Operations and Measurements. II*

K.-E. HELLWIG** and K. KRAUS

Institut für Theoretische Physik der Universität Marburg

Received February 20, 1969

Abstract. Results of a preceding paper on pure operations are generalized. The application to local field theory is discussed in some detail.

1. Operations

In a previous paper [1] we investigated state changes of a quantum system, called operations.

The state space of the system is a Hilbert space \mathfrak{H} , and in the Heisenberg picture used here its state is described by a fixed density operator W, as long as no operations are performed.

An operation was assumed to consist of an interaction of the system with an apparatus, and a subsequent measurement of some property Q' of the apparatus. If \mathfrak{H}' is the state space of the apparatus, W' its initial state, and S the unitary "scattering" operator in $\mathfrak{H} \otimes \mathfrak{H}'$ which describes the interaction, the state W of the system is changed into

$$\tilde{W} = \operatorname{Tr}' W, \qquad W = \frac{W}{\operatorname{Tr} \hat{W}}, \qquad \hat{W} = (1 \otimes Q') \, S(W \otimes W') \, S^*(1 \otimes Q') \,. \tag{1}$$

This state change may also be described as

$$\widetilde{W} = \frac{\widehat{W}}{\operatorname{Tr}\widehat{W}}, \qquad \widehat{W} = \sum_{k \in K} \sum_{i=1}^{n} c_i A_{ki} W A_{ki}^*, \qquad (2)$$

with the following definitions [1]. Consider the spectral decomposition

$$W' = \sum_{i=1}^{n} c_i P_{\varphi_i} \tag{3}$$

with a complete orthonormal system $\{\varphi'_i, i = 1 \dots n\}$ in \mathfrak{H}'^1 , $c_i \ge 0$ and $\sum_{i=1}^n c_i = 1$. The subset of all *i* with $c_i \ne 0$ is denoted by *I*. Furthermore,

^{*} Supported in part by the Deutsche Forschungsgemeinschaft.

^{**} Now at Lehrstuhl I für Theoretische Physik, Technische Universität Berlin.

¹ Our discussion applies to finite *n* as well as to $n = \infty$.

choose another complete orthonormal system $\{\psi'_k, k = 1 \dots n\}$ in \mathfrak{H}' , so that with a suitable subset K of $\{1 \dots n\}$ the vectors ψ'_k , $k \in K$ span the subspace $Q'\mathfrak{H}'$ of \mathfrak{H}' . Then the operators A_{ki} are defined by

$$(\psi, A_{ki}\varphi) = ((\psi \otimes \psi'_k), \mathbf{S}(\varphi \otimes \varphi'_i))$$
(4)

for all $\varphi, \psi \in \mathfrak{H}$.

In Ref. [1] we investigated a particular case of Eq. (2), called pure operations. The purpose of the present note is to investigate the general case.

For the following discussion it is convenient to define the A_{ki} in a more abstract way [2]. The space $\mathfrak{H} \mathfrak{H} \mathfrak{H}$ can be canonically identified with $\sum_{i=1}^{n} \oplus \mathfrak{H}_{i}$, with $\mathfrak{H}_{i} = \mathfrak{H} \mathfrak{H} \mathfrak{H}_{i}$ isomorphic to \mathfrak{H} for all *i*. Therefore, there are partially isometric mappings U_{i} from $\mathfrak{H} \mathfrak{H} \mathfrak{H}$ onto \mathfrak{H} with

$$U_i U_j^* = \delta_{ij} 1_{\mathfrak{H}}, \quad U_i^* U_i = P_{\mathfrak{H}_i}, \quad U_i(\varphi \otimes \varphi_i') = \varphi .$$
⁽⁵⁾

The same consideration with ψ'_k and $\overline{\mathfrak{H}}_k = \mathfrak{H} \otimes \psi'_k$ instead of φ'_i and $\mathfrak{H}_i = \mathfrak{H} \otimes \varphi'_i$ leads to partially isometric mappings V_k with

$$V_k V_l^* = \delta_{kl} \mathbf{1}_{\mathfrak{H}}, \quad V_k^* V_k = P_{\mathfrak{H}_k}, \quad V_k(\varphi \otimes \psi_k') = \varphi \;. \tag{6}$$

