Commun. math. Phys. 16, 238-246 (1970)

Independence of Local Algebras in Quantum Field Theory

H. Roos

Institut für Theoretische Physik der Universität Göttingen

Received October 15, 1969

Abstract. It is shown that local C^* -algebras $\mathfrak{A}(O_1)$ and $\mathfrak{A}(O_2)$ associated with spacelike separated regions O_1 and O_2 in the Minkowski space are independent. The proof is accomplished by a theorem concerning the structure of the C^* -algebra generated by $\mathfrak{A}(O_1)$ and $\mathfrak{A}(O_2)$.

I. Introduction

Let \mathfrak{A} , \mathfrak{A}_1 , \mathfrak{A}_2 be C*-algebras with \mathfrak{A}_1 and \mathfrak{A}_2 contained in \mathfrak{A} . Picking a state φ_1 of \mathfrak{A}_1 and a state φ_2 of \mathfrak{A}_2 one may ask whether there exists a state φ of \mathfrak{A} whose restriction to \mathfrak{A}_i equals $\varphi_i(i=1,2)$. If this is the case for any choice of the pair φ_1, φ_2 then we shall say that the algebras \mathfrak{A}_1 and \mathfrak{A}_2 are "statistically independent".

In a Quantum Field Theory let $\mathfrak{A}(O)$ denote the algebra of observables which are associated with the region O of the Minkowski space. We use the symbol $O_1 \times O_2$ to denote that two regions O_1, O_2 lie totally spacelike to each other. In [1] Haag and Kastler raised the question of whether two algebras $\mathfrak{A}(O_1)$ and $\mathfrak{A}(O_2)$ are statistically independent when $O_1 \times O_2$.

If $O_1 + x \times O_2$ for $x \in \mathcal{N}, \mathcal{N}$ being a suitably chosen neighbourhood of the origin, we write $O_1 \ll O_2$. Starting from standard assumptions of Quantum Field Theory, Schlieder [2] derived the following

Proposition (Schlieder). Suppose $O_1 \approx O_2$. If $x \in \mathfrak{A}(O_1)$ and $y \in \mathfrak{A}(O_2)$ are non-vanishing elements, then $xy \neq 0$.

Schlieder also pointed out that the property $xy \neq 0$ for non-vanishing pairs of elements of two commuting algebras $\mathfrak{A}_1, \mathfrak{A}_2$ is a necessary condition for statistical independence. We shall show here that this property is also a sufficient condition. One has

Theorem 1. Let $\mathfrak{A}, \mathfrak{A}_1, \mathfrak{A}_2$ be C*-algebras with unit elements and let $\mathfrak{A}_i \subset \mathfrak{A}$.

Suppose

(C): \mathfrak{A}_1 and \mathfrak{A}_2 commute elementwise.

Then \mathfrak{A}_1 and \mathfrak{A}_2 are statistically independent if and only if they have the property (S): If x and y are non-vanishing elements of \mathfrak{A}_1 and \mathfrak{A}_2 respectively, then $xy \neq 0$.

In addition, we shall show

Proposition 1. Let \mathfrak{A}_1 and \mathfrak{A}_2 be statistically independent, \mathfrak{A}_1 and \mathfrak{A}_2 commuting, $\mathfrak{A}_i \subset \mathfrak{A}$. If φ_1 is a pure state over \mathfrak{A}_1 and φ_2 is a pure state over \mathfrak{A}_2 , then there exists an extension φ of φ_1 and φ_2 which is a pure state over \mathfrak{A} .

II.

In this section and in the following one, we shall prove some lemmas and another theorem which will finally yield the proofs of Theorem 1 and Proposition 1. The first essential step is the demonstration of the following

Lemma 1. Let $\mathfrak{A}, \mathfrak{A}_1, \mathfrak{A}_2$ be as in Theorem 1, satisfying (C) and (S). Suppose $\sum_{i=1}^{n} x_i y_i = 0$ with $x_i \in \mathfrak{A}_1$, $y_i \in \mathfrak{A}_2$. Then, unless all $x_i = 0$ or all $y_i = 0$, neither the $\{x_i, i = 1, ..., n\}$ nor the $\{y_i, i = 1, ..., n\}$ can be linearly independent.

