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Abstract. Results of a preceding paper on pure operations are generalized. The appli-
cation to local field theory is discussed in some detail.

1. Operations

In a previous paper [1] we investigated state changes of a quantum
system, called operations.

The state space of the system is a Hubert space £>, and in the Heisen-
berg picture used here its state is described by a fixed density operator
W, as long as no operations are performed.

An operation was assumed to consist of an interaction of the system
with an apparatus, and a subsequent measurement of some property
Q' of the apparatus. If § ' is the state space of the apparatus, W its initial
state, and S the unitary "scattering" operator in § (x) 5j which describes
the interaction, the state W of the system is changed into

W=Ίr'W, W=-^, W={l®Q')S{W®W')S*{\®Q). (1)
T r W

This state change may also be described as

W n

W Σ ΣAWAl (2)

with the following definitions [1]. Consider the spectral decomposition

w=t cΛs (3)
i = ί

with a complete orthonormal system {φf

h i = 1 ... n} in §'*, ct ^ 0 and
n

£ Cι = 1. The subset of all i with c^φO is denoted by /. Furthermore,
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1 Our discussion applies to finite n as well as to n = oo.
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choose another complete orthonormal system {ψ'k9k = 1 ... n} in §', so
that with a suitable subsetKof {1 ... n} the vectors ψ'k9 keK span the
subspace Q5)' of § ' . Then the operators Aki are defined by

v'k\S{φ®φ'i)) . (4)

for all φ.ψeξ).
In Ref. [1] we investigated a particular case of Eq. (2), called pure

operations. The purpose of the present note is to investigate the general
case.

For the following discussion it is convenient to define the Aki in a
more abstract way [2]. The space ξ>®$y' can be canonically identified

n

with Σ ©Sί> with (Di = $>®φ'i isomorphic to § for all i. Therefore, there

are partially isometric mappings L̂  from § ® 9)' onto ξ> with

φ. (5)

The same consideration with xp'k and ξ)k = $)®Ψk instead of φ\ and
ξ)i = ξjtgϊφ'. leads to partially isometric mappings Vk with

* * v * = hιl& V* Vk = ^ k > ^(φ®Vi) = Ψ (6)

Then, obviously,

Eq. (7) now allows a very simple characterization of the operators
n n

Aki. With Σ p*i = Σ pBk = h®& a n d t h e unitarity of S, Eqs. (5) to (7)
lead to ί = 1 * k = 1

ί = l / c = l

In other words, the nxn matrix of operators Aki represents a unitary
operator in the direct sum of n copies of ί>. The conditions (5) and (7)
of Ref. [1] are immediate consequences of (8).

However, only the operators Aki with keK and ie/ actually enter
Eq. (2) which describes the operation. Eq. (8) implies that the "K x Γ
matrix of operators

keK,ieI (9)

which maps the space J f = Σ θ θ ( i ) , ξ>(i) = ξ> into $ = Σ θf)(k)>
_ iel keK

§ ( k ) ΞΞ <r>, is a contraction, i.e.,

A*A^1^, AA*^1^. (10)

Conversely, any operator matrix (9) with (10) may be considered
as a part of a unitary operator matrix. Consider the Hubert space
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£ ^ f . The operator matrix

1'2) ( }
A

-{l-A* A)

then represents a unitary operator in Jf. This follows as a straightforward
generalization of a well known result [3] 2.

These results allow a complete characterization of operations. Any
operation may be described by Eq. (2) with a "K x /" matrix A of opera-
tors Aki fulfilling (10) and numbers ct > 0 with £ ct — 1. Conversely, any

i e /

state change described by Eq. (2) with A — (Aki) fulfilling (10) and numbers
Cj > 0 with £ cf = 1 is an operation in the sense defined above, i.e., there

iel

exists a Hubert space §', a state W, and a property β' of an apparatus
and a unitary operator S in § ® £)' so that the state change may also be
described by Eq. (1).

The last statement follows easily from Eq. (11). The Hubert space
£ = £ 05<*>0 ^ 0 g « g<*> = g = § « is canonically isomorphic [2]

fceK i e /

to § ® § ' with a "K + /"-dimensional Hubert space §' and a suitable
basis {χί|fceK}u{»,ί|ie/} in g'. Then W = Σ c,P,{, β'= Σ ^

i e / fceX

and S = Γ as given by (11) have the desired properties.
To every operation there belongs a Hermitean operator

fce£ i e /

with 0 ^ F ^ 1 (Ref. [1], Eq. (7)), called effect. The physical meaning of
F is explained in Ref. [1]. The transition probability from the state W
to the new state # i s ΎrW=Ίr(FW) [1]. Therefore, we speak of an
operation to act selectively, or non-selectively, on the state W, if
Ύr(FW) < 1 or =1, respectively, and an operation with F < 1, or F = 1,
is called selective, or non-selective, respectively. Ύr(FW) = l implies
FW=W since, with W=Σ*ιp

φi> Tr(FP^) = Σ a^h Fφd = 1, α f >0
i i

and Σ ^ ^ l yield (φhFφ^ = \, and since F ^ l , Fφi = φi for all z.
i

2. Local Operations

In field theory with local von Neumann algebras 9ic, the natural

requirement Se *<<*>£(§') (13)

for operations performed in the space-time region C implies Aki e 9ΪC

[1]. Conversely, with Akie9lo keK, iel fulfilling (10), the operator
2 We take this occasion to point to a missing minus sign in front of (1 — A* A)112 in

Eq. (11) of Ref. [1].
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T given by (11) belongs to 9ίc (><)£(§') [2], and therefore such operators
Aki describe a local operation.

