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Abstract. Solutions of the Einstein field equations are considered subject to the
assumptions that (1) the source of the gravitational field is a perfect fluid, (2) the Weyl
tensor is algebraically special, (3) the corresponding repeated principal null congruence
is geodesic and shearfree. If in addition, the repeated principal null congruence is non-
expanding, it follows that the twist of this congruence must be non-zero (for a physically
reasonable fluid). The general line element subject to this additional restriction is derived.
Furthermore, it is shown that all solutions of the Einstein field equations which satisfy (1)
and exhibit local rotational symmetry, necessarily satisfy (2) and (3).

§ 1. Introduction

The Einstein field equations with a perfect fluid as source read

+ Cgab = - [(A + p) uaub - pgab], uau
a = 1 , (1.1)

where ua is the velocity of the fluid, A > 0 the energy density, p the scalar
pressure and C the cosmological constant. The metric tensor gab

(α, b, c ... = 1, 2, 3, 4) has signature ( ---- h) and the conventions for
the Riemann and Ricci tensors are

Va bc — Va cb = Vd^ abo &ab = ̂ abc

Exact solutions of (1.1) are of interest in the following connections:

(1) as cosmological models,

(2) as interior solutions to be matched to exterior vacuum solutions,

(3) as representing the propagation of gravitational radiation in
matter.

Algebraically special solutions of (1.1) (i.e., solutions in which the
Weyl tensor has a repeated principal null direction, cf. for example
Pirani [1]) have recently been studied in each of these three contexts.

* This work was supported in part by the National Research Council of Canada.
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Ellis [2] and Stewart and Ellis [3] have classified the locally rotationally
symmetric solutions of (1.1), which may be characterized by the fact that
they admit a multiply transitive group of motions. All solutions in this
class are algebraically special, and particular examples, which are non-
isotropic generalizations of the Friedmann solutions, have been studied
as cosmological models e.g. Kantowski and Sachs [4]. Wahlquist [5] has
given an algebraically special solution of (1.1) which is of interest from
the point of view of (2). Finally Szekeres [6] discussed algebraically
special solutions of (1.1) from the point of view of (3), but gave no exact
solutions.

In this paper we begin a systematic study of algebraically special
exact solutions of (1.1). We make the additional assumption that the
repeated principal null congruence ka is geodesic and shearfree so that

*βi*fc* = 0, (ka;b + kb;a)ka'>b = (k«;a)
2 (1.2)

in terms of an affine parameter (cf. for example Pirani [1], p. 336). In
vacuo, the Goldberg-Sachs theorem [7] asserts that (1.2) is necessarily
satisfied. In the presence of a perfect fluid, however, it is evident from the
work of Szekeres [6] that (1.2) imposes restrictions on the shear, rotation
and energy-density gradient of the fluid. There are three subclasses of
solutions of (1.1) satisfying the above assumptions, depending on the
expansion \ka.a and the twist [_^(ka.b- kb.~)ka;b~]1/2 of the repeated
principal null congruence, namely

A: Zero expansion, non-zero twist,

B: Non-zero expansion, zero twist,

C: Non-zero expansion, non-zero twist.

[The twist and expansion cannot both vanish unless A + p = 0, which
we exclude, cf. § 3.]

Most of this paper deals with class A. We make use of the Newman-
Penrose formalism [7] which has proved effective in deriving algebraically
special solutions of the vacuum field equations (cf. for example [8] and
[9]). The formalism is briefly introduced in § 2. In § 3 the null tetrad is
adapted to the repeated principal null congruence and the velocity of the
fluid, and it is shown that for the class A the parameter along ka can be
chosen so that

ka;b + kb;a = fkakb, (1.3)

for some function /. A coordinate system is introduced in § 4, and the
general line elements corresponding to / = 0 and / =t= 0 are derived in
§ 5 and § 6. Finally, in § 7, it is shown that the locally rotationally sym-
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metric fluid solutions form a subclass of the algebraically special fluid
solutions whose repeated principal null congruence is geodesic and
shearfree.

