)\right]$.
where
$$
U=\frac{4\left(z-z_{1}\right)\left(z_{2}-z\right)}{4 z^{2}+1}
$$
and $z_{1}<z_{2}$ are fixed reals, $z_{1}=-l /\left(8 m^{2}\right), z_{2}=m / l$. The metric (1) has signature -2 and can be obtained from that in [12], Eq. (26) on reversing signature and performing the transformation
$$
t=2 l z, \quad \vec{\psi}=\zeta, \quad \Theta=\Theta, \quad \varphi=\varphi, \quad t_{i}=2 l z_{i}(i=1,2)
$$

The regions, where the metric is non-singular, are $z_{2}<z<\infty, z_{1}<z<z_{2}$, and $-\infty<z<z_{1}$, the corresponding manifolds being denoted by M_{1}, M_{2}, and M_{3}, respectively. The hypersurfaces $z=$ const are topologically S^{3}, and the coordinates ζ, Θ, and φ are introduced similarly as ψ, Θ, and φ in [9]. ζ has the period $4 \pi, \Theta$ and φ behave like the usual spherical coordinates. The manifolds M_{1} and M_{3} are equivalent to NUT space and M_{2} to Taub space.

We briefly re-collect some well-known information about geodesics in these spaces [12] as written in the coordinates z, ζ, Θ, and φ.

The first integrals of the geodesic equation are

$$
\begin{align*}
p_{1}= & U \sin \Theta \cos \dot{\varphi} \dot{\varphi}-\frac{4 z^{2}+1}{4} \sin \dot{\varphi} \dot{\Theta} \tag{2}\\
& +\left(U-\frac{4 z^{2}+1}{4}\right) \sin \Theta \cos \Theta \cos \varphi \dot{\varphi} \\
p_{2}= & U \sin \Theta \sin \varphi \dot{\zeta}+\frac{4 z^{2}+1}{4} \cos \varphi \dot{\Theta} \tag{3}\\
& +\left(U-\frac{4 z^{2}+1}{4}\right) \sin \Theta \cos \Theta \sin \varphi \dot{\varphi} \\
p_{3}= & U \cos \Theta \dot{\zeta}+\left(\frac{4 z^{2}+1}{4} \sin ^{2} \Theta+U \cos ^{2} \Theta\right) \dot{\varphi} \tag{4}\\
p_{\|}= & U(\dot{\zeta}+\cos \Theta \dot{\varphi}) \tag{5}\\
\frac{x}{4 l^{2}}= & U U^{-1} \dot{z}^{2}-U(\dot{\zeta}+\cos \Theta \dot{\varphi})^{2} \tag{6}\\
& -\frac{4 z^{2}+1}{4}\left(\dot{\Theta}^{2}+\sin ^{2} \Theta \dot{\varphi}^{2}\right)
\end{align*}
$$

where $\chi= \pm 1,0$ according to the kind of geodesic. From (2)-(5), it follows

$$
\begin{equation*}
p_{1} \sin \Theta \cos \varphi+p_{2} \sin \Theta \sin \varphi+p_{3} \cos \Theta=p_{\| \mid} \tag{7}
\end{equation*}
$$

the integrals being not independent. If $p=\sqrt{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}} \neq 0$, Eq. (7) is non-trivial and has the following parametric solution

$$
\begin{align*}
\sin \Theta \cos \varphi & =A_{11} \sin \alpha \cos \psi+A_{21} \sin \alpha \sin \psi+A_{31} \cos \alpha \\
\sin \Theta \sin \varphi & =A_{12} \sin \alpha \cos \psi+A_{22} \sin \alpha \sin \psi+A_{32} \cos \alpha \tag{8}\\
\cos \Theta & =A_{13} \sin \alpha \cos \psi+A_{23} \sin \alpha \sin \psi+A_{33} \cos \alpha
\end{align*}
$$

where $A_{i j}$ is an arbitrary fixed orthogonal matrix having $\operatorname{Det} A_{i j}=1$ and satisfying the relations $p_{i}=p \cdot A_{3 i}, \alpha$ is the constant, $0 \leqq \alpha \leqq \pi$, determined by $\cos \alpha=p_{\|} \cdot p^{-1}$, and ψ is the parameter. Simple calculations give

$$
\begin{align*}
\dot{\Theta}^{2}+\sin ^{2} \Theta \dot{\varphi}^{2} & =\sin ^{2} \alpha \dot{\psi}^{2} \\
\dot{\psi}^{2} & =\frac{4 \mathrm{p}}{4 z^{2}+1} \tag{9}
\end{align*}
$$

Then, (5) and (6) imply

$$
\begin{equation*}
\dot{z}=\sqrt{p_{\|}^{2}+\left(\frac{x}{4 l^{2}}+\frac{4 p_{\perp}^{2}}{4 z^{2}+1}\right) U} \tag{10}
\end{equation*}
$$

where $p_{\perp}=p \sin \alpha$, while from (4) and (5) we have

$$
\begin{equation*}
\dot{\zeta}=\frac{p_{\|}}{U}-\frac{4 p}{4 z^{2}+1} \cdot \frac{A_{33} \cos \Theta-\cos \alpha \cos ^{2} \Theta}{\sin ^{2} \Theta} . \tag{11}
\end{equation*}
$$

The formulae (2)-(11) will be of use later.
In section 2, various extensions of M_{1}, M_{2}, and M_{3} are described and their relation to incomplete geodesics is examined. In addition to the two Taub-NUT extensions, a new one, denoted P_{i}, is found for each M_{i}, so that every incomplete maximal geodesic of M_{i} looses its maximality within one and only one of the three extensions. Thus, a family of incomplete geodesics is associated with each extension, and these families turn out to be identical with the three classes of geodesics according as $p_{\| \mid}<0, p_{| |}>0$, and $p_{| |}=0$.

In Section 3, extensions of the tangent bundle of M_{i} are defined and shown to allow more geodesics to be complete than any extension of M_{i} does, in such a way that one of these extensions is constructed and some of its properties including the behaviour of geodesics are investigated.

2. Complete System of Extensions

As it is well-known $[9,11,12]$, each space-time M_{i} has two different Taub-NUT extensions. Some basic information concerning these follows.