Then, obviously,

$$A_{ki} = V_k S U_i^* \,. \tag{7}$$

Eq. (7) now allows a very simple characterization of the operators A_{ki} . With $\sum_{i=1}^{n} P_{\mathfrak{H}_{i}} = \sum_{k=1}^{n} P_{\mathfrak{H}_{k}} = 1_{\mathfrak{H} \otimes \mathfrak{H}'}$ and the unitarity of S, Eqs. (5) to (7) lead to $\sum_{i=1}^{n} P_{\mathfrak{H}_{i}} = \sum_{k=1}^{n} P_{\mathfrak{H}_{k}} = 1_{\mathfrak{H} \otimes \mathfrak{H}'}$ and the unitarity of S, Eqs. (5) to (7)

$$\sum_{k=1}^{n} A_{ki} A_{li}^{*} = \delta_{kl} 1, \qquad \sum_{k=1}^{n} A_{ki}^{*} A_{kj} = \delta_{ij} 1.$$
(8)

In other words, the $n \times n$ matrix of operators A_{ki} represents a unitary operator in the direct sum of *n* copies of \mathfrak{H} . The conditions (5) and (7) of Ref. [1] are immediate consequences of (8).

However, only the operators A_{ki} with $k \in K$ and $i \in I$ actually enter Eq. (2) which describes the operation. Eq. (8) implies that the " $K \times I$ " matrix of operators

$$A = (A_{ki}), \quad k \in K, \ i \in I \tag{9}$$

which maps the space $\mathscr{H} = \sum_{i \in I} \bigoplus \mathfrak{H}^{(i)}$, $\mathfrak{H}^{(i)} \equiv \mathfrak{H}$ into $\overline{\mathscr{H}} = \sum_{k \in K} \bigoplus \overline{\mathfrak{H}}^{(k)}$, $\overline{\mathfrak{H}}^{(k)} \equiv \mathfrak{H}$, is a contraction, i.e.,

$$A^*A \leq 1_{\mathscr{H}}, \quad AA^* \leq 1_{\bar{\mathscr{H}}}. \tag{10}$$

Conversely, any operator matrix (9) with (10) may be considered as a part of a unitary operator matrix. Consider the Hilbert space

143

 $\hat{\mathscr{H}} = \overline{\mathscr{H}} \oplus \mathscr{H}$. The operator matrix

$$T = \begin{pmatrix} (1 - AA^*)^{1/2} & A \\ A^* & -(1 - A^*A)^{1/2} \end{pmatrix}$$
(11)

then represents a unitary operator in $\hat{\mathscr{H}}$. This follows as a straightforward generalization of a well known result [3]².

These results allow a complete characterization of operations. Any operation may be described by Eq. (2) with a " $K \times I$ " matrix A of operators A_{ki} fulfilling (10) and numbers $c_i > 0$ with $\sum_{i \in I} c_i = 1$. Conversely, any state change described by Eq. (2) with $A = (A_{ki})$ fulfilling (10) and numbers $c_i > 0$ with $\sum_{i \in I} c_i = 1$ is an operation in the sense defined above, i.e., there exists a Hilbert space \mathfrak{H}' , a state W', and a property Q' of an apparatus and a unitary operator S in $\mathfrak{H} \otimes \mathfrak{H}'$ so that the state change may also be described by Eq. (1).

The last statement follows easily from Eq. (11). The Hilbert space $\hat{\mathscr{H}} = \sum_{k \in K} \bigoplus \overline{\mathfrak{H}}^{(k)} \bigoplus \sum_{i \in I} \bigoplus \mathfrak{H}^{(i)}, \ \overline{\mathfrak{H}}^{(k)} \equiv \mathfrak{H} \equiv \mathfrak{H}^{(i)}$ is canonically isomorphic [2] to $\mathfrak{H} \otimes \mathfrak{H}'$ with a "K + I"-dimensional Hilbert space \mathfrak{H}' and a suitable basis $\{\chi'_k | k \in K\} \cup \{\eta'_i | i \in I\}$ in \mathfrak{H}' . Then $W' = \sum_{i \in I} c_i P_{\eta'_i}, \ Q' = \sum_{k \in K} P_{\chi'_k}$, and $\mathbf{S} = T$ as given by (11) have the desired properties

and $S \equiv T$ as given by (11) have the desired properties.