We need another lemma to prove this. Let \mathfrak{B}_i be an abelian C^* subalgebra of \mathfrak{A}_i , i = 1, 2; let \mathfrak{B}_i^* be its spectrum, that is, the set of all characters of \mathfrak{B}_i with the weak topology [3]. The elements of \mathfrak{B}_1^* and \mathfrak{B}_2^* may be denoted by χ' and χ'' respectively. Since \mathfrak{B}_1 and \mathfrak{B}_2 commute, they generate an abelian C^* -subalgebra \mathfrak{B}_{12} of \mathfrak{A} , \mathfrak{B}_{12}^* denoting its spectrum. A character $\chi \in \mathfrak{B}_{12}^*$, restricted to \mathfrak{B}_i , clearly defines an element of $\mathfrak{B}_i^* : \chi | \mathfrak{B}_i \in \mathfrak{B}_i^*$. Now define the subset \mathscr{M} of the topological product $\mathfrak{B}_1^* \times \mathfrak{B}_2^*$ by

 $\mathcal{M} = \{ (\chi | \mathfrak{B}_1, \chi | \mathfrak{B}_2) | \chi \in \mathfrak{B}_{12}^* \}.$

Lemma 2. If (S) is satisfied, then \mathcal{M} is dense in $\mathfrak{B}_1^* \times \mathfrak{B}_2^*$.

Proof. Assume the contrary. Then we can find an element (χ'_0, χ''_0) and a neighbourhood $U((\chi'_0, \chi''_0))$ such that $\mathcal{M} \cap U = \emptyset$. U contains a neighbourhood $U_1(\chi'_0) \times U_2(\chi''_0)$. Define continuous functions $f(\chi')$ and $g(\chi'')$ over \mathfrak{B}_1 and \mathfrak{B}_2 respectively, with $\operatorname{supp} f \subset U_1$, $\operatorname{supp} g \subset U_2$. As is well known, \mathfrak{B}_i is isomorphic to the C*-algebra of continuous complex functions over \mathfrak{B}_i^* vanishing at infinity; the isomorphism is furnished by the Gelfand transformation ([4], Theorem 1.4.1). Therefore, if fand g do not vanish identically, they are Gelfand transforms of elements 16^* H. Roos:

 $x \in \mathfrak{B}_1$ and $y \in \mathfrak{B}_2$. Consider $\chi(xy)$ for arbitrary $\chi \in \mathfrak{B}_{12}^*$. Clearly,

$$\chi(x y) = \chi(x) \chi(y) = f(\chi | \mathfrak{B}_1) g(\chi | \mathfrak{B}_2) = 0$$

because of our assumption $\mathcal{M} \cap U = \emptyset$ and the support properties of f and g. Hence xy = 0, $x \neq 0$, $y \neq 0$, which contradicts the property (S).

Proof of Lemma 1. (i) The main task is to prove the lemma for commuting x_i and commuting y_i . Let \mathfrak{B}_1 and \mathfrak{B}_2 be abelian C*-subalgebras of \mathfrak{A}_1 and \mathfrak{A}_2 containing $\{x_i\}$ and $\{y_i\}$ respectively. $\sum_{i=1}^n x_i y_i = 0$ implies

$$\chi\left(\sum_{i=1}^{n} x_{i} y_{i}\right) = \sum_{i=1}^{n} \chi(x_{i}) \chi(y_{i}) = \sum_{i=1}^{n} \chi | \mathfrak{B}_{1}(x_{i}) \chi | \mathfrak{B}_{2}(y_{i}) = 0$$

for all $\chi \in \mathfrak{B}_{12}^*$ and, with the help of Lemma 2,

$$\sum_{i=1}^{n} \chi'(x_i) \, \chi''(y_i) = 0 \quad \text{for all} \quad \chi' \in \mathfrak{B}_1^*, \, \chi'' \in \mathfrak{B}_2^*. \tag{1}$$

Unless all $y_i = 0$, we can find a χ''_0 such that not all $\chi''_0(y_i)$ vanish. With $\gamma_i = \chi''_0(y_i)$ we have

$$\chi'(\sum \gamma_i x_i) = \sum \chi'(x_i) \chi_0''(y_i) = 0$$
 for all $\chi' \in \mathfrak{B}_1^*$,

and therefore, $\sum \gamma_i x_i = 0$. Due to the symmetry of Eq. (1) with respect to $\{x_i\}$ and $\{y_i\}$, the $\{y_i\}$ are linearly dependent, too.