The metric is given by

$$
\begin{align*}
d s^{2}= & -(2 l)^{2}\left[2(d \xi+\cos \Theta d \varphi) d z+U(d \xi+\cos \Theta d \varphi)^{2}\right. \tag{12}\\
& \left.+\frac{4 z^{2}+1}{4}\left(d \Theta^{2}+\sin ^{2} \Theta d \varphi^{2}\right)\right]
\end{align*}
$$

for the space which we denote by T_{1}, and by

$$
\begin{align*}
d s^{2}= & -(2 l)^{2}\left[-2(d \eta+\cos \Theta d \varphi) d z+U(d \eta+\cos \Theta d \varphi)^{2}\right. \tag{13}\\
& \left.+\frac{4 z^{2}+1}{4}\left(d \Theta^{2}+\sin ^{2} \Theta d \varphi^{2}\right)\right]
\end{align*}
$$

for the space denoted by $T_{2} . \xi$ and η are periodic coordinates with the period 4π, related to ζ and to one another, in the regions M_{1}, M_{2}, and M_{3} of T_{1} or T_{2}, by

$$
\begin{align*}
& \zeta=\xi-z+\frac{1}{4\left(z_{2}-z_{1}\right)}\left[\left(4 z_{1}^{2}+1\right) \lg \left|z-z_{1}\right|-\left(4 z_{2}^{2}+1\right) \lg \left|z-z_{2}\right|\right] \tag{14}\\
& \eta=\xi-2 z+\frac{1}{2\left(z_{2}-z_{1}\right)}\left[\left(4 z_{1}^{2}+1\right) \lg \left|z-z_{1}\right|-\left(4 z_{2}^{2}+1\right) \lg \left|z-z_{2}\right|\right] \tag{15}
\end{align*}
$$

Note that the coordinate lines $\xi=$ const, $\Theta, \varphi=$ const are light-like geodesics with $p=p_{\|}=1$, and the lines $\eta=\mathrm{const}, \Theta, \varphi=\mathrm{const}$ are light-like geodesics with $-p=p_{\|}=-1$.

Let us denote the boundary of a set N in T_{1} by $\partial_{1} N$, in T_{2} by $\partial_{2} N$. $\partial_{1} M_{1}$ and $\partial_{2} M_{1}$ are regular three-dimensional closed hypersurfaces $z=z_{2}$, homeomorphic to S^{3}, with metric

$$
-(2 l)^{2} \frac{4 z_{2}^{2}+1}{4}\left(d \Theta^{2}+\sin ^{2} \Theta d \varphi^{2}\right)
$$

in the coordinates ξ, Θ, φ, and η, Θ, φ, respectively, the curves $\Theta, \varphi=$ const being closed and light-like.

Theorem 1. For each geodesic γ in M_{1}, along which the integral $p_{\|}>0$ $\left(p_{\|}<0\right)$, and only for these geodesics, there is just one point p_{γ} on $\partial_{1} M_{1}$ $\left(\partial_{2} M_{1}\right)$ such that $p_{\gamma} \in \partial_{1}\{\gamma\}\left(p_{\gamma} \in \partial_{2}\{\gamma\}\right) .(\{\gamma\}$ is the set of points lying on $\gamma)$.

If we rewrite the relations (9)-(11) in the coordinates z, ξ, Θ, and φ $(z, \eta, \Theta$, and φ), the proof will be quite analogous to that of Theorem 3 as given in the Appendix. We do not write it explicitly.

Theorem 2. For each geodesic γ in M_{1} with $p_{\| \mid}>0\left(p_{\| \mid}<0\right)$, there is a unique smooth extension beyond the boundary $\partial_{1} M_{1}\left(\partial_{2} M_{1}\right)$ into the region M_{2}.

Proof. Each Taub-NUT space is a locally regular pseudo-Riemannian manifold. Every point and direction determine a unique geodesic. The desired extension is the geodesic passing through the point p_{γ}, whose existence is assured by Theorem 1, in the direction defined at the point by γ.

Analogic considerations for remaining regions and boundaries yield similar results.

The Theorems 1 and 2 assert that the geodesics in M_{i} may be divided into three families according as $p_{\|}>0, p_{\|}<0$, and $p_{\|}=0$. For each of the first two families, an extension of M_{i} exists, within which all incomplete maximal geodesics of the family, and only these, may be extended. Now, we try to construct an extension for each M_{i} having this property with respect to the family characterized by $p_{\|}=0$. The extensions we shall arrive at are the minimal ones with the desired property; they display many unusual features.

Forgetting of the metric we have a differentiable manifold from T_{1}, on which the three submanifolds with boundaries, $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$, can be defined by means of coordinates z, ξ, Θ, φ (for the definition of a manifold with boundary, see [14], p. 30 and ff.):

$$
\begin{array}{llll}
P_{1}^{\prime}: z_{2} \leqq z<\infty, & 0 \leqq \xi<4 \pi, & 0 \leqq \Theta<\pi, & 0 \leqq \varphi<2 \pi \\
P_{2}^{\prime}: z_{1} \leqq z \leqq z_{2}, & 0 \leqq \xi<4 \pi, & 0 \leqq \Theta<\pi, & 0 \leqq \varphi<2 \pi \\
P_{3}^{\prime}:-\infty<z \leqq z_{1}, & 0 \leqq \xi<4 \pi, & 0 \leqq \Theta<\pi, & 0 \leqq \varphi<2 \pi
\end{array}
$$

In this way, the topological and differentiable structure of P_{i}^{\prime} is uniquely determined. Next, we change the notation on P_{i}^{\prime}, and write ζ in place of ξ, so that the metric can be introduced by Eq. (1) in all points of P_{i}^{\prime}, where (1) makes sense. Denote the resulting spaces by P_{i}. Clearly, P_{i} are not any submanifolds of T_{1}, but it is not difficult to show that M_{i} is an open submanifold of $P_{i}, i=1,2,3$. If we introduce the symbols $\Delta M_{1}, \Delta M_{2}$, and ΔM_{3} for the closed submanifolds of P_{1}, P_{2}, and P_{3} defined by the relations $z=z_{2} ; z=z_{1}, z=z_{2} ; z=z_{1}$, respectively, then the set ΔM_{i} is the boundary of the open set M_{i} in the topological space P_{i}, and $P_{i}=M_{i} \cup \Delta M_{i}$, for each i^{2}.

Now, we state two theorems concerning the space P_{1}; their proofs can be found in the Appendix. In P_{2} and P_{3}, analogous theorems hold and their proofs are quite similar; I drop them.

[^1]Theorem 3. For each incomplete maximal geodesic γ in M_{1} characterized by $p_{\|}=0$, and only for these geodesics, $\{\gamma\}$ has just one limit point on ΔM_{1}.

Accordingly, each geodesic γ of this sort approaches a unique point p_{γ} on ΔM_{1}. Adding this point to γ, we could define this to be an extension of γ in P_{1}. It is a problematic construction, because there is no metric defined in the points of ΔM_{1}. But it is unique, and, moreover, it has the following interesting property:

Theorem 4. Let γ be a geodesic on P_{1} that cuts ΔM_{1} in a point p_{γ}. Then, there is a unique geodesic $\bar{\gamma}$ on P_{1} which cuts ΔM_{1} in the same point p_{γ} and which matches γ at least C^{1}-smoothly in $p_{\gamma}{ }^{3}$.

This theorem suggests that each geodesic segment incomplete in M_{1} can be smoothly extended by another segment of this sort, both being joined together by a point of ΔM_{1}. While the geodesics extended in this way on P_{1} and P_{3} are space-like, so that their loops are not extraordinary strange, on P_{2} we have some interesting phenomena.

Example 1. The curve in P_{2} given by

$$
z=\frac{z_{1}+z_{2}}{2}+\frac{z_{2}-z_{1}}{2} \sin \Theta, \quad \zeta=\zeta_{0}, \varphi=\varphi_{0}
$$

is a light-like, smooth, closed geodesic with $p_{1}=-p \sin \varphi_{0}, p_{2}=p \cos \varphi_{0}$, and $p_{3}=p_{\|}=0, z$ and Θ being periodic with the period 2π. For $\Theta= \pm \pi / 2$, the curve reaches the boundary points.