Quantum theory predicts the statistics of experimental results for
many repetitions of the same experiment. In field theory, "the same"
means: identical except the location in space-time. It is then almost
inevitable to assume that, prior to any experiment, the field is in a state
W which is invariant with respect to space-time displacements. Other-
wise, the statistics of experimental results would depend on the space-
time location of the trial experiments. The only candidate for this state
is, in the usual framework, W = Pω with the unique vacuum vector ω.

A local operation in the space-time region C transforms the original
field state W into W (Eq. (2)) in the future and side cone of C. This is
explained in detail in a forthcoming paper [4]. (Compare also Schlieder
[5].) Sequences of local operations may be described with the formalism
proposed there.

Some propositions about local operations may now be proved
easily.

Proposition 1. A local operation is non-selective if and only if it acts
non-selectively on the vacuum state W= Pω.

Proof, "Only i f is trivial. Vice versa, T r ( F P J = 1 implies Fω = ω.
As a consequence of the Reeh-Schlieder theorem3, ω is a separating
vector for 9ϊc. Thus F ω = ω implies F = 1.

Proposition 2. A local operation in C which acts non-selectively on the
field state W leaves invariant expectation values in the side cone C of C.

Proof Ίτ(FW) = 1 implies W= Wand FW=W. Take Be SRσ. By
locality, [#, A^J = 0, and thus

Tr{BW) = Ύr(BW) = ΊV[B £ £ CiA^A^w) = Ίr(BFW) = Ύr(BW).
\ keKi = l I

Proposition 2 expresses the causal behavior of non-selective local
operations.

According to Licht [7], a state W is called strictly localized outside
C if Ύr(BW) = {ω,Bω) for all Be<Άc. Proposition2 then leads to:

Corollary. A non-selective local operation in C changes the vacuum
state Pω into a state W strictly localized outside C'.

Proposition 3. Any state W strictly localized outside C has the
n

form W— Σ BkPωB$ (including the possibility n = oo) with jBke9lc',
n fc = l

Σ BiBu = 1, and (ω, BtB, ω) = 0 if k Φ /.

k=ί

3 This theorem is used here in the form proved by Araki [6].
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This has been proved by Licht [7].

Corollary. Assume the duality theorem4 9ΪC> = 9ΐ'c for the region C.
Any state W strictly localized outside C may then be produced from the
vacuum state Pω by a non-selective local operation in C.

Proof. Take K = {1 ... n}9 I = {1}, q = 1, and Akί =Bke9ΓC, = 9ίc.
n

This choice satisfies (10), Eq. (12) yields F= Σ B%Bk = l, and Eq.(2)
n k = l

with W = P ω leads to W= £ BkPωBt
k = ί

We conclude with a remark on the Reeh-Schlie.der theorem [6],
according to which vectors of the form Aω with A e 9ΪC are dense in § .
Any unit vector φ e § or, in other words, any pure state of the field, may

A s.-\

then be approximated in norm by vectors of the form φ = — — with
\\Aω\\

A e 9ΪC, || A || ^ 1 or, in other words, by pure states which are generated
from the vacuum state by a local pure [1] operation in C.

At first sight this looks very paradoxical, for instance if we think of a
field state ψ which is very different from the vacuum state ω at a large
space-like distance from C [7]. However, the local pure operation

ωφ which approximates ψ is in general a selective one. (It

is non-selective if and only if the transition probability Tr(FPω) = (ω, Fω)
= IMcop is equal to one.) Therefore Proposition 2 does not apply, and
φ may be different from the vacuum in C.

Consider a field property measurable in C", i.e., a projection operator

P e 9ίc>, and a pure state φ = —-—— as above. Then
\\Aω\\

(ω,Pω)^(φ,Pφ)\\Aω\\2, (14)

in words: the probability for P in the vacuum state ω is greater than or
equal to the probability for P in the 3tate φ times the transition probability
from ω to φ. Indeed, from [A, P] ̂  0 and \\A\\ fg 1 follows

(φ,Pφ) \\Aω\\2 = (Aω,PAω) = \\APω\\2 ^ \\Pω\\2 = (ω,Pω).

The same consideration applies if P is replaced by a local effect [1]
Fe%lc.

The estimate (14) indicates that any deviation of φ from ω in C is
produced solely by the selection performed in C. One may imagine that
the observer exploits some vacuum fluctuations occuring simultaneously

4 Haag and Schroer [8], Araki [6].
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in C and C with a suitable correlation, and thereby selects those fields,
which have the desired properties in.C'5.

If he wants a state φ very different from the vacuum in C, i.e.,
(φ,Pφ)$>(ω,Pω) for some Pe$lσ, (14) implies that the transition
probability Mω| | 2 is very small, and therefore the preparation of the
field state φ may be practically impossible. We hope this remark solves
the apparent paradox mentioned above.
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