(ii) Now let us consider x_i , y_i which do not all commute with each other, with $\sum_{i=1}^{n} x_i y_i = 0$. Without loss of generality, we may assume that there exists a y_{k_0} such that not all $y'_i = [y_i, y_{k_0}]$ vanish, and we have

$$\sum_{\substack{i=1\\i\neq k_0}}^n x_i y_i' = 0.$$
 (2)

Trivially, the lemma is true for n = 1. Suppose it is proven for $v \le n - 1$. Because the sum in (2) contains less than *n* terms, the $\{x_i, i \ne k_0\}$ and, of course, the $\{x_i, i=1, ..., n\}$ are linearly dependent. Let $\gamma_{i_0} \ne 0, c_i = \gamma_i/\gamma_{i_0}, x_{i_0} = -\sum_{i \ne i_0} c_i x_i$. It follows that $\sum_{i \ne i_0} x_i (y_i - c_i y_{i_0}) = 0$. Then either all $y_i = c_i y_{i_0}$, which gives us already the desired linear dependence of the $\{y_i\}$ or not all $(y_i - c_i y_{i_0}) = 0$; and therefore, since we have less than *n* terms, we can find non-trivial β_i with

$$\sum_{i \neq i_0} \beta_i y_i + \left(\sum_{i \neq i_0} \beta_i c_i \right) y_{i_0} = \sum_{i \neq i_0} \beta_i (y_i - c_i y_{i_0}) = 0.$$

This proves Lemma 1 [5]. Now it is easy to demonstrate

240

Proposition 2. Let $\mathfrak{A}, \mathfrak{A}_1, \mathfrak{A}_2$ be as in Lemma 1, satisfying (C) and (S). Suppose $\sum_{i=1}^{n} x_i y_i = 0$, $x_i \in \mathfrak{A}_1$, $y_i \in \mathfrak{A}_2$, not all $x_i = 0$, not all $y_i = 0$. Then there exist non-trivial complex numbers α_{ik} such that

$$\sum_{i=1}^{n} \alpha_{ik} x_i = 0, \quad k = 1, \dots n ,$$
(3)

$$\sum_{k=1}^{n} \alpha_{ik} y_k = y_i, \qquad i = 1, \dots n .$$
 (4)

 α_{ik} are called non-trivial if

1) not all α_{ik} vanish,

2) not all
$$\alpha_{ik} = \delta_{ik} = \begin{cases} 0, & i \neq k \\ 1, & i = k \end{cases}$$

Proposition 2 is so to speak symmetric in $\{x_i\}$ and $\{y_i\}$ because with $\alpha'_{ik} = -\alpha_{ki} + \delta_{ki}$ we have

$$\sum_{i} \alpha'_{ik} y_{i} = 0, \quad k = 1, \dots n; \quad \sum_{k} \alpha'_{ik} x_{k} = x_{i}, \quad i = 1, \dots n,$$

with non-trivial α'_{ik} .

Proof by induction. n = 1 is evident due to assumption (S). Let the assertion be proven for $v \le n-1$. v = n: According to Lemma 1, $\{x_i\}$ are linearly dependent; without loss of generality, let us assume that $x_1 = -\sum_{i=2}^{n} \gamma_i x_i$. This implies $\sum_{i=2}^{n} x_i (y_i - \gamma_i y_1) = 0$. If not all $y_i = \gamma_i y_1$, there exist non-trivial numbers β_{ik} with

$$\sum_{i=2}^{n} \beta_{ik} x_{i} = 0, \quad k = 2, \dots n; \quad \sum_{k=2}^{n} \beta_{ik} (y_{k} - \gamma_{k} y_{1}) = y_{i} - \gamma_{i} y_{1}, \quad i = 2, \dots n,$$

since we assume that the proposition is true for $v \leq n-1$. If one puts

$$\begin{aligned} \alpha_{11} &= 1, \\ \alpha_{1k} &= 0, \quad k = 2, \dots n, \\ \alpha_{i1} &= \gamma_i - \sum_{k=2}^n \beta_{ik} \gamma_k, \quad i = 2, \dots n, \\ \alpha_{ik} &= \beta_{ik}, \quad i, k \ge 2, \end{aligned}$$

one can directly verify that Eqs. (3) and (4) hold. Clearly, α_{ik} are non-trivial because β_{ik} are non-trivial. If $y_i = \gamma_i y_1$ for all i = 2, ..., n, then $\left(x_1 + \sum_{i=2}^{n} \gamma_i x_i\right) y_1 = 0$ and, due to (S), $y_1 = 0$. Thus the problem is reduced

H. Roos:

to the case $v \le n-1$; and if $\sum \alpha_{ik} x_i = 0$, $\sum \alpha_{ik} y_k = y_i$ for $i, k \ge 2$, (3) and (4) hold for i, k = 1, ..., n with $\alpha_{1k} = \alpha_{i1} = 0$.