Example 2. Along the time-like geodesic with $p_{\| 1}=p_{1}=p_{2}=0$, $p=p_{3}=\sqrt{3} / 4 l$, we can set $\zeta=\zeta_{0}, \Theta=\pi / 2$, and we obtain the relation

$$
\frac{d z}{d \varphi}=\frac{2 \sqrt{3}}{3} \sqrt{\left(z-z_{1}\right)\left(z_{2}-z\right)\left(z^{2}+1\right)}
$$

whose solution is given by

$$
z=\frac{A z_{1}+B z_{2}+\left(A z_{1}-B z_{2}\right) \operatorname{cn}\left[2 \sqrt{\frac{A B}{3}}\left(\varphi-\varphi_{0}\right)\right]}{A+B+(A-B) \mathrm{cn}\left[2 \sqrt{\frac{A B}{3}}\left(\varphi-\varphi_{0}\right)\right]}
$$

where $A=\sqrt{1+z_{2}^{2}}, B=\sqrt{1+z_{1}^{2}}$, and $\mathrm{cn}(x)$ is Jacobi's elliptic cosinus (see, e.g., [15], p. 491) with

$$
k=\sqrt{\frac{1}{2}-\frac{1}{2} \frac{1+z_{1} z_{2}}{A B}} .
$$

[^2]The function $z(\varphi)$ has the period $\frac{2 \sqrt{3} \cdot K(k)}{\sqrt{A B}}$, where $K(k)$ is the complete elliptic integral, φ has the period 2π. If $\frac{K(k)}{\pi} \cdot \sqrt{\frac{3}{A B}}$ is a rational, we have a smooth closed loop, in general intersecting itself in some points, and if the ratio is irrational, we have a curve dense in the two-dimensional surface $\Theta=\pi / 2, \zeta=\zeta_{0}$.

We shall see in the next section that this behaviour of geodesics on P_{i} is, in a sense, similar to that on hypermanifold and could be regarded as a certain limiting case of the latter for $p_{\|} \rightarrow 0$.

3. Taub-NUT Hypermanifold

None of the three extensions of the Taub and NUT space described in the preceding section has been geodesically complete. The question is natural, whether there is a broader, perhaps even geodesically complete, extension.

We have seen that the Taub-NUT extensions might be constructed in the following way: all light-like geodesics with $p=p_{\| \|}=1$ are incomplete and can be shown to form a three parameter congruence, say, C_{1}. They may, therefore, serve as coordinate lines. In such a coordinate system, the metric is not singular at $z=z_{1}, z=z_{2}$ and has a unique analytic extension, namely T_{1}. Similarly, for $-p=p_{| |}=-1$, the congruence C_{2} is obtained which yield the extension T_{2}. This implies that the extensions of the Taub or NUT spaces including extensions of all geodesics of the congruence C_{i} must contain at least the boundary of that space in T_{i}. In particular, the extension of M_{1} in which the geodesics of C_{1} and C_{2} should all be a little longer than in M_{1} would have to contain M_{1} and both boundaries $\partial_{1} M_{1}$ and $\partial_{2} M_{1}$. Such an extension, however, does not exist. It is not difficult to see that every neighbourhood of a point $z_{2}, \xi_{2}, \Theta_{2}, \varphi_{2}$ on $\partial_{1} M_{1}$ in M_{1} contains a point lying in any neighbourhood of any point $z_{2}, \eta_{2}, \Theta_{2}, \varphi_{2}$ on $\partial_{2} M_{1}$ we can choose. Then, the space would not be Hausdorff ${ }^{4}$.

In [16], an attempt has been made to discard the requirement that space-times be Hausdorff, and, indeed, a more complete non-Hausdorff manifold has been constructed. But this generalization is too drastic, e.g., it would allow for manifolds with geodesics having more than one continuation.

There is another, weaker, generalization, which does not exhibit these pathological features. We know that the boundary $\partial_{1} M_{1}$ is cut by those

[^3]geodesics only, for which $p_{\|}>0$. Because of (11), the component $\dot{\zeta}$ of their tangent vector approaches $+\infty$ at $\partial_{1} M_{1}$. Similarly, $\partial_{2} M_{1}$ is cut only by geodesics, whose $\dot{\zeta}$ tends to $-\infty$ at the boundary. In a space (of more dimensions than four, of course) where $\dot{\zeta}$ could be introduced as an independent differentiable coordinate in addition to z, ζ, Θ, and φ, both boundaries would possibly be topologically distinguishable: the points "near them" would have, then, "very different" coordinate $\dot{\zeta}$.

Thus, we are led to the notion of tangent bundle (for exact theory, see, e.g., $[13,14,17])$. Tangent bundle $T M$ of a space-time M is an eightdimensional differentiable manifold, whose points are pairs consisting of 1) a point of $M 2$) a tangent vector to M at the point. The preceding considerations suggest that there should be a well-defined boundary of $T M_{1}$ stroken by geodesics with $p_{\|} \neq 0$, and that this boundary is likely to form, together with $T M_{1}$, a Hausdorff space. Accordingly, we might expect that there is some relatively regular extension of tangent bundle of the Taub or NUT space, within which all geodesic with $p_{\|} \neq 0$ could be extended.

If we have a manifold M with differentiable coordinates, say, $x^{1}, x^{2}, \ldots, x^{n}$, in some open region on it, we can describe the tangent vectors at the points of the region by means of the local coordinate systems as induced there by these coordinates (see, e.g., [13], Chap. 4). Denote the corresponding components of a vector $\dot{x}^{1}, \dot{x}^{2}, \ldots, \dot{x}^{n}$. In such a way, we have the coordinates $x^{1}, x^{2}, \ldots, x^{n}, \dot{x}^{1}, \dot{x}^{2}, \ldots, x^{n}$ on the $T M$, which may be shown to be differentiable, and which we shall call the canonical coordinates. Then, the coordinate transformation

$$
y^{i}=f^{i}\left(x^{1}, x^{2}, \ldots, x^{n}\right), \quad i=1,2, \ldots, n
$$

on M induces the transformation

$$
\begin{equation*}
y^{i}=f^{i}\left(x^{1}, x^{2}, \ldots, x^{n}\right), \quad \dot{y}^{i}=\sum_{j=1}^{n} \frac{\partial f^{i}}{\partial x^{j}} \dot{x}^{j} \tag{16}
\end{equation*}
$$

on TM.
Now, choose the coordinates $z, \xi, \Theta, \varphi, \dot{z}, \dot{\xi}, \dot{\Theta}$, and $\dot{\varphi}$ on $T T_{1}, z, \eta, \Theta$, $\varphi, \dot{z}, \dot{\eta}, \dot{\Theta}$, and $\dot{\varphi}$ on $T T_{2}$, and cut out the two six-dimensional hypersurfaces $z=z_{1}, \dot{z}=0$ and $z=z_{2}, \dot{z}=0$ from both $T T_{1}$ and $T T_{2}$. The two eight-dimensional differentiable manifolds obtained in this way will be denoted by T_{1}^{\prime} and T_{2}^{\prime}, respectively. Next, glue T_{1}^{\prime} and T_{2}^{\prime} together to form a space T^{\prime} in the following manner: T_{1}^{\prime} and T_{2}^{\prime} will be sub-spaces of T^{\prime} and each point of T^{\prime} will lie either in T_{1}^{\prime} or in T_{2}^{\prime} or in both. The regions, where T_{1}^{\prime} and T_{2}^{\prime} will cover one another, let be $T M_{1}, T M_{2}$, and $T M_{3}$, and the transformation between the coordinates ξ and η of the same point let be given by (15). We must show that such a glueing up is possible, i.e., that T^{\prime} is a differentiable, Hausdorff, manifold.