To every operation there belongs a Hermitean operator

$$F = \sum_{k \in K} \sum_{i \in I} c_i A_{ki}^* A_{ki}$$
(12)

with $0 \leq F \leq 1$ (Ref. [1], Eq. (7)), called effect. The physical meaning of F is explained in Ref. [1]. The transition probability from the state W to the new state \tilde{W} is $\operatorname{Tr} \hat{W} = \operatorname{Tr}(FW)$ [1]. Therefore, we speak of an operation to act selectively, or non-selectively, on the state W, if $\operatorname{Tr}(FW) < 1$ or = 1, respectively, and an operation with F < 1, or F = 1, is called selective, or non-selective, respectively. $\operatorname{Tr}(FW) = 1$ implies FW = W since, with $W = \sum_{i} \alpha_i P_{\varphi_i}$, $\operatorname{Tr}(FW) = \sum_{i} \alpha_i(\varphi_i, F\varphi_i) = 1$, $\alpha_i > 0$ and $\sum_{i} \alpha_i = 1$ yield $(\varphi_i, F\varphi_i) = 1$, and since $F \leq 1$, $F\varphi_i = \varphi_i$ for all *i*.

2. Local Operations

In field theory with local von Neumann algebras \Re_c , the natural requirement (12)

$$S \in \mathfrak{R}_C \otimes \mathfrak{L}(\mathfrak{H}') \tag{13}$$

for operations performed in the space-time region C implies $A_{ki} \in \Re_C$ [1]. Conversely, with $A_{ki} \in \Re_C$, $k \in K$, $i \in I$ fulfilling (10), the operator

144

² We take this occasion to point to a missing minus sign in front of $(1 - A^*A)^{1/2}$ in Eq. (11) of Ref. [1].

T given by (11) belongs to $\Re_C \otimes \mathfrak{L}(\mathfrak{H})$ [2], and therefore such operators A_{ki} describe a local operation.

Quantum theory predicts the statistics of experimental results for many repetitions of the same experiment. In field theory, "the same" means: identical except the location in space-time. It is then almost inevitable to assume that, prior to any experiment, the field is in a state W which is invariant with respect to space-time displacements. Otherwise, the statistics of experimental results would depend on the spacetime location of the trial experiments. The only candidate for this state is, in the usual framework, $W = P_{\omega}$ with the unique vacuum vector ω .

A local operation in the space-time region C transforms the original field state W into \tilde{W} (Eq. (2)) in the future and side cone of C. This is explained in detail in a forthcoming paper [4]. (Compare also Schlieder [5].) Sequences of local operations may be described with the formalism proposed there.

Some propositions about local operations may now be proved easily.

Proposition 1. A local operation is non-selective if and only if it acts non-selectively on the vacuum state $W = P_{\omega}$.

Proof. "Only if" is trivial. Vice versa, $\text{Tr}(FP_{\omega}) = 1$ implies $F\omega = \omega$. As a consequence of the Reeh-Schlieder theorem³, ω is a separating vector for \Re_C . Thus $F\omega = \omega$ implies F = 1.

Proposition 2. A local operation in C which acts non-selectively on the field state W leaves invariant expectation values in the side cone C' of C.

Proof. $\operatorname{Tr}(FW) = 1$ implies $\widetilde{W} = \widehat{W}$ and FW = W. Take $B \in \mathfrak{R}_{C'}$. By locality, $[B, A_{ki}^*] = 0$, and thus

$$\operatorname{Tr}(B\tilde{W}) = \operatorname{Tr}(B\hat{W}) = \operatorname{Tr}\left(B\sum_{k\in K}\sum_{i=1}^{n} c_{i}A_{ki}^{*}A_{ki}W\right) = \operatorname{Tr}(BFW) = \operatorname{Tr}(BW).$$

Proposition 2 expresses the causal behavior of non-selective local operations.

