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Abstract. A complete description of the infinitely divisible positive definite functions
on a compact group is given. Their relation to infinitely divisible representations is also
discussed.

§ 1. Introduction

In certain problems of quantum field theory it is necessary to define
the notion of a continuous tensor product of Hubert spaces. In his
attempt to construct such tensor products Streater [3] has introduced
the notion of an infinitely divisible group representation. These in turn
are described by infinitely divisible positive definite functions on the
group. If the group is abelian such positive definite functions are in
one to one correspondence with the so called infinitely divisible distribu-
tions on the character group. The reader may find a detailed account
of these in [1]. Here we shall give a complete description of the infinitely
divisible positive definite functions on a compact group and describe
some of the infinitely divisible representations.

§ 2. Infinitely Divisible Group Representations
and Positive Definite Functions

Throughout this paper we shall denote by G a fixed compact metric
group. By a representation of G we mean a continuous unitary repre-
sentation of G in a complex separable Hubert space with an inner
product (.,.). Let T(k\k = 1,2,... be an enumeration of all the in-
quivalent irreducible representations (up to equivalence). Suppose T(fc)

operates in a Hubert space Vk of dimension dk. Let ε*,ε*, ...,εk

d k be a
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fixed orthonormal basis in Vk and let

(2.1)

Integration in G will always be with respect to the normalised Haar
measure in G. Under these assumptions it is well known (cf. [2]) that
the functions ψ(® constitute an orthogonal basis for the Hubert space
L2(G) and

ί' fc = l, 2,... (2.2)

Let«/ denote the multiplicative group of complex numbers of modulus
unity and D be the group of all continuous homomorphisms of G into
</. With the uniform topology, D becomes a discrete group with a finite
or countable number of elements.

Definition 2.i. A representation U of G with cyclic vector x in a
Hubert space J f is said to be infinitely divisible if, for any positive
integer q, there exists a representation U1/q with cyclic vector xllq in a
Hubert space J$?1/q such that U is unitarily equivalent to the representa-
tion L/1/g® •-• ® Ullq restricted to the cyclic subspace generated by

q factors

x1/q® xllq® - - - ®x1/q by the action of the group. Under this equivalence x
and xllq® ® x1/q are to correspond.

Definition 2.2. A function φ defined on G is said to be positive definite
if and only if it is continuous and for every finite collection of points
#i>02> •••>#« i n G a n d complex numbers aua2, >..,an, the following
inequality holds: Xθjδ>

i/0(gfjgfJ"1)^O Equivalently, a function φ is
positive definite if and only if it is continuous and for every complex
valued bounded measurable function/on G, J f(g)f(h)φ(gh~1)dgdh ^ 0.

Definition 2.3. A positive definite function φ is said to be infinitely
divisible if, for any positive integer q, there exists a positive definite
function φq such that φ(g) = [φq(gy]q for all g e G.

We shall say that a positive definite function φ is normalised if
φ(e) = l where e is the identity element of G. Let 9 be the space of all
normalized positive definite functions on G with the uniform topology.
If U is a representation of G in Hubert space J f and Λ; 6 J f is a unit
vector, then the function (Uθx,x) is in 3P. Conversely every element
of SP arises in this manner. The vector x can be assumed to be cyclic
without loss of generality. It is an easy consequence of Definition 2.1
and 2.2 that every infinitely divisible positive definite function on G
arises from an infinitely divisible representation and vice versa. Thus
the problem of finding the infinitely divisible representations of G
reduces to the problem of finding the infinitely divisible positive definite
functions of G.
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§ 3. Some Lemmas on Positive Definite Functions

Lemma 3.1. A complex valued function φ defined on G belongs to
if and only if it is of the form

Σ Ό ί Y aik) w(k)irk< Z-i rs Ψrs '

where Pi,P2» ••• a r e n o n negative constants such that ΣPk = 1> ((#!•?)) *5 a

k

positive definite constant matrix of order dk xdfe and trace unity for every k,
xpfj are the functions defined by (2.1) and the convergence of the above
series is uniform.

Proof. The function φ e 9 if and only if there exists a representation
U and unit vector x such that φ(g) = (Ugx,x). U can be decomposed
into a direct sum of primary representations. Each primary representa-
tion is a finite or countable direct sum of copies of some Tik\ The lemma
is an immediate consequence of these facts.

Lemma 3.2. Suppose φn e £P, n = 0,1,2,..., and φn(g)-*Φo(g) asn-^oo
for every g. Then φn->φ0 uniformly in G.