§ 2. The Newman-Penrose Formalism

Following Newman and Penrose [7] we introduce a complex null
tetrad (ka, na, wα, raα), where ka, na are real null vectors and ma is a complex
null vector, with πιa its complex conjugate. The orthogonality properties
of these vectors are

kaka = nana = mama = mama = 0 ,

kama = kama = nama = nama = 0 , (2.1)

kana= -mama = l.

It follows that

g

ab = kanb + nakb - mamb - mamb . (2.2)

The Newman-Penrose spin coefficients are defined by

K = ka.bm
ak\ π = -na.bm

ak\ ε = \(ka.bn
akb - ma.bm

akb) ,

ρ = ka.bm
aϊn\ λ = -na.bm

am\ α - τ(ka.bn
amb - ma.bm

amb) ,

σ = ka.bm
amb, μ= -na.bm

amb, β = τ(ka.bn
amb -ma.bm

amb) ,

v - -na.bm*nb, τ = ka.bm
an\ y = \(ka.bn

anb - ma.bm
anb) .

The complex tetrad components of the Weyl and Ricci tensors are
denoted respectively by

5*0 =- Cabcdk
ambkcmd, Ψ, - - Cabcdk

anbkcmd ,

Ψ2 = -^Cabcd(kanbK:nd - kanbmcmd] , (2.4)

3̂ ̂  Cabcdk
anbncmd, Ψ4 = -Cabcdn

ambncmd

Φ12 = -^Rabn
amb , (2.5)

Φ22 = -\Rabn
an\ A = (1/24) R .

The following differential operators play an essential role
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The Newman-Penrose equations consist of three sets of equations in-
volving the quantities (2.3), (2.4), (2.5) and the operators (2.6), corre-
sponding to

(a) the Ricci identities,
(b) the commutators of the operators (2.6) acting on scalars,
(c) the Bianchi identities.
Equations (a) and (b) in their most general form are given by Newman

and Penrose [7]. All three sets of equations are contained in Pirani [1]
(pp. 346-351). We will make use of (a) and (b) and some of equations (c),
those corresponding to (Ra

b — ^Rδa

b).b = 0.

§ 3. Initial Simplifications of the Spin Coefficients

The vector ka of the null tetrad is chosen to be tangent to the repeated
principal null congruence, and na is chosen to lie in the 2-space spanned
by ka and the velocity ua of the fluid. Since uaua = 1, it follows that ua

can be expressed in the form

ua = 2-ll2lBka + (l/B)na-]. (3.1)

The directions of ka and na are now fixed. We are also using an affine
parameter on ka. Thus the tetrad freedom is:

= Q, (3.2)

m* = eisma, ma* = e~isma , (3.3)

where R, S are real functions.
The requirement that ka be a repeated principal null congruence

which is geodesic (with affine parameter), shearfree and non-expanding
implies

5^ = ^=0; κ = ε + ε = σ = ρ + ρ = 0 (3.4)

(Newman and Penrose [7]). In terms of the tetrad components of Rab and
ua [cf. (3.1) and (2.5)] the field equations (1.1) read:

We now derive some consequence of (3.4) and (3.5), using the Newman-
Penrose equations and the tetrad freedom, without explicitly intro-
ducing a coordinate system. Firstly we may use (3.3) to set

ρ-2ε = 0.
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Then some of the Newman- Penrose equations (corresponding to the
Ricci identities) reduce to

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Dλ - δπ = λρ + π(π - β + α) , (3.12)

(3.13)

n. (3.14)

In addition

(3.15)

for an arbitrary scalar function Q.
The twist of the congruence ka is proportional to ρ, and thus by (3.6)

is non-zero. The commutator (3.15) is applied to ρ. By means of (3.6)-(3.10)
this results in

+ 2τ) = 0 = 4τ + π . (3.16)

We may thus use (3.2) to achieve

τ = Q=>δρ = 0. (3.17)

The commutator (δδ — δδ)ρ = 0 yields Aρ = 0. Thus ρ is a constant,
and by means of (3.2) with jR a constant, may be reduced to

ρ = i=>Φ00 = l, B2=±(A + p ) , (3.18)

by virtue of (3.5) and (3.6). The commutator (3.15) is applied to τ_and,
with the aid of (3.7), (3.11), (3.12), (3.16) and (3.17), reduces to 3ρ2! = 0,
so that

By comparison of (3.12) and (3.13) using (3.16), one infers that

At this stage, it is easily shown that ka satisfies an equation of the form
(1.3). By means of (3.13) and the simplifications so far achieved, Eq. (3.14)
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reduces to

<5α + <5α = 4αά + i(y-y) + i(μ-μ) + i(μ + ]Z) + 3Λ + Φu .