There is a countable basis $B\left(T_{i}^{\prime}\right)$ of the topology of $T_{i}^{\prime}(i=1,2)$, because T_{i}^{\prime} is a manifold $[13,14]$. The sets $B\left(T_{1}^{\prime}\right)$ and $B\left(T_{2}^{\prime}\right)$ can have a non-zero intersection, as systems of sub-sets of T^{\prime}. Their union is a countable basis of the topology of T^{\prime}. Then, the functions $z, \xi, \eta, \Theta, \varphi$, $\dot{z}, \dot{\xi}, \dot{\eta}, \dot{\Theta}, \dot{\varphi}$ can provide the local diffeomorphisms of T^{\prime} in $E^{8} . T^{\prime}$ is Hausdorff, as we can see from the following considerations. Let us take a pair of points p, q, and distinguish the following cases:

1) The points differ at least in one of the coordinates $z, \xi, \eta, \Theta, \varphi$, $\dot{z}, \dot{\xi}, \dot{\eta}, \dot{\Theta}, \dot{\varphi}$. More precisely, if we denote this coordinate X, then we can write $|X(p)-X(q)|>0$. Choose $\varepsilon=\frac{1}{3}|X(p)-X(q)|$ and define the ε-neighbourhood U_{p} of the point p by the usual inequalities of the type $z(p)-\varepsilon$ $<z<z(p)+\varepsilon$, etc., and, in the same manner, the ε-neighbourhood U_{q} of q. Then, U_{p} and U_{q} are open, have no points in common and $p \in U_{p}$, $q \in U_{q}$.
2) Let the following equations hold

$$
\begin{array}{ll}
z(p)=z(q)=z_{2}, & \dot{z}(p)=\dot{z}(q)=A, \\
\xi(p)=\xi_{2}, \eta(q)=\eta_{2}, & \dot{\xi}(p)=\dot{\xi}_{2}, \dot{\eta}(q)=\dot{\eta}_{2} \\
\Theta(p)=\Theta(q), & \dot{\Theta}(p)=\dot{\Theta}(q) \\
\varphi(p)=\varphi(q), & \dot{\varphi}(p)=\dot{\varphi}(q)
\end{array}
$$

Then, there is $\varepsilon>0$ satisfying
i) $(A-\varepsilon)(A+\varepsilon)>0$,
ii) within the interval $\left(z_{2}-\varepsilon, z_{2}+\varepsilon\right), U$ is a monotone function of z, and an open neighbourhood U_{p} of p such that the following relations are obeyed by the coordinates z, \dot{z} and $\dot{\xi}$ of each point in U_{p} :

$$
z_{2}-\varepsilon<z<z_{2}+\varepsilon, \quad A-\varepsilon<\dot{z}<A+\varepsilon, \quad \dot{\xi}_{2}-\varepsilon<\dot{\xi}<\dot{\xi}_{2}+\varepsilon .
$$

Similarly, there is an open neighbourhood U_{q} of q where

$$
z_{2}-\varepsilon<z<z_{2}+\varepsilon, \quad A-\varepsilon<\dot{z}<A+\varepsilon, \quad \dot{\eta}_{2}-\varepsilon<\dot{\eta}<\dot{\eta}_{2}+\varepsilon .
$$

By means of (15) and (16) we find

$$
\begin{equation*}
\dot{\eta}=\dot{\xi}+2 U^{-1} \dot{z} \tag{17}
\end{equation*}
$$

from which the following inequalities can be derived for the coordinate $\dot{\eta}$ of the points in $U_{p} \cap U_{q}$:

$$
\begin{aligned}
& \dot{\eta}_{2}-\varepsilon<\dot{\eta}<\dot{\eta}_{2}+\varepsilon, \\
z> & z_{2}: \dot{\eta}<-\frac{A}{2 \varepsilon} \frac{4\left(z_{2}+\varepsilon\right)^{2}+1}{z_{2}-z_{1}+\varepsilon}+\frac{4\left(z_{2}+\varepsilon\right)^{2}+1}{2\left(z_{2}-z_{1}+\varepsilon\right)}+\dot{\xi}_{2}+\varepsilon, \\
z< & z_{2}: \dot{\eta}>\frac{A}{2 \varepsilon} \frac{4\left(z_{2}-\varepsilon\right)^{2}+1}{z_{2}-z_{1}-\varepsilon}-\frac{4\left(z_{2}-\varepsilon\right)^{2}+1}{2\left(z_{2}-z_{1}-\varepsilon\right)}+\dot{\xi}_{2}-\varepsilon,
\end{aligned}
$$

under the assumption that $A>0$, and

$$
\begin{gathered}
\dot{\eta}_{2}-\varepsilon<\dot{\eta}<\dot{\eta}_{2}+\varepsilon \\
z>z_{2}: \dot{\eta}>\frac{|A|}{2 \varepsilon} \frac{4\left(z_{2}+\varepsilon\right)^{2}+1}{z_{2}-z_{1}+\varepsilon}-\frac{4\left(z_{2}+\varepsilon\right)^{2}+1}{2\left(z_{2}-z_{1}+\varepsilon\right)}+\dot{\xi}_{2}-\varepsilon, \\
z<z_{2}: \dot{\eta}<-\frac{|A|}{2 \varepsilon} \frac{4\left(z_{2}-\varepsilon\right)^{2}+1}{z_{2}-z_{1}-\varepsilon}+\frac{4\left(z_{2}-\varepsilon\right)^{2}+1}{2\left(z_{2}-z_{1}-\varepsilon\right)}+\dot{\xi}_{2}+\varepsilon,
\end{gathered}
$$

under the assumption $A<0$. Infer that $\varepsilon<z_{2}-z_{1}$, because U is not monotone in the whole interval $\left(z_{1}, z_{2}\right)$. Thus, clearly, there is always $\varepsilon>0$ small enough ${ }^{5}$ to ensure that $U_{p} \cap U_{q}=\emptyset$.
3) The same equations holds as in 2) with the exception that $z(p)=z(q)=z_{1}$. The case is completely analogous to 2) and need not, therefore, be explicitly analyzed here.

Thus, T^{\prime} is shown to be Hausdorff, and, consequently, a differentiable manifold. T^{\prime} is, however, much richer in properties; it is a certain generalization of tangent bundle of a space-time.