Proposition 2 implies the following

Corollary. Let $\mathfrak{A}, \mathfrak{A}_1, \mathfrak{A}_2$ be C*-algebras with unit elements, $\mathfrak{A}_i \subset \mathfrak{A}$. If (C) and (S) are fulfilled, $\mathfrak{A}_1 \lor \mathfrak{A}_2$ is isomorphic to $\mathfrak{A}_1 \odot \mathfrak{A}_2$.

Here $\mathfrak{A}_1 \vee \mathfrak{A}_2$ denotes the normed involutive subalgebra of \mathfrak{A} generated by \mathfrak{A}_1 and \mathfrak{A}_2 ; $\mathfrak{A}_1 \odot \mathfrak{A}_2$ denotes the direct algebraic product of \mathfrak{A}_1 and \mathfrak{A}_2 , that is, the set of all formal finite sums $\sum x_i \otimes y_i$ with

$$\left(\sum_{i} x_{i} \otimes y_{i}\right)\left(\sum_{j} x_{j}' \otimes y_{j}'\right) = \sum_{i,j} x_{i} x_{j}' \otimes y_{i} y_{j}'; \quad (\sum x_{i} \otimes y_{i})^{*} = \sum x_{i}^{*} \otimes y_{i}^{*}$$

 $(\sum x_i y_i \text{ and } \sum x_i \otimes y_i \text{ are always finite sums}).$

The isomorphism is given by $\Phi(\sum x_i y_i) = \sum x_i \otimes y_i$.

We have to show that \mathfrak{A}_1 and \mathfrak{A}_2 are algebraically independent [6], that is, if $\{x_i, i=1, \ldots n\}$ and $\{y_j, j=1, \ldots m\}$ are sets of linearly independent elements of \mathfrak{A}_1 and \mathfrak{A}_2 respectively, then $\{x_i y_j, i=1, \ldots n, j=1, \ldots m\}$ is a linearly independent set in \mathfrak{A} . Assume the existence of numbers \varkappa_{ij} with $\sum_{i,j} \varkappa_{ij} x_i y_j = 0$. Then $\sum_j x'_j y_j = 0$, with $x'_j = \sum_i \varkappa_{ij} x_i$. Unless all $x'_j = 0$, there are non-trivial α_{jk} such that $\sum_k \alpha_{jk} y_k = y_j$, which contradicts the linear independence of $\{y_j\}$. Hence $x'_j = \sum_i \varkappa_{ij} x_i = 0, j = 1, \ldots m$, and because of the linear independence of $\{x_i\}$ we get $\varkappa_{ij} = 0$. As one can check easily, algebraic independence of \mathfrak{A}_1 and \mathfrak{A}_2 implies that $\mathfrak{A}_1 \vee \mathfrak{A}_2$ and $\mathfrak{A}_1 \odot \mathfrak{A}_2$ are isomorphic (cf. [6]).

III.

The second essential step in proving Theorem 1 is to establish the continuity of the isomorphism Φ of $\mathfrak{A}_1 \lor \mathfrak{A}_2$ and $\mathfrak{A}_1 \odot \mathfrak{A}_2$.

We shall use the following notations:

 $\mathfrak{A}_{12} \equiv \overline{\mathfrak{A}_1 \vee \mathfrak{A}_2}$ denotes the norm-closure of $\mathfrak{A}_1 \vee \mathfrak{A}_2$, that is, the *C**-subalgebra of \mathfrak{A} generated by \mathfrak{A}_1 and \mathfrak{A}_2 .

If we define a norm β on $\mathfrak{A}_1 \odot \mathfrak{A}_2$, the completion of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ with respect to this norm is denoted by $\mathfrak{A}_1 \otimes_{\beta} \mathfrak{A}_2$.

