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Abstract. It is shown that local C*-algebras ^(0^ and 5ί(02) associated with space-
like separated regions 0^ and O2 in the Minkowski space are independent. The proof
is accomplished by a theorem concerning the structure of the C*-algebra generated by

and

I. Introduction

Let 91, 9ll9 9I2 be C*-algebras with 91 x and 9I2 contained in 91.
Picking a state φv of 9^ and a state φ2 of 9I2 one may ask whether there
exists a state φ of 91 whose restriction to 9If equals ^(1= 1,2). If this
is the case for any choice of the pair φl9φ2 then we shall say that the
algebras 91! and 9I2 are "statistically independent".

In a Quantum Field Theory let 91(0) denote the algebra of observ-
ables which are associated with the region 0 of the Minkowski space.
We use the symbol Ox x 02 to denote that two regions 01? 02 lie totally
spacelike to each other. In [1] Haag and Kastler raised the question of
whether two algebras 91(0!) and 9I(02) are statistically independent
when Oi x 02.

If Oi + x x 02 for x e Λ^ Jf being a suitably chosen neighbourhood
of the origin, we write O1 >& O2. Starting from standard assumptions
of Quantum Field Theory, Schlieder [2] derived the following

Proposition (Schlieder). Suppose 01 *c O2. If xe91(0^ and ye 9l(02)
are non-vanishing elements, then xy Φ 0.

Schlieder also pointed out that the property xy φ 0 for non-vanishing
pairs of elements of two commuting algebras S11,S12 is a necessary
condition for statistical independence. We shall show here that this
property is also a sufficient condition. One has

Theorem 1. Let SI, SIl9 SI2 be C*-algebras with unit elements and let
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Suppose
(C): 91 ! and 9Ϊ2 commute elementwise.
Then 91 i and 9Ϊ2 are statistically independent if and only if they have

the property (S): I f x and y are non-vanishing elements of 91 x and 9Ϊ2

respectively, then

In addition, we shall show

Proposition I. Let 9^ and 912 be statistically independent, <Άί and 9I2

commuting, 9Itc9l. If φ\ is a pure state over 91̂  and φ2 is a pure state
over 9Ϊ2, then there exists an extension φofφ1 and φ2 which is a pure state
over 9ί.

II.

In this section and in the following one, we shall prove some lemmas
and another theorem which will finally yield the proofs of Theorem 1
and Proposition 1. The first essential step is the demonstration of the
following

Lemma 1. Let 91, 911? 9I2 be as in Theorem i, satisfying (C) and (S).
n

Suppose Σ xiyt = Q w^ X f e S I j , y fe9I2. Then, unless all x{ = 0 or all
i=l

3̂  = 0, neither the {xh i= 1, ... n] nor the {yi9 i= 1, ... n} can be linearly
independent.

We need another lemma to prove this. Let 93,- be an abelian C*-
subalgebra of 9ίl5 i= 1, 2; let 33? be its spectrum, that is, the set of all
characters of 93£ with the weak topology [3]. The elements of 95f and
93| may be denoted by χ' and χ" respectively. Since 93 ! and 932 commute,
they generate an abelian C*-subalgebra 9312 of 91, 93f2 denoting its
spectrum. A character χ 6 93ί2, restricted to 23ί? clearly defines an element
of 93? : χ| 93j e »?. Now define the subset Jt of the topological product
93? x 93f by

Lemma 2. // (S) is satisfied, then Jt is dense in 93f x 93f .

Proof. Assume the contrary. Then we can find an element (χ'0, χ'ό)
and a neighbourhood U((χ'0, tf$) such that ^nL/ = 0. U contains a
neighbourhood C/ι(χΌ) x U2(x'o\ Define continuous functions f(χf) and
g(χ") over 9$^ and 932 respectively, with supp/C I7l9 suppgfC l/2. As is
well known, 93,- is isomorphic to the C*-algebra of continuous complex
functions over 93? vanishing at infinity; the isomorphism is furnished
by the Gelfand transformation ([4], Theorem 1.4.1). Therefore, if /
and g do not vanish identically, they are Gelfand transforms of elements
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x e 33 ! and y e 932. Consider χ(xy) for arbitrary χ e 93f2. Clearly,

because of our assumption Jlc\U = 0 and the support properties of/
and g. Hence xy = Q, xφO, yφO, which contradicts the property (S).