Definition 1. Hypermanifold H is an eight-dimensional differentiable manifold, on which a set system S is given. The elements of S are called simple sets and satisfy the following axioms:

1) S is an open covering of H.
2) If $M \in S, N \in S$, then $M \cap N \in S$.
3) For each $M \in S, M \neq 0$, there is a four-dimensional pseudoRiemannian differentiable manifold, $\pi(M)$, such that $M \subset T \pi(M)$.
4) If $\pi_{M}: T \pi(M) \rightarrow \pi(M)$ denotes the natural tangent bundle projection of $T \pi(M)^{6}$, then $\pi_{M}(M)=\pi(M)$.
5) If $M \in S, N \in S, N \subset M, N \neq 0$, and $\pi_{M} \mid N$ denotes the restriction of the map π_{M} to the set N, then $\pi_{N}=\pi_{M} \mid N$, and $\pi(N)$ is a pseudoRiemannian submanifold of the manifold $\pi(M)$.
[^4]Definition 2. Two hypermanifolds H and H^{\prime} with the systems S and S^{\prime} of simple sets, respectively, are equivalent, if there is a map $\Psi: H \rightarrow H^{\prime}$ having the following properties:

1) Ψ is a diffeomorphism with respect to the manifold structure of H and H^{\prime}.
2) If $M \in S$, then $\Psi(M) \in S^{\prime}$.
3) For each $M \in S$ there is a diffeomorphism and isometry $\psi_{M}: \pi(\Psi(M)) \rightarrow \pi(M)$ such that $\psi_{M}^{*}|M=\Psi| M^{7}$.

Example 3. Given a manifold M, then every open submanifold H of its tangent bundle $T M$ is a hypermanifold; H is simultaneously its own simple set.

Example 4. T^{\prime} is a hypermanifold; its simple sets are $T_{1}^{\prime}, T_{2}^{\prime}$ and all open subsets of T_{1}^{\prime} or T_{2}^{\prime}. Note that there is no space-time M having tangent bundle $T M$ such that $T^{\prime} \subset T M$. This may be seen from the fact that the projections of T_{1}^{\prime} and T_{2}^{\prime} contain $M_{1} \cup \partial_{1} M_{1}$ and $M_{1} \cup \partial_{2} M_{1}$, so that the space-time would have to contain $M_{1} \cup \partial_{1} M_{1} \cup \partial_{2} M_{1}$ and this is impossible.

Our construction of the hypermanifold T^{\prime} is strongly dependent on coordinates: we have chosen the functions z, ξ, Θ, φ on T_{1} and z, η, Θ, φ on T_{2} and all operations performed further on have been described exclusively by means of these. What we have shown, therefore, is that there is one hypermanifold T^{\prime} for every choice of z, ξ, Θ, φ on T_{1} and z, η, Θ, φ on T_{2}. Of course, these coordinates as defined have certain invariant properties: they fit the topology and differentiable structure of T_{1} and T_{2} and the line element is of the form (12) and (13) in them. That is to say, if we have another coordinates $\bar{z}, \bar{\xi}, \bar{\Theta}, \bar{\varphi}$ on T_{1} and $z^{\prime}, \eta^{\prime}, \Theta^{\prime}, \varphi^{\prime}$ on T_{2} of this sort, then the maps $\psi_{1}: T_{1} \rightarrow T_{1}$ and $\psi_{2}: T_{2} \rightarrow T_{2}$ defined by

$$
\left.\begin{array}{lll}
\psi_{1}(z)=\bar{z}, & \psi_{1}(\xi)=\bar{\xi}, & \psi_{1}(\Theta)=\bar{\Theta},
\end{array} \psi_{1}(\varphi)=\bar{\varphi}, ~(\eta)=\eta^{\prime}, \quad \psi_{2}(\Theta)=\Theta^{\prime}, \quad \psi_{2}(\varphi)=\varphi^{\prime}, ~ l i n\right)
$$

are diffeomorphisms and isometries.
Choosing the coordinates $\bar{z}, \dot{\bar{\xi}}, \dot{\bar{\Theta}}, \bar{\varphi}, \dot{\bar{z}}, \bar{\xi}, \bar{\Theta}, \dot{\bar{\varphi}}$ on $T T_{1}$, we cut out the points with $\bar{z}=z_{1}, \dot{\bar{z}}=0$ and $\bar{z}=z_{2}, \dot{\bar{z}}=0$ and denote the resulting manifold by T_{1}^{\prime}. Similarly, the manifold $T_{2}^{\prime \prime}$ is obtained, if the points with $z^{\prime}=z_{1}, \dot{z}^{\prime}=0$ and $z^{\prime}=z_{2}, \dot{z}^{\prime}=0$ are omitted from $T T_{2}$. From \bar{T}_{1}^{\prime} and $\bar{T}_{2}^{\prime \prime}$, we construct the hypermanifold $T^{\prime \prime}$ on identifying each point of \bar{T}_{1}^{\prime} of coordinates $\bar{z}, \bar{\xi}, \ldots, \dot{\bar{\varphi}}, \bar{z} \neq z_{1}, \bar{z} \neq z_{2}$, with the point of

[^5]$T_{2}^{\prime \prime}$, whose coordinates are given by
\[

$$
\begin{gathered}
z^{\prime}=\bar{z}, \quad \Theta^{\prime}=\bar{\Theta}, \quad \varphi^{\prime}=\bar{\varphi}, \quad \dot{z}^{\prime}=\dot{\bar{z}}, \quad \dot{\Theta}^{\prime}=\dot{\bar{\Theta}}, \quad \dot{\varphi}^{\prime}=\dot{\bar{\varphi}}, \\
\eta^{\prime}=\bar{\xi}-2 \bar{z}+\frac{1}{2\left(z_{2}-z_{1}\right)}\left[\left(4 z_{1}^{2}+1\right) \lg \left|\bar{z}-z_{1}\right|-\left(4 z_{2}^{2}+1\right) \lg \left|\bar{z}-z_{2}\right|\right], \\
\dot{\eta}^{\prime}=\dot{\bar{\xi}}+2 U^{-1}(\bar{z}) \dot{\bar{z}}
\end{gathered}
$$
\]

Now, it is not difficult to show that $T^{\prime \prime}$ is equivalent to T^{\prime} :
The diffeomorphism ψ_{1} induces the diffeomorphism $\psi_{1}^{*}: T T_{1} \rightarrow T T_{1}$, whose restriction to $\bar{T}_{1}^{\prime}, \psi_{1}^{*} \mid \bar{T}_{1}^{\prime}: \bar{T}_{1}^{\prime} \rightarrow T_{1}^{\prime}$, is a diffeomorphism of \bar{T}_{1}^{\prime} onto T_{1}^{\prime}. Likewise, we have the diffeomorphism $\psi_{2}^{*} \mid T_{2}^{\prime \prime}$ of $T_{2}^{\prime \prime}$ onto T_{2}^{\prime}. But \bar{T}_{1}^{\prime} and $T_{2}^{\prime \prime}$ are two open submanifolds covering $T^{\prime \prime}$; their images, T_{1}^{\prime} and T_{2}^{\prime}, cover T^{\prime}; each of the maps $\psi_{1}^{*} \mid \bar{T}_{1}^{\prime}$ and $\psi_{2}^{*} \mid T_{2}^{\prime \prime}$ is one-to-one and differentiable, and it is immediate that they are identical on $\bar{T}_{1}^{\prime} \cap T_{2}^{\prime \prime}$. Therefore, the map $\Psi: T^{\prime \prime} \rightarrow T^{\prime}$ given by $\Psi\left|\bar{T}_{1}^{\prime}=\psi_{1}^{*}\right| \bar{T}_{1}^{\prime}, \Psi\left|T_{2}^{\prime \prime}=\psi_{2}^{*}\right| T_{2}^{\prime \prime}$ is a well-defined diffeomorphism of $T^{\prime \prime}$ onto T^{\prime}. The two remaining conditions of Definition 2 are obviously satisfied. Thus, the hypermanifold T^{\prime} is uniquely determined by our construction.