The imaginary part of this equation is μ -f μ = 0. The Newman-Penrose
equations for Dμ,Dγ imply that D(y — y — μ) = 0, which permits us to
use (3.3) with DS = 0 [so that ρ — 2ε = 0 is preserved] to achieve

μ = y-γ.

The remaining information to be obtained from the Ricci identities is
contained in the following equations

<5α + δα - 4αα - 2ίμ + ±(A - p + 2C), (3.19)

(3.20)

(3.21)

Dv-δμ = ίv = δ(y + y), (3.22)

<5v - 2αv - μ2 + B4 + Δμ + (y + y)μ , (3.23)

Aa = Q = Aβ, (3.24)

where we have substituted for Φu etc. from (3.5). In addition the non-
zero tetrad components of the Weyl tensor are given by

)9

The contracted Bianchi identities yield additional information,
which with the simplifications achieved so far [in particular (3.5)]
assumes the form

δp=-2v, (3.26)

(A + p)D(A + p) + 2A(A-p) = Q (3.27)

(Pirani [7], p. 351).

§ 4. The Coordinate System and Field Equations

A coordinate system is introduced, with x3 being an affϊne parameter
along the congruence ka, while x1, x2, x4 remain constant along ka. Then
the tetrad vectors have the form

ka = δl, na = XAδa

A+ Uδa

3 -f Vδl,
(4.1)

ma = ξAδΛ

A + v^δl + Ό*δl9 A = 1,2,

where XA, U, V are real and ξA, w*? u* are complex.
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The form ka = δa

3 is preserved under the following coordinate trans-
formation :

C' = £'(U,χ4), C = χ1 + iχ2, (4.2)

x3' = x3+/(ί,C,x4), (4.3)

x4' = x4'(C,C,x4). (4.4)

With the simplifications of § 3, the commutators read (Newman and
Penrose [7], p. 570)

(AD - DΔ)φ = (y + γ)Dφ, (3D - Dδ)φ = 0,

(δΔ-Δδ)φ= -vDφ, (4.5)

(δδ - δδ)φ =(-2μD - 2iA - 2άδ + 2aδ)φ .

By choosing φ(xa) to be successively x1, x2, x3, x4, we obtain equations
relating the components of the tetrad vectors [and hence of the metric
tensor, through (2.2)], the spin coefficients and the operators (2.6). For
example, with φ = x1, x2, the first commutator yields DXA = 0. Thus the
transformation (4.2) may be used to set XA = 0, provided Fφ 0 [we can
always choose x4 so that FΦO]. The function Fis restricted by DF = 0,
so that (4.4) may be used to achieve F= 1. The functions ξA have to
satisfy

DξA = Q = AξA,

δξA-δξA=-2aξA + 2κξA,

i.e., the ξA depend only on C, ζ. Thus the transformation (4.2), with
dζ'/dx4 = 0 [so that XA = 0 is preserved] may be used to transform
ξ1 + iξ2 = 0, i.e., ξl = P, ξ2 = ίP, where P is a complex function of
ζ, ζ which by (4.6) satisfies

;SP = 2αP. (4.7)

For convenience we write w* =Pw, v* = Pv. Then the tetrad vectors
(4.1) simplify to

ka = δa

3, na=Uδa

3 + δa

4,3 3 4 (4.8)
ma = P(δϊ + iδa

2 + wδl + vδa

4).