Proof. By Lemma 3.1 we can write

Φn(9) =ΣPnu Σ 4!ί(n)φ?Hg), n = 0,1,2 ...
k l

where, for each fixed n, pnk are non negative numbers such that £ pnk = 1
k

and for each fixed n and fc, the matrix ((a^(ri))) is positive definite and
of trace unity. Since \φn(g)\^ί and φn(g)-+Φo(g) as n->oo for every g,
we have

lim J ΦMψ^Wg = J Φ0(β)vWWg
n-*co

Since the functions ψ(®(g) are mutually orthogonal in L2(G) and have
d^^ (see (2.2)) we have

lim pnkaf}{n) = pOka
{^(0) for every r9s9k.

n+ao

Since ]Γ af) = 1, we obtain
r-l

lim ft.* = Po*. (3-1)
«->oo

l i m α < » = α£>(0) if Pok + 0. (3.2)
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For each fixed n, {pnl, pn2 ...} can be viewed upon as masses of a discrete
probability distribution. Hence (3.1) implies that 1

MmΣlP-*-PoJ = 0. (3.3)
w->oo

Since ][] a?sΨ?s G ^ > i t s absolute value is not greater than unity. This
r, s

together with (3.3) implies that φn-+φ0 uniformly. This completes the
proof of the lemma.

Lemma 3.3. Let φne^ be a sequence such that Re φn (i.e. the real
part of φj converges uniformly. Then the sequence {φn} is conditionally
compact in the uniform topology.

Proof. Suppose φe^ and g,h are two points in G. Let U be a
representation and x be a unit vector such that φ(g) = {Ugx, x). We have

= \(Ugx,x)-(Uhx,x)\

£\\Ugx-Uhx\\

S\\Ug-lhx-x\\

If Re φn converges uniformly it follows from the above inequality that
the sequence {φn} is uniformly equicontinuous. An application of
Arzela-Ascoli theorem completes the proof of the lemma.

Lemma 3.4. Let ψ be a continuous function defined on G and satis-
fying the inequality

ί mmψfgh-^dgdhZO
GxG

for every bounded measurable function f such that J f(g)dg = 0. Then
ψ(ώ — J ψ{g)dg is positive definite.

Proof. Let/be a bounded measurable function such that J f(g)dg = m.
Let ί ψ{g)dg = a. Then the invariance of the Haar measure implies that

= f (fig) - m){W) - fn)rp(gh~ ι)dgdh ^ 0 .

This implies that ψ(g) — a is positive definite. The proof of the lemma
is complete.

Lemma 3.5. For every positive definite function φ on G,

$lmφ(g)dg = 0.
1 For a proof of this the reader may refer to Lemma 9.1, page 206 in [1].
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Proof. This is an immediate consequence of the fact that φ(g~ί) = φ(g)
and the Haar measure is invariant under the mapping g-^g~ι.

Lemma3.6. For any φe0>,g1,

Proof. Let U be a representation in a Hubert space and x a unit
vector such that φ(g) = (Ugx, x) for all g e G. Then

, (3.4)

Now we have

\\v9ιg2χ-Άύ\\ugig2χ-ugix\\ + \\υgιx-χ\\

ύ\\Ug2x-x\\ + \\Uβιx-x\\

(3.4) and (3.5) imply the required inequality. This completes the proof of
the lemma.

Lemma 3.7. Let HcG be a both open closed subgroup of G. Suppose
ψ is a positive definite function defined on H. Let φ be defined by

if geH,

= 0 if gφH.

Then φ is a positive definite function on G.

Proof The continuity of φ is obvious. Let now α l 5 α 2 , . . . , an be any n
complex numbers and gι,g2, > ,gn

 a n y n points in G. Each element g{

belongs to some left coset of H in G. Let Hi = Hwh i = 1,2,..., k be the
distinct cosets to which gl9g2, -..,#„ belong. Then

ίgij^n ί l(r,s):gr,gseHi

k ( 1

i=l L(r,s):gr,gseHi J

Since grwfx e i/ for all r such that greHwt and </> = φ on H, it follows
that every term within brackets on the right hand side of the above
equation is non negative. This completes the proof of the lemma.

§ 4. Representation of Infinitely Divisible Positive Definite Functions

Before proceeding to the statement of the main result we shall prove
a lemma on the infinitely divisible elements of SP.

Lemma 4.1. Let φeϊ? be infinitely divisible and φ(g) + 0 for every
geG. Suppose φ = φ",n=l,2,... where φn€έP for all n. Then there
exists a sequence χneD such that φnχn converges uniformly to unity.
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Proof Since φ = φn for all n, it follows that n(\φn\ — 1) converges
uniformly to \og\φ\ as n-+oo. By Lemma3.1 we may assume that φn

is given by

φn(0)=ΣPnk Σ a?Xn)ψ(3(9)
k=l lύr,s^dk

Since J \φn(g)\2dg-> 1 as rc-»oo, we have from (2.2)

Since, for each fc and n, af] is a positive definite matrix of trace unity
and £ pnk = 1, it follows that

Hence

l i m /^ Pnk ~̂~ Z^i Pnk= •*•

Hence
Urn Σ_ PΪk=l

Thus
lim ( sup pnΛ ( Σ pnk\ = 1.

In other words there exists a sequence kn such that lim pnkn — 1, where

Tikn) is a one dimensional representation of G. Let χn be the corresponding
homomorphism of G into */. Then

where yπ(^) is also positive definite and yn(e) — 1 — pnkn. Since yM(β)->0
as n-»oo and |yπ(^)| ^ 7n(β), it follows that φnχn converges uniformly to
unity. This completes the proof of the lemma.