Physical interpretation of hypermanifolds may be based on the points 3) and 4) of the Definition 1, which claim, in fact, that a hypermanifold is, locally, equivalent to a tangent bundle of some space-time. Since physical meaning is attached only to local properties of spacetimes such as metric, connection, curvature, etc., the fact that a hypermanifold need not be, as a whole, a tangent bundle of any space-time is not of so much importance: the projections $\pi(M)$ of simple sets are pseudo-Riemannian manifolds of usual physical interpretation. What is generalized is only joining together these patches.

On the other hand, tangent bundle is something like the phase space of a relativistic particle. More exactly, it includes the phase space as a proper subspace, because there are also points in it with corresponding tangent vector not unit or time-like. Thus, even a direct physical meaning can be ascribed to the hypermanifold as a whole: it is a phase space of a particle.

As an example, we generalize the notion of geodesic, the path of a free particle, for hypermanifolds:

Definition 3. A curve γ on hypermanifold H is a geodesic, if there is a geodesic γ_{M} on $\pi(M)$ such that $\gamma(t)=\tilde{\gamma}_{M}(t)^{8}$ on M for every simple set M with $M \cap\{\gamma\} \neq \emptyset$.

It is clear, that every geodesic has a unique extension or that every curve has no more than one end point on hypermanifold - that is to say,

[^6]no pathological features of the non-Hausdorff manifolds as mentioned by Geroch in [16] exist here.

The geodesics on T^{\prime} are made from segments, whose projections are nothing but geodesics on $T_{1}, T_{2}, M_{1}, M_{2}$, and M_{3}, described by the relations (2)-(11).

Example 5. The geodesics with $p_{\| \mid}=0$ consist each of just one segment which lies entirely on one of the simple sets $T M_{i}, i=1,2,3$. They remain incomplete within T^{\prime}, because they approach the points $z=z_{1}, \dot{z}=0$ or $z=z_{2}, \dot{z}=0$, which were cut out from T^{\prime}.

Example 6. Time-like geodesics with $p_{\| \mid}=p>0 \quad(\alpha=0)$. The Eqs. (2)-(11) imply, for these values of constants, the following relations:

$$
\begin{gathered}
\Theta=\Theta_{0}, \quad \varphi=\varphi_{0} \\
\dot{z}=\sqrt{p^{2}+U(2 l)^{-2}}, \quad \dot{\zeta}=p U^{-1}
\end{gathered}
$$

which read as transformed into the coordinates z, ξ :

$$
\begin{equation*}
\dot{z}=\sqrt{p^{2}+U(2 l)^{-2}}, \quad \dot{\xi}=-\frac{1}{4 l^{2}} \frac{1}{p^{2}+\sqrt{p^{2}+U(4 l)^{-2}}} . \tag{18}
\end{equation*}
$$

In general, there are two values \bar{z}_{1} and \bar{z}_{2} for which $\dot{z}=0$, and p may be chosen such that $\bar{z}_{1}<z_{1}$ and $z_{2}<\bar{z}_{2}$. Then, we have a unique geodesic segment on T_{1} determined by Eqs. (18) and passing through the point $z=\bar{z}_{1}, \xi=\bar{\xi}_{1}$.

Another time-like geodesic with $p_{| |}=-p$ fulfills, in the coordinates z, η, Θ, φ, the following relations

$$
\begin{equation*}
\dot{z}=\sqrt{p^{2}+\frac{U}{4 l^{2}}}, \dot{\eta}=\frac{1}{4 l^{2}} \frac{1}{p+\sqrt{p^{2}+U /\left(4 l^{2}\right)}}, \Theta=\Theta_{0}, \varphi=\varphi_{0}, \tag{19}
\end{equation*}
$$

and \dot{z} reaches the value zero for $z=\bar{z}_{1}$ and $z=\bar{z}_{2}$ again. We have a unique geodesic segment on T_{2} passing through the point

$$
\begin{aligned}
z=\bar{z}_{1}, \quad \eta=\bar{\eta}_{1} & =\bar{\xi}_{1}-2 \bar{z}_{1} \\
& +\frac{1}{2\left(z_{2}-z_{1}\right)}\left[\left(4 z_{1}^{2}+1\right) \lg \left(z_{1}-\bar{z}_{1}\right)+\left(4 z_{2}^{2}+1\right) \lg \left(z_{2}-\bar{z}_{1}\right)\right]
\end{aligned}
$$

and satisfying (19). The points $z=\bar{z}_{1}, \xi=\bar{\xi}_{1}$, and $z=\bar{z}_{1}, \eta=\bar{\eta}_{1}$ are, however, identical according to (15), and the tangent vectors to the two segments at the point are just opposite to one another (because of $\dot{z}=0$ is $\dot{\eta}=\dot{\xi}$ there); therefore, the two segments match smoothly one another. Similar procedure can be repeated at the upper end points of the two segments, where $z=\bar{z}_{2}$. In general, the points need not be identical, so that we must use its own segment for each end point to go on. The case can obviously occur, when such geodesic as extended step by step in this
way fills up the two-dimensional surface $\bar{z}_{1} \leqq z \leqq \bar{z}_{2}, \Theta=\Theta_{0}, \varphi=\varphi_{0}$, so that it is dense there.

These examples show that there are still incomplete geodesics, but their ammount is substantially reduced in comparison with either TaubNUT space; it is not difficult to see, that all geodesics having $p_{\| \mid} \neq 0$ are complete. In this sense, we can say that the introduction of hypermanifolds can help to reduce the singularity. Moreover, the remaining incompleteness is not of the strange nature proper to that of the Taub-NUT spaces: no geodesic of the hypermanifold is maximal and incomplete within a compact region. Indeed, finite are only the geodesics approaching certain points which had to be cut out from the hypermanifold.

On the other hand, on T^{\prime}, we have still worse behaviour of geodesics with respect to the causality principle than on T_{1} or T_{2}, resulting in a breakdown of the global time orientability. But this is due to the fact that we have made too many identifications (for the sake of simplicity): it is not necessary to identify T_{1}^{\prime} and T_{2}^{\prime} along all three regions $T M_{1}$, $T M_{2}$, and $T M_{3}$. Instead, we could glue together an infinite number of copies of T_{1}^{\prime} and T_{2}^{\prime}, each two neighbouring along one of the regions only, into a ladder-like construction.