The restrictions on v arising from the commutators are

Dυ = Q = Δυ, Pδv-Pδv=-2ί. (4.9)

This implies v = v(ζ, ζ\ so that we may use (4.4) with dx4'/dx4 = 1 to
achieve

= -i (4.10)
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by (4.9). Thus v is completely determined in terms of P since the "constant"
of integration arising in (4.10) may be eliminated using x4' — x4 + g(x2}>

The restrictions on the remaining functions w, U arising from the
commutators are

(4.11)

(4.12)

) . (4.13)

It is convenient to define a new operator δ* by

<50 = P<5*φ.

We now combine Eqs. (4.7), (4.11) and (4.12) with Eqs.(3.19) to (3.23)
and (3.26) and arrive at the following set of equations

D2U=-2ίμ-p + C, (4.14)

D(μ + it/) = 0, (4.15)

(μD + iΔ)(2iμ-p) = 0, (4.16)

(A + p) D(A + p) 4- 2Δ(A - p) = 0 , (4.17)

2PP d2(\nPP)/dζ dζ = 2iμ + ±(A-p + 2C), (4.18)

PPδ*δ*p - (μD + ϊΔ}p = -2(μ2 + 54) , (4.19)

, (4.20)

0. (4.21)

[We include (3.27) again for completeness.] The only spin coefficient
appearing in these equations is μ, which is related to w and U according
to (4.13)._We now use the remaining tetrad freedom, namely (3.3) with
S = S(ζ, 0, to set

P = P.

At this stage the repeated principal null congruence feα satisfies

ka.yb=-(dU/dx3)kakb-i(mamb-mamb). (4.22)

To complete the simplification of the field equations and line element, it
is necessary to distinguish the two cases δU/dx3 =0, and 3U/dx3ή=0.

4 Commun math Phys , Vol 17
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§ 5. Case I

Eqs.(4.14)-(4.18)imply

2iμ= — p + C,
(51)

p=p(xί,x2), A = A(x\x2).

We now use (4.3) to set

C/ = i(p-Q. (5-2)

Eq. (4.20) reduces to δw/δx4 = 0, which enables us to use (4.3) with
df/dx4 = 0 [so that (5.2) is preserved] to achieve

w+w = Q=>P2dw/dxl = -i(p-Q, (5.3)

by means of (4.13). The "constant" of integration which arises in (5.3)
may be eliminated by means of x3' = x3 + g(x2}. A straightforward
calculation using (2.2), (4.8), (4.10) and (5.3) shows that the line element
has the form

ds2 = -(1/2P2) [(dx1)2 + (dx2)2] -2v(w-Uv) (dx2)2 + 2iv dx2dx3

where v is given by (4.10). The remaining field equations (4.18) and (4.19)
reduce to

P2d2p/dζdζ=-(l/32)(A-p + 2Q(A + 3p-2C), (5.5)

P2S2(\nP2)/dζ dζ = (1/8) (A-5p + 6Q. (5.6)

Note that the density A(x1, x2} appears as an arbitrary function in these
equations. The velocity ua of the fluid is given by (3.1) and (3.18). The
motion of the fluid is described by its expansion θ, acceleration ύfl,
rotation ωab and shear σα6, defined (cf. for example Stewart and Ellis
[3]) by

ωab = u[a.b]-ύ[aub], (5.7)

<?ab = U(a;b) ~ ̂ b) ~ ^(0ab ~ UaUb)θ .

It follows that in Case I, the fluid has zero expansion. Furthermore

(5.8)
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By means (3.25) one finds that the non-zero tetrad components of the
Wevl tensor areWeyl tensor are

Thus in Case I the fluid has non-zero rotation provided that C α b c d φO.
Particular Solutions
Case A. dp/dζ = Qop = constant, ύa = 0.
Eq. (5.5) implies A-p + 2C = Q, or A + 3p-2C = Q, so that A is also

constant. The constant pressure p can be equated to zero by replacing
A, C by A + p and C -f p respectively. Thus, in effect, we have dust
solutions with cosmological term. Eqs. (4.10) and (5.3) imply

so that we can use the coordinate freedom remaining in (4.3) to transform
w + Cv = 0=>w — 2Uv = 0, After a further coordinate transformation
x4' = x4 + x3/C, the line element reads

ds2 = - (1/2 P2) [(dx1)2 + (dx2)2] + (v2/C) (dx2)2 + 2 iυ dx2 dx3

-(l/C)(dx3)2 + C(dx4)2.