Proof of Lemma 1. (i) The main task is to prove the lemma for com-
muting xt and commuting yt. Let 2^ and 232 be abelian C*-subalgebras

n

of Sli and 2I2 containing { xj and [y^ respectively. Σ Xί J>ί = 0 implies
i= l

*ty]= Σ χWχϋΊ)= Σ xl^fehl^^o
i = l / ί=l i = l

for all χ e 93J2 and, with the help of Lemma 2,

Σχ'W(yi) = 0 for all χ'e»ί,^e»J. (1)
i = l

Unless all ^ = 0, we can find a /ό such that not all &(yύ vanish. With
yt = Xo(yi) we have

χf(Σyiχί)=Σx'(χi)xo(yi} = v for ail / e»f,
and therefore, ̂ 7ixi = 0. Due to the symmetry of Eq. (1) with respect to
{Xi} and {yj,the {yj are linearly dependent, too.

(ii) Now let us consider x f, yt which do not all commute with each
n

other, with £ xtyt = 0. Without loss of generality, we may assume that
i = l

there exists a yko such that not all y't = [y^ yko~] vanish, and we have

Σ *̂  = 0. (2)

Trivially, the lemma is true for n = 1. Suppose it is proven for v ̂  n — 1.
Because the sum in (2) contains less than n terms, the {Xi,iφ/c 0} and,
of course, the {xh i = 1, . . . n} are linearly dependent. Let yio Φ 0, ct = yi/yio ,
xio = - Σcίxi- It follows that Σ xt(yt ~ Wi,) = O Then either all yt = c^,

i φ i o iφio
which gives us already the desired linear dependence of the {yj or not
all (yt — ctyi() = 0; and therefore, since we have less than n terms, we can
find non-trivial β{ with

Σ βtyt+( Σ βtώyh= Σ

This proves Lemma 1 [5].
Now it is easy to demonstrate
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Proposition 2. Let 2l,2l1? 9I2 be as in Lemma 1, satisfying (C) and (S).
n

Suppose Σ xiyt= 05 *ί e 9ίι, yt e 9I2, not α// xf = 0, not all yt = 0. Then

there exist non-trivial complex numbers αίk such that

t 0,̂  = 0, fc=l,...n, (3)

•y,, » = !,...«. (4)

aίfc are called non-trivial if

1) not all αίfe vanish,

, I — /C

Proposition 2 is so to speak symmetric in (xj and {yj because with
αj fc = — αfeί + <5kί we have

with non- trivial α( fc.

Proo/ by induction, n = 1 is evident due to assumption (S). Let the
assertion be proven for v ̂  n — 1. v = n: According to Lemma 1, {xj are
linearly dependent; without loss of generality, let us assume that

n n

Xι = - Σ ?/*«• τhis implies ^ λ:/(^-y/};ι) = 0. If not all -̂ = 7^1,
i = 2 i = 2

there exist non-trivial numbers βik with

n n

Σ βikXι = Q> k = 2,...n; Σ βik(yk-ykyι) = yt- Mi, ί = 2,. . .n ,
i = 2 k = 2

since we assume that the proposition is true for v ̂  n — 1. If one puts

αn = 1,

αu=0, fc = 2,...n.,
«

«ii =7«- Σ A*?*'
k = 2

one can directly verify that Eqs. (3) and (4) hold. Clearly, αίk are non-
trivial because βik are non-trivial. If yi = yiy1 for all z = 2, ... π, then

( * \Xi + Σ yΛ ^i = 0 and, due to (S), 3̂  = 0. Thus the problem is reduced
\ i=2 /
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to the case v ̂  n — 1 and if ]Γ α ί fcx f = 0, X α ί fcyfe = yt for z, fc ̂  2, (3) and
(4) hold for i, fc = 1, . . . n with α l f c = αf x = 0.

Proposition 2 implies the following

Corollary. Let 9Ϊ, 911? 912 be C* -algebras with unit elements, 91̂ 91.
// (Q and (S) are fulfilled, 9^ V 9I2 is isomorphic to S^O^

Here 91̂  V 9I2 denotes the normed involutive subalgebra of 91
generated by 91 x and 9I2; 9ί1θ9ϊ2 denotes the direct algebraic product
of 91 ! and 9I2, that is, the set of all formal finite sums Xx f ®y f with

and Σ:xi®3;i are always finite sums).
The isomorphism is given by Φ(Σxiyι) = Σ
We have to show that 91 1 and 9ί2 are algebraically independent [6],

that is, if {xf, i= 1, ... n} and {yp j= 1, ... m} are sets of linearly inde-
pendent elements of ̂  and 9ί2 respectively, then {Xiyjy ί=l,...n,
j = 1, ... m} is a linearly independent set in 91. Assume the existence of
numbers κtj with £ fyjXiyj = 0. Then ̂  ̂  y7 = 0, with xj = ̂  κ^ Xf . Unless

all x} = 0, there are non-trivial αjk such that = y7 , which con-

tradicts the linear independence of {y,-}. Hence x'j = X xi7-xf = 0,7 = 1, . . . m,
and because of the linear independence of {xj we get κtj = 0.
As one can check easily, algebraic independence of ^Hί and 9I2 implies
that 9ti V 9I2 and 9^ Q9Ϊ2 are isomorphic (cf. [6]).