Definition 1. α -norm [7, 8]:

$$\left\| \sum_{i=1}^{n} x_{i} \otimes y_{i} \right\|_{\alpha}$$

$$= \sup \left\{ \frac{\varphi_{1} \otimes \varphi_{2} \left[\left(\sum_{i=1}^{m} a_{i} \otimes b_{i} \right)^{*} \left(\sum_{i=1}^{n} x_{i} \otimes y_{i} \right)^{*} \left(\sum_{i=1}^{n} x_{i} \otimes y_{i} \right) \left(\sum_{i=1}^{m} a_{i} \otimes b_{i} \right) \right] \right\}^{\frac{1}{2}},$$

242

with $x_i \in \mathfrak{A}_1$, $y_i \in \mathfrak{A}_2$; the supremum is taken over all states φ_1 over \mathfrak{A}_1 , all states φ_2 over \mathfrak{A}_2 and all $a_i \in \mathfrak{A}_1$, $b_i \in \mathfrak{A}_2$. Furthermore,

$$\varphi_1 \otimes \varphi_2 [(\sum a_i \otimes b_i)] = \sum \varphi_1(a_i) \varphi_2(b_i).$$

If \mathfrak{A}_1 and \mathfrak{A}_2 are algebras of operators in a Hilbert space $\mathscr{H}, \mathfrak{A}_1 \odot \mathfrak{A}_2$ is an operator algebra in $\mathscr{H} \otimes \mathscr{H}$. In this case, the α -norm is identical with the natural norm in $\mathscr{H} \otimes \mathscr{H}$ (theorem of Wulfsohn [9]).

We want to show that Φ is continuous with respect to the α -norm topology in $\mathfrak{A}_1 \odot \mathfrak{A}_2$. We need some definitions and theorems which can be found in mathematical literature, and which are cited below.

Definition 2 [8]. A norm β of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ is called compatible (with the algebraic structure of $\mathfrak{A}_1 \odot \mathfrak{A}_2$) if the completion of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ with respect to β becomes a C*-algebra, and if $||x \otimes y||_{\beta} \leq ||x|| ||y||$.

Definition 3 [10]. A B*-norm means any norm $\|\ldots\|_{\beta}$ satisfying $\|u^*u\|_{\beta} = \|u\|_{\beta}^2$ for all $u \in \mathfrak{A}_1 \odot \mathfrak{A}_2$.

Proposition (Okayasu) [10]. Every B^* -norm on $\mathfrak{A}_1 \odot \mathfrak{A}_2$ is compatible.

Theorem (Takesaki and Okayasu) [8, 10]. Let \mathfrak{A}_1 and \mathfrak{A}_2 be C*algebras. Then the set of all B*-norms on $\mathfrak{A}_1 \odot \mathfrak{A}_2$ is a complete lattice under the ordering " \leq " with the least element $\|...\|_{\alpha}$.

Here $\beta_1 \leq \beta_2$ means $||u||_{\beta_1} \leq ||u||_{\beta_2}$ for all $u \in \mathfrak{A}_1 \odot \mathfrak{A}_2$. We define

$$\left\|\sum x_i \otimes y_i\right\|_{\beta} = \left\|\sum x_i y_i\right\| \tag{5}$$

and assert

Lemma 3. The norm β defined in (5) is a B*-norm on $\mathfrak{A}_1 \odot \mathfrak{A}_2$.

Proof. Because of the isomorphism of $\mathfrak{A}_1 \lor \mathfrak{A}_2$ and $\mathfrak{A}_1 \odot \mathfrak{A}_2$, (5) defines a norm on $\mathfrak{A}_1 \odot \mathfrak{A}_2$; and

$$\begin{aligned} \|(\sum x_i \otimes y_i)^* (\sum x_i \otimes y_i)\|_{\beta} &= \left\|\sum_{i,j} x_i^* x_j \otimes y_i^* y_j\right\|_{\beta} = \left\|\sum_{i,j} x_i^* x_j y_i^* y_j\right\| \\ &= \|(\sum x_i y_i)^* (\sum x_i y_i)\| = \|\sum x_i y_i\|^2 = \|\sum x_i \otimes y_i\|_{\beta}^2, \end{aligned}$$

since $\mathfrak{A}_1 \lor \mathfrak{A}_2$ is contained in a *C**-algebra \mathfrak{A}_{12} .