Case A^ A + 2C==Q=^C<0.
Write C = -a2. Eq. (5.6) reads

2P2d2(lnP2)/dζdζ=-a2.

Under ζ' = ζ'(ζ) this has the unique solution

P2 = sini^axWt; = (ί/a) coshax^/smhax1 .

A coordinate transformation x1' = x1'(x1) with dx1'/dx1 = sinhαx1

simplifies the line element to

ds2 = - {(dx1}2 + (1 + i sinh2 ax1) (dx2)2 - (2/a) coshαx1 dx2 dx3

+ (l/a2)(dx3)2-a2(dx4)2 .

This solution is type [2, 2], and admits a 5-parameter group of motions
multiply transitive on spacetime, and hence is the Gδdel universe (Ellis
[2], p. 1191).
Case A2. A-2C = Q=>C>0.

Write 2C = a2. A similar procedure leads to the unique line element

ds2 = - KW*1)2 + (d*2)2~\ - (21 a) cosαx1 dx2 dx3 - (2/α2) (dx3)2

+ (α2/2)(dx4)2.
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This solution is conformally flat and admits a 7-parameter group of
motions multiply transitive on spacetime and hence is the Einstein
static universe (Ellis [2], p. 1191).

CaseB. d 2 p / d ζ d ζ = Q, dp/dζ^O.
Eq. (5.5) implies A-p + 2C = Q or A + 3p-2C = Q. We consider

only the first possibility and set

which is of the form of an equation of state

p = (X-l)A (5.9)

corresponding to the maximum possible value of X, namely X = 2 (cf.
for example Ellis [2]).

A particular solution is

p = x1, P2 = (2/3) (x1)3, υ = 3 i/4(x1)2 ,

After a coordinate transformation x1 = 3/(x1')2, x2 = 12 x2', the line
element reads

ds2 = -(dx1)2 + 5(x1)6 (dx2)2 - 2(x1)4 dx2dx3 - 6(x1)2dx2dx4

with
p = A = 3 / ( x 1 ) 2 .

This solution is of type [211] and admits a 3-parameter group of motions
simply transitive on x1 = constant. The acceleration, shear and rotation
of the fluid are non-zero.

§ 6. Case II

By virtue of (4.15), the coordinate freedom (4.3) may be used to trans-
form

μ + iU = Q. (6.1)

Then (4.16) reduces to

d(U-±p)/dx4 = V, (6.2)

and (4.20) yields

= 2d(U - ^p)/dζ+ wd(U - ip)/dx3 . (6.3)
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By virtue of (4.11), differentiation with respect to x3 and then x4 yields

0 = (<9w/δx4) [<32((7 - ip)/3x3(9x3] . (6.4)

At this stage a further subdivision becomes necessary.
Case II a. d2(U- ip)/δx3 δx3 - 0.
Eqs. (6.2) and (6.4) imply

U ~ {p = fox3 + r(C, C), ft - constant . (6.5)

With (6.1), Eq. (4. 14) yields

d2p/dx3 δx3 - -4(p + bx3 + r - iC) ,

which has as general solution

P = έ[M, C, * V1'*3 + R(ζ, I x4)<Γ2ίχ3] - (6x3 + r) + iC . (6.6)

In terms of the notation

K(ζ,ζ) = 2P2d2(lnP2)/dζdζ (6.7)

Eq. (4.18) can be written, with the aid of (6.1) and (6.5), as

2(bx3 + r) . (6.8)

By means of (6.5) and (6.8), the density A can be eliminated from equation
(4.17). With the aid of the expression (6.6) for p, the x3-dependence in the
resulting equation entails

5^0->RφO, (6.9)

d(\nR)/dx4 = 2ί(r -K + $Q. (6.10)

At this stage, Eq. (4.21) reduces to

2d\nR/dζ + vd\nR/dx4 + 2iw - 0 . (6.11)

On differentiation with respect to x4, this yields, with the aid of (6.3),
(6.5), (6.9), (6.10) and (6.8):

d(K - 2 r)/dζ = 0=>d(A + 3 p)/dζ = 0 .