III.

The second essential step in proving Theorem 1 is to establish the
continuity of the isomorphism Φ of 9ϊx V 9I2 and 9I1Q9Ϊ2.

We shall use the following notations:
9I12 = 9Ii V912 denotes the norm-closure of 9ΪX V 9T2, that is, the

C*-subalgebra of 9Ϊ generated by 9^ and 9I2.
If we define a norm β on 9^ 0 9Ϊ2, the completion of 9^ O 9ί2 with

respect to this norm is denoted by 9IX ®β 9ί2.

Definition 1. α-norm [7, 8]:

= sup i = l ί=l
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with xt e 9Ϊ1? yt e 9Ϊ2; the supremum is taken over all states φί over 9I1?

all states φ2 over 9Ϊ2 and all αf e 2l l9 fcf e 2I2. Furthermore,

If Sli and 9ί2 are algebras of operators in a Hubert space Jf, ίΆ1 Q 9I2

is an operator algebra in Jf (x) Jjf. In this case, the α-norm is identical
with the natural norm in ffl (x) ffl (theorem of Wulfsohn [9]).

We want to show that Φ is continuous with respect to the α-norm
topology in S^O^ We need some definitions and theorems which
can be found in mathematical literature, and which are cited below.

Definition 2 [8]. A norm β of 9Iιθ9ϊ2 is called compatible (with
the algebraic structure of ̂  Q 9I2) if the completion of (Ά1 Q 9Ϊ2 with
respect to β becomes a C*-algebra, and if ||x(χ)j;||0:g ||x|| ||y||.

Definition 3 [10]. A £*-norm means any norm ||...||^ satisfying

Proposition (Okayasu) [10]. Every B*-norm on ςΆl Q^Ά2 ^ compatible.

Theorem (Takesaki and Okayasu) [8, 10]. Let ̂  and 9I2 be C*-
algebras. Then the set of all B*-norms on (Ά1 Q 9Ϊ2 is a complete lattice
under the ordering "^" with the least element ||...||α.

Here β^β2 means \\u\\ Pl ^ \\u\\ β2 for all ue
We define

and assert

Lemma 3. The norm β defined in (5) is a B*-norm on 9I1Θ3Ϊ2

Proof. Because of the isomorphism of 2lx V 9I2 and 2^ O 912? (5) defines
a norm on (Άί Q 9I2 and

since <Ά1 V 9I2 is contained in a C*-algebra 9I12.
Hence jS is compatible, and, according to the theorem of Takesaki

and Okayasu, we have

The isomorphism Φ can then be extended to a morphism

Actually, Φ is a homomorphism because it is surjective: for Φ(9Iι2) is
closed ([4], Corollary 1.3.3) and contains 91! 0^2 which is dense in
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We collect our results formulating

Theorem 2. Let 21, 2ll9 5ί2 be C*-algebras with unit elements, 9It-C9l.
Assume
(C) 2Ϊ! and 5I2 commute elementwise.
(S) If x and y are non-vanishing elements of 21 ί and 2Ϊ2 respectively,

then xy φ 0.
Then we have
1) There exists an isomorphism Φ: 21^212 ~* 2ϊιΘ2l2.
2) Φ is continuous with respect to the^-norm on ̂ O^ and can

therefore be extended to a homomorphίsm Φ: 2112 -»2I1(x)α2I2.
_ 3) Let gft be any abelian C*-subalgebra of (Άί. The restriction of
Φ to SOΐ V 212 is an isomorphism, Φ(9Dΐ V 2I2)

= 2Ί ®a$l2

Parts 1) and 2) are proven. The third part follows from another
theorem of Takesaki:

Theorem (Takesaki) [8]. Let 2Ϊ! be an abelian C*-algebra. Then, for
any C*-algebra 2I2, the a-norm is the only compatible norm on 211Q3I2.

Therefore, since we know that the norm β defined in (5) is compatible,
we have for xt e $R

and this implies that the restriction of Φ to 90ΐ V 2I2 is an isomorphism

This completes the proof of Theorem 2.

IV.

Finally, we shall prove Theorem 1 and Proposition 1. As already
mentioned, Schlieder [2] showed that (S) is a necessary condition. (The
proof given in [2] is not a quite general one, for one needs the existence
of sufficiently many hermitian elements x e 2^ and y e 212 with x2 = x,
y2 = yi its generalization is given in the appendix.)