Hence β is compatible, and, according to the theorem of Takesaki and Okayasu, we have

$$\|\sum x_i \otimes y_i\|_{\alpha} \le \|\sum x_i \otimes y_i\|_{\beta} = \|\sum x_i y_i\|.$$
(6)

The isomorphism Φ can then be extended to a morphism

$$\overline{\Phi}: \mathfrak{A}_{12} = \overline{\mathfrak{A}_1 \vee \mathfrak{A}_2} \to \mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2.$$

Actually, $\overline{\Phi}$ is a homomorphism because it is surjective: for $\overline{\Phi}(\mathfrak{A}_{12})$ is closed ([4], Corollary 1.3.3) and contains $\mathfrak{A}_1 \odot \mathfrak{A}_2$ which is dense in $\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2$.

We collect our results formulating

Theorem 2. Let $\mathfrak{A}, \mathfrak{A}_1, \mathfrak{A}_2$ be C*-algebras with unit elements, $\mathfrak{A}_i \subset \mathfrak{A}$. Assume

(C) \mathfrak{A}_1 and \mathfrak{A}_2 commute elementwise.

(S) If x and y are non-vanishing elements of \mathfrak{A}_1 and \mathfrak{A}_2 respectively, then $xy \neq 0$.

Then we have

1) There exists an isomorphism $\Phi: \mathfrak{A}_1 \lor \mathfrak{A}_2 \to \mathfrak{A}_1 \odot \mathfrak{A}_2$.

2) Φ is continuous with respect to the α -norm on $\mathfrak{A}_1 \odot \mathfrak{A}_2$ and can therefore be extended to a homomorphism $\overline{\Phi} : \mathfrak{A}_{12} \to \mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2$.

3) Let \mathfrak{M} be any abelian C^* -subalgebra of \mathfrak{A}_1 . The restriction of $\overline{\Phi}$ to $\overline{\mathfrak{M} \vee \mathfrak{A}_2}$ is an isomorphism, $\overline{\Phi}(\overline{\mathfrak{M} \vee \mathfrak{A}_2}) = \mathfrak{M} \otimes_{\alpha} \mathfrak{A}_2$.

Parts 1) and 2) are proven. The third part follows from another theorem of Takesaki:

Theorem (Takesaki) [8]. Let \mathfrak{A}_1 be an abelian C*-algebra. Then, for any C*-algebra \mathfrak{A}_2 , the α -norm is the only compatible norm on $\mathfrak{A}_1 \odot \mathfrak{A}_2$. Therefore, since we know that the norm β defined in (5) is compatible, we have for $x_i \in \mathfrak{M}$

$$\left\|\sum x_i \otimes y_i\right\|_{\alpha} = \left\|\sum x_i \otimes y_i\right\|_{\beta} = \left\|\sum x_i y_i\right\|;$$

and this implies that the restriction of $\overline{\Phi}$ to $\overline{\mathfrak{M} \vee \mathfrak{A}_2}$ is an isomorphism of $\overline{\mathfrak{M} \vee \mathfrak{A}_2}$ and $\mathfrak{M} \otimes_{\alpha} \mathfrak{A}_2$.

This completes the proof of Theorem 2.

IV.

Finally, we shall prove Theorem 1 and Proposition 1. As already mentioned, Schlieder [2] showed that (S) is a necessary condition. (The proof given in [2] is not a quite general one, for one needs the existence of sufficiently many hermitian elements $x \in \mathfrak{A}_1$ and $y \in \mathfrak{A}_2$ with $x^2 = x$, $y^2 = y$; its generalization is given in the appendix.)

Now let us assume that (S) is satisfied; so we can use theorem 2. Let $\tilde{\varphi}$ be any continuous linear functional over $\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2$. Then we define a linear functional φ over \mathfrak{A}_{12} by

$$\varphi(u) = \tilde{\varphi}(\overline{\Phi}(u)), \quad u \in \mathfrak{A}_{12}; \quad \text{in short:} \quad \varphi = \tilde{\varphi} \circ \overline{\Phi}. \tag{7}$$