Acknowledgement. It is a pleasure to express my profound gratitude to the referee, whose critical remarks helped to clarify the text in many points. I am deeply indebted to Prof. H. Leutwyler and Prof. H. Debrunner for many criticisms and improvements in the first draft of this paper. My special thanks go to Prof. A. Mercier for his invaluable encouragement and support.

Appendix

Proof of the Theorem 3. If there is such a point p_{γ}, then its coordinates are given by
$z=z_{2}, \zeta=\zeta_{2}=\lim _{z \rightarrow z_{2}} \zeta(z), \Theta=\Theta_{2}=\lim _{z \rightarrow z_{2}} \Theta(z), \varphi=\varphi_{2}=\lim _{z \rightarrow z_{2}} \varphi(z)$,
where $\zeta(z), \Theta(z)$, and $\varphi(z)$ are coordinates ζ, Θ, and φ as functions of z along the geodesic γ. On the other hand, if the limits (20) exist, then the point of coordinates $z_{2}, \zeta_{2}, \Theta_{2}$, and φ_{2} is the desired point p_{γ}. Therefore, it is sufficient to examine the existence of the limits (20) for all geodesics. Consider the following cases:

1) $p=p_{\|}=0$.

Eqs. (2)-(5) and (10) imply $x=-1$ and

$$
\begin{equation*}
\dot{z}=(2 l)^{-1} \sqrt{U}, \quad \dot{\zeta}=\dot{\Theta}=\dot{\varphi}=0 \tag{21}
\end{equation*}
$$

Hence $\zeta=$ const, $\Theta=$ const, $\varphi=$ const; the limits (20) exist and are equal to the constants.
2) $p \neq 0, p_{3}=p_{\|}=0$.

Eq. (7) implies either $\sin \Theta=0$ or $p_{1} \cos \varphi+p_{2} \sin \varphi=0$. In the first subcase, φ makes no sense, but we can set $\varphi=0$. Then, from (5), $\zeta=$ const, and Eqs. (2) and (3) give $p_{1}=p_{2}=0$, but this is not compatible with $p \neq 0$. In the second sub-case, we have $\zeta, \varphi=$ const. Thus, the limits (20) for and ζ, φ exist and are equal to the constants. Next, $p_{1}=\varepsilon p \sin \varphi_{2}$, $p_{2}=-\varepsilon p \cos \varphi_{2}$, where $\varepsilon^{2}=1$, and from (2) and (3) it follows

$$
\begin{equation*}
\dot{\Theta}=-\varepsilon \frac{4 p}{4 z^{2}+1}, \quad \dot{\varphi}=\dot{\zeta}=0 \tag{22}
\end{equation*}
$$

which, together with Eq. (10), gives $x=-1$ and

$$
\Theta(z)=\bar{\Theta}-\varepsilon \int_{\bar{z}}^{z} \frac{2 p l d x}{\sqrt{(a-x)(a+x)\left(x-z_{1}\right)\left(z_{2}-x\right)}}
$$

where $a=\sqrt{4 p^{2} l^{2}-1 / 4}$. The improper integral on the right side converges except when $p=(1 / 4 l) \sqrt{4 z_{2}^{2}+1}$; then, however, the geodesic is complete.
3) $p_{3} \neq p_{| |}=0$.

Eq. (7) implies $\sin \Theta \neq 0, \sin \Theta_{2} \neq 0$. From Eqs. (8) we have

$$
\begin{align*}
\sin \Theta \cos \varphi & =A_{11} \cos \psi+A_{21} \sin \psi \\
\sin \Theta \sin \varphi & =A_{12} \cos \psi+A_{22} \sin \psi \tag{23}\\
\cos \Theta & =A_{13} \cos \psi+A_{23} \sin \psi
\end{align*}
$$

Eqs. (9)-(11) give $x=-1$ and

$$
\begin{aligned}
& \psi(z)=\bar{\psi}+2 p l \int_{\bar{z}}^{z} \frac{d x}{\sqrt{(a-x)(a+x)\left(x-z_{1}\right)\left(z_{2}-x\right)}}, \\
& \zeta(z)=\bar{\zeta}-2 p l \int_{\bar{z}}^{z} \frac{\cos \Theta}{\sin ^{2} \Theta} \frac{d x}{\sqrt{(a-x)(a+x)\left(x-z_{1}\right)\left(z_{2}-x\right)}} .
\end{aligned}
$$

These integrals converge except when $p=(1 / 4 l) \sqrt{4 z_{2}^{2}+1}$, but then the proper length diverges, too.
4) $p_{| |} \neq 0, p_{3} \neq p_{| |}$.

Eq. (7) forbids Θ and Θ_{2} to be 0 or π and, from Eqs. (10) and (11), we immediately see that the corresponding integral for $\zeta(z)$ diverges, while the proper length remains finite.
5) $p_{3}=p_{\|} \neq 0$.

Eqs. (4) and (5) yield either $\cos \Theta=1$, or

$$
\dot{\zeta}=\frac{p \cos \alpha}{U}-\frac{4 p \cos \alpha}{4 z^{2}+1}-\frac{\cos \Theta}{1+\cos \Theta}
$$

and then, from (7), $\cos \Theta \neq-1, \cos \Theta_{2} \neq-1$. In the first sub-case, we can set $\varphi=0$, which, together with (2)-(5) gives

$$
\dot{\zeta}=\frac{\mathrm{p}}{U} .
$$

Clearly, in either case, $\zeta(z)$ must diverge. Q.E.D.
Proof of the Theorem 4. The components $\dot{z}_{2}, \dot{\zeta}_{2}, \dot{\Theta}_{2}, \dot{\varphi}_{2}$, of the tangent vector to γ at p_{γ} are given by

$$
\begin{array}{ll}
\dot{z}_{2}=\lim _{z \rightarrow z_{2}} \dot{z}(z), & \dot{\zeta}_{2}=\lim _{z \rightarrow z_{2}} \dot{\zeta}(z) \\
\dot{\Theta}_{2}=\lim _{z \rightarrow z_{2}} \dot{\Theta}(z), & \dot{\varphi}_{2}=\lim _{z \rightarrow z_{2}} \dot{\varphi}(z) .
\end{array}
$$

We can use the symbolics and the case division of the foregoing proof.

1) $p=p_{\|}=0$.

Eqs. (21) imply $\dot{z}_{2}=\dot{\zeta}_{2}=\dot{\Theta}_{2}=\dot{\varphi}_{2}=0$, and the geodesic with opposit tangent vector at p_{γ} is just the same geodesic. We shall see, that it is unique.
2) $p \neq 0, p_{3}=p_{\|}=0$.

Eqs. (10) and (22) give

$$
\dot{z}_{2}=\dot{\zeta}_{2}=\dot{\varphi}_{2}=0, \quad \dot{\Theta}_{2}=-\varepsilon \frac{4 p}{4 z_{2}^{2}+1}
$$

Hence, there are just two geodesics, for a given p, and their tangent vectors are opposit to one another.
3) $p_{3} \neq p_{\|}=0$.