Now let us assume that (S) is satisfied; so we can use theorem 2.
Let φ be any continuous linear functional over <Άί ®^2 Then we define
a linear functional φ over 2112 by

φ(u) = φ(Φ(u)), u6 2112 in short: φ = φ° Φ. (7)

Φ is continuous; therefore, φ is continuous. Clearly, if φ is positive,
so is φ, since u ̂  0, u e 21̂ , implies Φ(u) ̂  0. Put φ = φί®φ2,φί and φ2

arbitrary states over 2ίx and 2I2 respectively, then

Φ (8)
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is the functional over 2I12 required by statistical independence:

y e 2I2: φ(y) = φ(Φ(y)) =

It remains to be checked whether φί®φ2 is continuous and positive if
ψi and φ2 are continuous and positive. The continuity is a direct con-
sequence of the Definition 1 of the α-norm; the positivity follows from
an easily provable lemma:

Lemma 4 [6], If φv and φ2 are positive functional^ over (Άί and 212

respectively, then φ±®φ2 is a positive functional over 2I1O2Ϊ2.

Because of the continuity, φ±®φ2 is also positive over 9Iι®α2l2

This proves the statistical independence of 21 x anc( 2t2, since the state φ
over 21 ! 2 defined in (8) can be extended to a state over 21. We note that

φ(xy}= 9ί (x) φ2(y) = φ(x) φ(y\ x e SΪ! , y e 2I2 . (9)

Proof of Proposition i. Let ^(9ϊ) denote the set of states over 91
and ^(2ϊ) the subset of pure states. If φx and φ2 are pure states, they
define irreducible representations πφί and πφ2 of 2lx and 2Ϊ2 respectively.
The representation π of 9ίι®α9ϊ2, defined by φ±®φ2 is isomorphic
to 7 (̂21^7 (̂212), therefore, π is irreducible and φ1®φ2e^)(9ϊ1®α9I2).

According to Theorem 2, 2ϊ12/KerΦ and 9ίι®α9ϊ2 are isomorphic;
so φ -> φ o φ defines an isomorphism Φr of <?(2l! ®αSΪ2) and ^(9ϊ12/Ker Φ),
which transforms pure states into pure states. Therefore, φ = φί®φ2°Φ
is an element of ^(9I12/KerΦ). (Here we identify <f (2I12/KerΦ) with
the set <f0 = {χ|χe<f(2ϊ12), χ(KerΦ) = 0}.) Now consider φ as a state
over 9ί12 and suppose that φ majorizes a state φ' e ̂ (9Iί2). Since φ(x) =_0
for all x e KerΦ, the same holds for φ', which implies φ' e ^(9ϊ12/KerΦ).
But this is a contradiction unless φ' — φ\ and therefore, <pe^(2I12).
Any pure state over 21 12 can be extended to a pure state over 21; which
completes the proof.

Acknowledgement. This work was suggested by Prof. Borchers whom I wish to express
my thanks for continuing encouragement and many helpful discussions.

Appendix

Let 2I1? 2I2 be commuting C*-algebras with unit elements, 2lfc2I,
and let 21 ί and 2Ϊ2 be statistically independent. We want to show that
xy Φ 0 whenever x e <Ά1 , y E 2I2, x and y φ 0.

Assume that we can find non- vanishing elements x' e <Άί and y' E 2I2

with xy = 0. Then of course x'*xy*y = 0. Let αeSρ(x/*x/), ocφO
(Sp u denotes the spectrum of u in 21̂ . Then for x = a~1 x'* x e 2I1?
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y = y *yf e 9Ϊ2, we have

(i)

(ii)

and therefore,

z = (l-x)2^0, OeSpz, αeSp(z + α). (iii)

Consider the selfadjoint vector space 2> spanned by {1, z} and define
φί(l)= 1, φί(z) = 0. φ1 is a positive functional on 3) because, according
to (iii), yι l + y2z = 0 implies 7ι/y2^0 if 72 + 0, hence, <pι(7ιl + 72z)
= 7i Ξ^O. As is well known (cf. [4], Lemma 2.10.1), φί can be extended
to a state over SI19 and we have

<Pι((l-*)2) = 0 (iv)

and because of |φι(w)|2 ̂  HφJ (^(w*^):

x) = 0. (v)

It is clear that we can find a state φ2 over 9I2 with
Since 91 1 and 5I2

 are statistically independent, there exists a common
extension φ oϊ φ1 and φ2. The Schwartz inequality implies

\φ((ί - x) (1 + y))\2 ί ψ((l - x)2) φ((ί + y)2) = φι((ί - x)2) φ2((l + y)2) .

Hence, according to (iv), φ((l — x) (1 + y)) = 0. However,

according to (i) and (v), which is a contradiction.
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