 $\overline{\Phi}$ is continuous; therefore, φ is continuous. Clearly, if $\tilde{\varphi}$ is positive, so is φ , since $u \ge 0$, $u \in \mathfrak{A}_{12}$, implies $\overline{\Phi}(u) \ge 0$. Put $\tilde{\varphi} = \varphi_1 \otimes \varphi_2$, φ_1 and φ_2 arbitrary states over \mathfrak{A}_1 and \mathfrak{A}_2 respectively, then

$$\varphi = \varphi_1 \otimes \varphi_2 \circ \overline{\Phi} \tag{8}$$

is the functional over \mathfrak{A}_{12} required by statistical independence:

$$x \in \mathfrak{A}_1: \ \varphi(x) = \tilde{\varphi}(\overline{\Phi}(x)) = \tilde{\varphi}(x \otimes \mathbf{1}) = \varphi_1(x);$$
$$y \in \mathfrak{A}_2: \ \varphi(y) = \tilde{\varphi}(\overline{\Phi}(y)) = \tilde{\varphi}(\mathbf{1} \otimes y) = \varphi_2(y).$$

It remains to be checked whether $\varphi_1 \otimes \varphi_2$ is continuous and positive if φ_1 and φ_2 are continuous and positive. The continuity is a direct consequence of the Definition 1 of the α -norm; the positivity follows from an easily provable lemma:

Lemma 4 [6]. If φ_1 and φ_2 are positive functionals over \mathfrak{A}_1 and \mathfrak{A}_2 respectively, then $\varphi_1 \otimes \varphi_2$ is a positive functional over $\mathfrak{A}_1 \odot \mathfrak{A}_2$.

Because of the continuity, $\varphi_1 \otimes \varphi_2$ is also positive over $\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2$. This proves the statistical independence of \mathfrak{A}_1 and \mathfrak{A}_2 , since the state φ over \mathfrak{A}_{12} defined in (8) can be extended to a state over \mathfrak{A} . We note that

$$\varphi(xy) = \varphi_1(x) \,\varphi_2(y) = \varphi(x) \,\varphi(y), \quad x \in \mathfrak{A}_1, \quad y \in \mathfrak{A}_2.$$
(9)

Proof of Proposition 1. Let $\mathscr{E}(\mathfrak{A})$ denote the set of states over \mathfrak{A} and $\mathscr{P}(\mathfrak{A})$ the subset of pure states. If φ_1 and φ_2 are pure states, they define irreducible representations π_{φ_1} and π_{φ_2} of \mathfrak{A}_1 and \mathfrak{A}_2 respectively. The representation π of $\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2$, defined by $\varphi_1 \otimes \varphi_2$ is isomorphic to $\pi_{\varphi_1}(\mathfrak{A}_1) \otimes \pi_{\varphi_2}(\mathfrak{A}_2)$, therefore, π is irreducible and $\varphi_1 \otimes \varphi_2 \in \mathscr{P}(\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2)$.

According to Theorem 2, $\mathfrak{A}_{12}/\operatorname{Ker}\overline{\Phi}$ and $\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2$ are isomorphic; so $\tilde{\varphi} \to \tilde{\varphi} \circ \overline{\Phi}$ defines an isomorphism Φ' of $\mathscr{E}(\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2)$ and $\mathscr{E}(\mathfrak{A}_{12}/\operatorname{Ker}\overline{\Phi})$, which transforms pure states into pure states. Therefore, $\varphi = \varphi_1 \otimes \varphi_2 \circ \overline{\Phi}$ is an element of $\mathscr{P}(\mathfrak{A}_{12}/\operatorname{Ker}\overline{\Phi})$. (Here we identify $\mathscr{E}(\mathfrak{A}_{12}/\operatorname{Ker}\overline{\Phi})$ with the set $\mathscr{E}_0 = \{\chi \mid \chi \in \mathscr{E}(\mathfrak{A}_{12}), \chi(\operatorname{Ker}\overline{\Phi}) = 0\}$.) Now consider φ as a state over \mathfrak{A}_{12} and suppose that φ majorizes a state $\varphi' \in \mathscr{P}(\mathfrak{A}_{12})$. Since $\varphi(x) = 0$ for all $x \in \operatorname{Ker}\overline{\Phi}$, the same holds for φ' , which implies $\varphi' \in \mathscr{P}(\mathfrak{A}_{12}/\operatorname{Ker}\overline{\Phi})$. But this is a contradiction unless $\varphi' = \varphi$; and therefore, $\varphi \in \mathscr{P}(\mathfrak{A}_{12})$. Any pure state over \mathfrak{A}_{12} can be extended to a pure state over \mathfrak{A} ; which completes the proof.

Acknowledgement. This work was suggested by Prof. Borchers whom I wish to express my thanks for continuing encouragement and many helpful discussions.