We thus write

,4 + 3p-2C = 4m, m = constant . (6.12)

Eqs. (6.10) and (6.3) now read

d(\nR)/dx4= -i(K + m), 3w/δx4 - dK/dζ . (6.13)

The x4-dependence in p and w can now be eliminated by a transformation

). (6.14)
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In the new coordinate system Eqs. (6.13), (6.1), (6.5) and (6.11) read
respectively (with the aid of (6.8), (6.9) and (6.12))

dw/dx4 = 0 = dR/dx4, μ + iU=-ΐί(K + m), (6.15)

l/ = i(p-C)-m, (6.16)

δ(ln#)/3C + iw = 0. (6.17)

In addition the arbitrary function / in (6.14) can be chosen so that

w + w - 0^>2P2 δw/dx1 - i(K + m) (6.18)

by (4.13) and (6.15). As in § 5, the line element reduces to

ds2 = - (1/2 P2) [(dx1)2 + (dx2)2^ - 2ϋ(w - Uv) (dx2)2 + 2iv dx2 dx3

+ 2/(w - 2 Uυ) dx2 dx4 + 2dx3 dx4 - 2 U(dx4)2 , (6.19)

where v is given by (4.10). The pressure p is given by (6.6) which reads

)e-2i^ + C + ±(m-K). (6.20)

The function R is determined by (6.17) up to an arbitrary function
The remaining field equation (4.19) reduces to

(6.21)

where K is defined by (6.7).
The non-zero tetrad components of the Weyl tensor are

- dK/dζ) , (6.22)

Ψ4 = d[_P2(H - dK/dζft/dζ + iwP2H ,

where

H = e2ίx\dR/dζ-iwR).

Thus all solutions in this class are of type [211] or [22].
Finally Eqs. (6.17), (6.12) and (3.18) imply U=-B2, so that the

velocity of the fluid as given by (3.1) reduces to

This shows that ua is collinear with a Killing vector so that the fluid has
zero expansion and shear. On the other hand a straightforward calculation
shows that for all solutions in this class, the fluid has non-zero acceleration
and rotation. In particular there are no dust solutions in this class. In the
limit .R->0, we obtain the shearfree subclass of Case I.
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Particular Solution

By virtue of (6.18), we can use x3 = x3 + f ( x 2 ) to obtain w = 0. Then by
means of (6.17) the expression (6.20) for p reduces to

p = ±[R(ζ)e2ίχ3 + R(ζ)e~2ίx^ + C + m. (6.23)

Since K < 0, we write K = —a2. Then P, v are the same as in case A1 of
§ 5, and the coordinate transformation used there leads to

ds2 = - ^(dx1)2 + £ [l - (1 + 4 U/a2) coshW] (dx2)2

- (21 a) coshαx1 dx2 dx3 + (4 U/a) coshαx1 dx2 dx4 (6.24)

+ 2dx*dx4-2U(dx4)2 ,

where C7 is given by (6.16).
The special case R = constant in (6.23) is of interest. The pressure p

(and hence the energy density A) remains finite for all values of the
coordinates — oo <x\ x2, x3, x4 < oo. If C<0 and C + w>0 and R is
sufficiently small, the inequalities A — p>0, p>0 are satisfied every-
where. In the limit JR-»0, we obtain the Gδdel solution.

This solution admits a 4-parameter group of isometries multiply
transitive in x3 = constant. It is thus one of the locally rotationally
symmetric solutions found by Stewart and Ellis [3], but in a simpler
coordinate system, since the coordinate transformation that relates the
above line element to the form given in [3] (case Ib, with εE = 0 = τ)
introduces a coordinate singularity.

Case lib. d2(U - ^p)/dx3 dx3 φ 0=>dw/dx* = 0.
Eq. (4.13) with (6.1) implies dw/dζ — dw/dζ = 0, so that we may use

(4.3) with df/dx4 = 0 (so that (6.1) is preserved) to achieve

w = 0.