Theorem 4.1. Let φ be a normalised infinitely divisible positive definite
function defined on G. Suppose φ(g)φθ for every geG. Then φ admits
a representation

= χ(g)exp[y(g)-γ(ey] for all geG, (4.1)

where γ is a positive definite function on G and χ is an infinitely divisible
element of the group of homomorphίsms of G into <#.

Conversely every function φ of the form given by (4.1) is infinitely
divisible and without zeros.
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Proof. The converse part is trivial. In order to prove the first part
choose a sequence φneέP such that φn = Φ> By Lemma 4.1, there exists
a χneD such that φnχn-+l uniformly as rc-»oo. Let ψn = φnχn. Then
Φ — Ψnϊn- Let g be any point in G and Ag be the closed abelian subgroup
generated by g. The functions ψn and φ restricted to Ag arc Fourier
transforms of probability measures μn and μ respectively on the character
group Ag of Ag. Since φ n-»l uniformly μn converges weakly to the
measure degenerate at the identity of Ag. Further μ*n is a translate of
μ in Ag. Hence by Theorem 5.1, page 89, [1], it follows that

lim | φ w ( ^ ) M - e x p n [ φ n ( ^ ) - l ] | = : 0 .

Hence

lim \φ(g)-χMnexpn[xpn(g)- l]l = 0. (4.2)
n~~* oo

Since (4.2) holds for every g, Lemma 3.2 implies that the convergence
is uniform. Since φ has no zeros we have

lim sup \n[Reψn(g) - 1] - log \φ(g)\\ = 0. (4.3)
M-»00 0

By Lemma 3.5,

= » ί (Re V>«(0) - ί)dg = an, say.
Let

a=l\og\φ{g)\dg.

By (4.3), an-^a as n-^co. Since φn(^) is positive definite rc[ψn(#)— 1]
satisfies the conditions of Lemma 3.4. Hence the function γn defined by

is positive definite. By (4.3), Rεγn(g) converges uniformly to log\φ(g)\ — a.
By Lemma 3.3, the sequence yn is conditionally compact in the uniform
topology. Now (4.2) implies that χJJ is also conditionally compact in
the uniform topology. Since the group D is discrete, it follows that the
set {χ"} is finite. Hence there exists a / e D such that χ = χ î for infinitely
many n. This χ is infinitely divisible. Now extracting a suitable convergent
subsequence from γnl and using (4.2) we conclude that

where y is positive definite. Since φ(e) = χ(e) = 1, it follows that a = — y(e).
This completes the proof of the theorem.

Now we shall proceed to analyse the nature of infinitely divisible
positive definite functions with zeros.

Lemma 4.2. Let φe^ be infinitely divisible. Then the set {g :φ{g)=¥ 0}
is a both open closed subgroup of G.
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Proof. Let {φn} be a sequence of elements on SP such that φ = φ".
In particular \φ\2 = \φn\

2n and |</>(#)|2 + 0 for some g if and
only if limnίl — \φn(g)\2)<oo. It follows from Lemma 3.6 that the set

n-*<x> \

#:wlimw(l- \φn{g)\2)<oo^ is actually a subgroup. Since φ(g) is
continuous this subgroup is open. Since an open subgroup is closed
the proof of the lemma is complete.

Theorem 4.2. A normalised positive definite function φ onG is infinitely
divisible if and only if it admits a representation

y(e)'] if geH

= 0 otherwise

where H is a both open closed subgroup of G, χ is an infinitely divisible
homomorphism of H into </ and γ is a positive definite function on H.

Proof. This is an immediate consequence of Theorem 4.1, Lemmas 4.2
and 3.7.

Remark 1. There are many compact groups which do not possess an
infinitely divisible homomorphism into </. Finite groups and compact
connected semi simple Lie groups are such examples. In these cases
the factor χ is absent in the representation of an infinitely divisible
positive definite function.

For a compact connected group without infinitely divisible homo-
morphisms into «/ every normalised infinitely divisible positive definite
function is of the form exp[y(#) — y(e)] where γ is positive definite.

Remark 2. For any representation T with cyclic vector x in a Hubert
space ^f we can construct an infinitely divisible representation as follows:
let e(Jf) be the Hubert space d®^®je®Jf® - φ / g y
and e(x) be the vector η factors

e~*llxll2\l@x® —7=Γ(x®x)Θ'~@rr7=τ(x®'~®x)+ . . . i .

Let e(T) denote the restriction of the representation 1® T© T® T®...
to the cyclic subspace generated by e(x). Then e(T) is an infinitely
divisible represenation with cyclic vector e(x).

If U is an infinitely divisible representation with unit cyclic vector x
such that (Ugx9 x) φ 0 for any g and (Ugx9 x) = φn(g)n for all g e G and
n = 1,2,... where φn is a sequence of positive definite functions converging
to unity as rc->oo, then U is equivalent to e(T) for some representation T.
In the case of compact connected semisimple Lie groups every infinitely
divisible representation U is equivalent to some e(T).
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