Appendix

Let \mathfrak{A}_1 , \mathfrak{A}_2 be commuting C*-algebras with unit elements, $\mathfrak{A}_i \subset \mathfrak{A}$, and let \mathfrak{A}_1 and \mathfrak{A}_2 be statistically independent. We want to show that $xy \neq 0$ whenever $x \in \mathfrak{A}_1$, $y \in \mathfrak{A}_2$, x and $y \neq 0$.

Assume that we can find non-vanishing elements $x' \in \mathfrak{A}_1$ and $y' \in \mathfrak{A}_2$ with x'y' = 0. Then of course $x'^*x'y'^*y' = 0$. Let $\alpha \in \operatorname{Sp}(x'^*x')$, $\alpha \neq 0$ (Sp *u* denotes the spectrum of *u* in \mathfrak{A}_1). Then for $x = \alpha^{-1} x'^* x \in \mathfrak{A}_1$, $y = y'^* y' \in \mathfrak{A}_2$, we have

$$xy = 0, \quad x \neq 0, \quad y \neq 0,$$
 (i)

$$x^* = x, \quad 1 \in \operatorname{Sp} x \,, \tag{ii}$$

and therefore,

$$z \equiv (1-x)^2 \ge 0, \quad 0 \in \operatorname{Sp} z, \quad \alpha \in \operatorname{Sp}(z+\alpha).$$
 (iii)

Consider the selfadjoint vector space \mathscr{D} spanned by $\{\mathbf{1}, z\}$ and define $\varphi_1(\mathbf{1}) = 1$, $\varphi_1(z) = 0$. φ_1 is a positive functional on \mathscr{D} because, according to (iii), $\gamma_1 \cdot \mathbf{1} + \gamma_2 z \ge 0$ implies $\gamma_1/\gamma_2 \ge 0$ if $\gamma_2 \ne 0$, hence, $\varphi_1(\gamma_1 \mathbf{1} + \gamma_2 z) = \gamma_1 \ge 0$. As is well known (cf. [4], Lemma 2.10.1), φ_1 can be extended to a state over \mathfrak{A}_1 , and we have

$$\varphi_1((1-x)^2) = 0 (iv)$$

and because of $|\varphi_1(u)|^2 \leq ||\varphi_1|| \varphi_1(u^*u)$:

$$\varphi_1(1-x) = 0. \tag{v}$$

It is clear that we can find a state φ_2 over \mathfrak{A}_2 with $\varphi_2(y) \neq 0$.

Since \mathfrak{A}_1 and \mathfrak{A}_2 are statistically independent, there exists a common extension φ of φ_1 and φ_2 . The Schwartz inequality implies

$$|\varphi((1-x)(1+y))|^2 \leq \varphi((1-x)^2) \varphi((1+y)^2) = \varphi_1((1-x)^2) \varphi_2((1+y)^2).$$

Hence, according to (iv), $\varphi((1-x)(1+y)) = 0$. However,

$$\varphi((1-x)(1+y)) = \varphi(1-x+y) = \varphi_1(1-x) + \varphi_2(y) = \varphi_2(y) \neq 0$$

according to (i) and (v), which is a contradiction.

References

- 1. Haag, R., Kastler, D.: J. Math. Phys. 5, 848 (1964).
- 2. Schlieder, S.: Commun. Math. Phys. 13, 216 (1969).
- 3. Rickart, Charles E.: General theory of Banach algebras. Princeton: Van Nostrand 1960.
- 4. Dixmier, Jaques: Les C*-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.
- 5. The original version of the proof of lemma 1 needed the assumption that there exists a representation π of \mathfrak{A}_{12} with $\pi(\mathfrak{A}_1)''$ and $\pi(\mathfrak{A}_2)''$ fulfilling the proposition of Schlieder. The idea of the proof given in this paper is due to Borchers.
- 6. Turumaru, T.: Tôhoku Math. J. 8, 281 (1956).
- 7. Tôhoku Math. J. 4, 242 (1952).
- 8. Takesaki, M.: Tôhoku Math. J. 16, 111 (1964).
- 9. Wulfsohn, A.: Bull. Sci. Math. 87, 13 (1963).
- 10. Okayasu, T.: Tôhoku Math. J. 18, 325 (1966).

H. Roos Institut f. theoret. Physik der Universität 3400 Göttingen, Bunsenstraße 9

246