Then by virtue of (6.3), we may write

U-±p = b(x3), with 6 " Φ O . (6.25)

By means of (6.7), (4.18), (6.1) and (6.25):

C, (6.26)

(6.27)

In addition, by means of (6.1) and (6.25), (4.21) yields

d(δ*p)/dx3=-2ιδ*p. (6.28)
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On differentiation of (4.19) with respect to x3, this equation gives rise to

- dp/dx4 = d(U2 - B4)/dx\ d2p/dx3 dx4 = 4(U2 - B4) . (6.29)

These combine to give d2(U2 - B4)/dx* dx3 = -4(U2-B4) which has
the general solution

U2 - B4 = R(ζ, C, x4)e2ίχ3 + R(ζ, ζ, x4)e~2iχ3 . (6.30)

We now show that R Φ 0, i.e., U2 — B4 Φ 0, gives rise to a contra-
diction. Differentiation of (6.28) with respect to x4 yields, by virtue of
(6.29) and (6.30):

2<9 \nR/dζ + υd InR/dx4 = 0 . (6.31)

By means of (6.25) to (6.27) and (6.30), the first of Eqs. (6.29) reads

-[_(dR/dx4)e2ίχ3

-^C)lRe2iχ3-Re-2ίχ3-].

This equation is multiplied by e2ίχ3 and differentiated twice with respect
to x3 to yield an equation of the form

d InR/δx4 - -2iK(ζ, ζ) + H7

where H is a complex constant. By virtue of (6.31) this entails K = con-
stant, so that

R = R°(ζ9 ζχ*4, r =-2iK + H , (6.33)

where by (6.31) R° satisfies

ζ + ur = 0. (6.34)

Substitute (6.33) in (6.32) and differentiate with respect to x4. This yields
r = F, and the x4-dependence in (6.32) cancels out. The resulting equation,
when differentiated with respect to C, results in d\n(R°/R°)/dζ = 0. How-
ever, (6.34), with (4.9), implies

2P2d2\n(R/R°)/dζdζ = ir.

Thus r = 0, =>dR/dx4 = Q=>R = Q by (6.32), and the assumption
U2 — B4 Φ 0 leads to a contradiction.

By (6.27), U + B2 Φ 0, so that we must have

I/ - B2 = Q=>A -p = 4b. (6.35)

Eqs. (6.29) and (6.26) entail

dp/dx4 = 0, dK/dζ - dp/dζ=>d2p/dx* dζ = Q^dp/dζ = 0 ,
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the last assertion being a consequence of (6.28). We thus have

p = p(x3), A = A(x\ K = constant, (6.36)

and by means of (6.26) and (6.35)

3A + p = 4K-2C. (6.37)

The x3-dependence is determined by Eq. (4.14) which now reads

dx3 = -SU+2K.

Under a coordinate transformation x3' = x3 + d, d = constant, this has
the general solution

where p0 is an arbitrary constant, and K must be positive to ensure
B2 = U > 0. By means of (6.25), (6.35) and (6.37) the pressure is given by

p = C-±K + Pocos23/2x3. (6.38)

We write K = a2. Then P, v are the same as in case A2 of § 5, and the
coordinate transformation used there leads to

ds2 = - ^(dx1)2 - i[l - (1 - 4 U/a2)cos2ax1'] (dx2)2

- (21 a) cosαx1 dx2 dx3 + (4 U/a) cos ax1 dx2 dx4 (6.39)

+ 2dx3dx4-2U(dx*)2,

where, by (6.35), U = ^(A + p\ and the density and pressure are given by
(6.37) and (6.38) with K = a2. The velocity of the fluid, as given by (3.1),
reduces to

ua = (1/2ι/2B) (2USI + 8l\ ua =

The rotation and acceleration of the fluid are zero, but the expansion and
shear scalar are given by

θ = (PoβB) cos23/2x3, σabσ
ab - 2<93/3 .

The Weyl tensor is type [2, 2], the only non-zero tetrad component
being

^2 = (po/9) [4cos23/2x3 + 3ΐ2 1 / 2 sin23/2x3] .