In order to have a unique description of γ in a neighbourhood of p_{γ}, we set $\psi_{2}=0$. Then, we define a parameter β by

$$
p_{3}=p \sin \Theta_{2} \cos \beta, \quad-\pi<\beta<-\frac{\pi}{2},-\frac{\pi}{2}<\beta<\frac{\pi}{2}, \frac{\pi}{2}<\beta \leqq \pi
$$

Now, the matrix $A_{i j}$ is uniquely determined. In particular, from (23)

$$
\begin{array}{ll}
A_{11}=\sin \Theta_{2} \cos \varphi_{2}, & A_{21}=-\cos \Theta_{2} \cos \varphi_{2} \sin \beta-\sin \varphi_{2} \cos \beta \\
A_{12}=\sin \Theta_{2} \sin \varphi_{2}, & A_{22}=-\cos \Theta_{2} \sin \varphi_{2} \sin \beta+\cos \varphi_{2} \cos \beta \\
A_{13}=\cos \Theta_{2}, & A_{23}=\sin \Theta_{2} \sin \beta
\end{array}
$$

and we have

$$
\begin{gathered}
\dot{z}_{2}=0, \quad \dot{\zeta}_{2}=-\frac{4 p}{4 z_{2}^{2}+1} \frac{\cos \Theta_{2}}{\sin \Theta_{2}} \cos \beta \\
\dot{\Theta}_{2}=-\frac{4 p}{4 z_{2}^{2}+1} \sin \beta, \quad \dot{\varphi}_{2}=\frac{4 p}{4 z_{2}^{2}+1} \frac{\cos \beta}{\sin \Theta_{2}} .
\end{gathered}
$$

Hence, the geodesics reaching the point p_{γ} form a two parameter family, and we see immediately, that for every γ with the parameters p, β there is $\bar{\gamma}$ with the parameters $p, \bar{\beta}=\beta+\pi$ (or $\beta-\pi$, in order that $-\pi<\beta \leqq \pi$), whose tangent vector at p_{γ} is just the inverse to that of γ, and that $\bar{\gamma}$ is the unique geodesic of this property. Q.E.D.

References

1. Carter, B.: Phys. Rev. 174, 1559 (1968).
2. Penrose, R.: Phys. Rev. Letters 14, 57 (1965).
3. Hawking, S. W.: Proc. Roy. Soc. A, 294, 511 (1966).
4. - Proc. Roy. Soc. A, 295, 490 (1966).
5. - Proc. Roy. Soc. A, 300, 187 (1967).
6. Geroch, R. P.: Phys. Rev. Letters 17, 446 (1966).
7. Taub, A. H.: Ann. Math. 53, 472 (1951).
8. Newman, E., Tamburino, L., Unti, T.: J. Math. Phys. 4, 915 (1963).
9. Misner, C. W.: J. Math. Phys. 4, 924 (1963).
10. Bonnor, W. B.: Proc. Cambridge Phil. Soc. 66, 145 (1969).
11. Misner, C. W.: In: Lectures in applied mathematics, Vol. 8, J. Ehlers, ed. Providence: American Mathematical Society 1967.
12. - Taub, A. H.: Soviet. Phys. JEPT 28, 122 (1969).
13. Sternberg, S.: Lectures on differential geometry. Englewood Cliffs: Prentice-Hall 1962.
14. Lang, S.: Introduction to differentiable manifolds. New York: Wiley 1962.
15. Whittaker, E. T., Watson, G. N.: A course of modern analysis. 4th ed. Cambridge: Univ. Press 1952.
16. Geroch, R. P.: J. Math. Phys. 9, 450 (1968).
17. Trautman, A.: The applications of fibre bundles in physics. Preprint, Toruń, December, 1968.

Petr Hajicek
Universität Bern
Institut für Theoretische Physik CH-3000 Bern, Sidlerstr. 5

[^0]: ${ }^{1}$ Id est, no points are cut out.

[^1]: ${ }^{2}$ Since the appearence of the paper [16], it is not so unusual to consider a space-time with a boundary, on which, moreover, no metric in the common sense is defined. On the other hand, the boundary ΔM_{\imath} of the space P_{i} does not fall under the notion of g-boundary.

[^2]: ${ }^{3}$ In fact, by taking higher derivatives, we could see that the curves match C^{∞}-smoothly one another.

[^3]: ${ }^{4}$ What could be done would be to choose another topology for $\partial_{i} M_{1}$, for example, to identify all points of $\partial_{1} M_{1}$ differing only in ξ with one another and with those of $\partial_{2} M_{1}$ differing from them only in η, so that we would have a cusp there.

[^4]: ${ }^{5}$ Now, cutting out the points with $z=z_{2}, \dot{z}=0$ or $z=z_{1}, \dot{z}=0$ can be explained. Suppose, we should have taken $T T_{1}$ and $T T_{2}$ instead of T_{1}^{\prime} and T_{2}^{\prime}, and perhaps still $T P_{1}$, $T P_{2}$, and $T P_{3}$, and made an attempt to glue them all together along the regions $T M_{1}, T M_{2}$ and $T M_{3}$. Then, we should have had one more sub-case: $A=0$, and the Eq. (17) as well as the derived inequalities immediately suggest that, in this sub-case, we should not have found the desired ε, for which the two ε-neighbourhoods U_{p} and U_{q} would be disjunct. Therefore, if we wanted to maintain the Hausdorff property, we should have had to identify all points with $z=z_{2}, \dot{z}=0$ or $z=z_{2}, \dot{z}=0$ differing in the coordinates $\xi, \zeta, \eta, \dot{\xi}, \dot{\zeta}, \dot{\eta}$ only. Thus, the three six-dimensional hypersurfaces $z=z_{2}, \dot{z}=0$ or $z=z_{1}, \dot{z}=0$ would shrink into a four-dimensional one, with coordinates $\Theta, \varphi, \dot{\Theta}$, and $\dot{\varphi}$ on it. Then, however, there would be a cusp there, and the space would not be a differentiable manifold.
 ${ }^{6}$ As already mentioned, every point of the tangent bundle $T M$ of a manifold M is a pair $\left(p, u_{p}\right)$, where $p \in M$ and u_{p} is a tangent vector to M at p. The map $\pi: T M \rightarrow M$ defined by $\pi\left(p, u_{p}\right)=p$ is a distinguished map of the tangent bundle and is called its natural projection.

[^5]: ${ }^{7}$ Every diffeomorphism $\psi: M \rightarrow M^{\prime}$ of differentiable manifold M onto M^{\prime} induces a diffeomorphism $\psi^{*}: T M^{\prime} \rightarrow T M$ (see [13], p. 82 ff .).

[^6]: ${ }^{8}$ A curve $C:[a, b] \rightarrow M$ of class $C^{k}, k>1$, on a manifold M determines a unique curve $\tilde{C}:[a, b] \rightarrow T M$ of class C^{k-1} on $T M$ such that $\tilde{C}(t)$ is the tangent vector to C at the point $C(t), t \in[a, b]$.