In addition the pressure p (and hence the density A) remains finite for all
values of the coordinates — oo <x1, x2, x3, x4 <oo. If the inequalities
0<C<α 2 <2C are satisfied, and p0 is sufficiently small, then the
conditions p>0, A — p>0 will be satisfied everywhere. In the limit
p 0— >0 we obtain the Einstein static universe.
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This solution is one of the locally rotationally symmetric solutions
found by Stewart and Ellis [3] (case Ilia, α φ 0, with E = τ = 0), but in
a simpler coordinate system, since the coordinate transformation that
relates the above line element to the form given in [3] introduces a
singularity.

§ 7. Locally Rotationally Symmetric Spacetimes with Perfect Fluid

We finally prove that the locally rotationally symmetric dust and
perfect fluid spacetimes of Ellis [2] and Stewart and Ellis [3] belong to
the general class under consideration.

Theorem 7.1. For all locally rotationally symmetric spacetimes with a
perfect fluid (or dust) which are not conformally flat, the Weyl tensor is
type [2, 2] and the two repeated principal null congruences are geodesic
and shearfree.

Proof. The general line element for locally rotationally symmetric
spacetimes with perfect fluid is (Stewart and Ellis [3], p. 1074):

ds2 = (dx°)2/F2 - X2(dx1)2 - Y2l(dx2)2 + t2(dx3)2-]

-(y/F2) (2dx° - ydx3) dx3 + X2h(2dx1 ~ hdx3)dx3 ,

where F, X, Y are functions of x°, x1 and ί, y, h are functions of x2. The
coordinates are now denoted x°, x1,*2, x3 in accordance with the
notation of [3], but the signature is changed to ( ---- h). There are
three distinct cases in which the following specializations occur 1 :

Case I: X = 1, Y = Y(xl\ F = F(xl\ h = 0,
Case II: h = y = Q,
Case III: F = 1, X = X(x°), Y=Y(x°), y = Q.
A suitable null tetrad for this line element is

ka = 2'1/2 [(1/F) δ°a - Xδ\ -h (Xh - y/F)δ3-] ,

with
nakb - mamb - mamb .

A straightforward calculation shows that the Newman- Penrose spin
coefficients satisfy

K = σ = τ = 0, v = λ = π = Q .

1 In the statement of this result in [3], the condition F = F(x1) in Case I was in-
advertently omitted (private communication).
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With these simplifications the Ricci identities in Newman- Penrose form
immediately imply

Thus ka and na are repeated principal null congruences and the Weyl
tensor is type [2, 2]. The restrictions κ = σ = 0, v = λ = 0 express the
fact that these congruences are geodesic and shearfree (Newman and
Penrose [7]) and the proof is complete.

Remark. The solutions for which the principal null congruences are
non-expanding are contained in Cases I and III, and are characterized by
d Y/dx1 - 0 in Case I, and d Y/dx° = 0 in Case III.

It thus follows from [3] that

Corollary. The only locally rotatίonally symmetric perfect fluid space-
times with Cabcd φ 0 whose repeated principal null congruences are non-
expanding are the Gδdel universe, the particular solution (6.23), (6.24),
with R = constant of Case II a (§ 6) and the solution (6.38), (6.39) which is
the general solution in Case lib (§ 6).

§ 8. Conclusion

The cases I, IIa and lib of §5 and §6 comprise all algebraically
special perfect fluid spacetimes whose repeated principal null congruence
is geodesic, shearfree and non-expanding (class A of the introduction).

As an immediate consequence of Eq. (4.22), we can state

Theorem 8.1. The solutions of Case I comprise all algebraically special
perfect fluid spacetimes whose repeated principal null direction is parallel
to a (null) Killing vector.

From §6, it is clear that zero pressure is not possible in Cases II a
and II b. In Case I, the assumption of zero pressure led uniquely to the
Gδdel solution and the conformally flat Einstein static solution. Thus
we can give a new characterization of the Gδdel solution.

Theorem 8.2. The only algebraically special (but not conformally
flat) solution of the Einstein field equations for dust, whose repeated
principal null congruence is geodesic, shearfree and non-expanding is the
Gδdel solution.
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