According to Licht [7], a state W is called strictly localized outside C if $Tr(BW) = (\omega, B\omega)$ for all $B \in \Re_C$. Proposition 2 then leads to:

Corollary. A non-selective local operation in C changes the vacuum state P_{ω} into a state \tilde{W} strictly localized outside C'.

Proposition 3. Any state \tilde{W} strictly localized outside C' has the form $\tilde{W} = \sum_{k=1}^{n} B_k P_{\omega} B_k^*$ (including the possibility $n = \infty$) with $B_k \in \mathfrak{R}'_{C'}$, $\sum_{k=1}^{n} B_k^* B_k = 1$, and $(\omega, B_k^* B_l, \omega) = 0$ if $k \neq l$.

³ This theorem is used here in the form proved by Araki [6].

¹⁰ Commun. math. Phys., Vol. 16

This has been proved by Licht [7].

Corollary. Assume the duality theorem⁴ $\Re_{C'} = \Re'_C$ for the region C. Any state \tilde{W} strictly localized outside C' may then be produced from the vacuum state P_{ω} by a non-selective local operation in C.

Proof. Take $K = \{1 \dots n\}$, $I = \{1\}$, $c_1 = 1$, and $A_{k1} = B_k \in \mathfrak{R}'_{C'} = \mathfrak{R}_C$. This choice satisfies (10), Eq. (12) yields $F = \sum_{k=1}^n B_k^* B_k = 1$, and Eq. (2) with $W = P_\omega$ leads to $\widetilde{W} = \sum_{k=1}^n B_k P_\omega B_k^*$.

We conclude with a remark on the Reeh-Schlieder theorem [6], according to which vectors of the form $A\omega$ with $A \in \Re_C$ are dense in \mathfrak{H} . Any unit vector $\psi \in \mathfrak{H}$ or, in other words, any pure state of the field, may then be approximated in norm by vectors of the form $\varphi = \frac{A\omega}{\|A\omega\|}$ with $A \in \Re_C$, $\|A\| \leq 1$ or, in other words, by pure states which are generated from the vacuum state by a local pure [1] operation in C.

At first sight this looks very paradoxical, for instance if we think of a field state ψ which is very different from the vacuum state ω at a large space-like distance from C [7]. However, the local pure operation $\omega \rightarrow \varphi = \frac{A\omega}{\|A\omega\|}$ which approximates ψ is in general a selective one. (It is non-selective if and only if the transition probability $\text{Tr}(FP_{\omega}) = (\omega, F\omega) = \|A\omega\|^2$ is equal to one.) Therefore Proposition 2 does not apply, and φ may be different from the vacuum in C'.

$$P \in \mathfrak{R}_{C'}$$
, and a pure state $\varphi = \frac{A\omega}{\|A\omega\|}$ as above. Then

$$(\omega, P\omega) \ge (\varphi, P\varphi) \, \|A\omega\|^2 \,, \tag{14}$$

in words: the probability for P in the vacuum state ω is greater than or equal to the probability for P in the state φ times the transition probability from ω to φ . Indeed, from [A, P] = 0 and $||A|| \leq 1$ follows

$$(\varphi, P\varphi) \|A\omega\|^2 = (A\omega, PA\omega) = \|AP\omega\|^2 \le \|P\omega\|^2 = (\omega, P\omega).$$

The same consideration applies if P is replaced by a local effect [1] $F \in \mathfrak{R}_{C'}$.

The estimate (14) indicates that any deviation of φ from ω in C' is produced solely by the selection performed in C. One may imagine that the observer exploits some vacuum fluctuations occuring simultaneously

⁴ Haag and Schroer [8], Araki [6].

in C and C' with a suitable correlation, and thereby selects those fields, which have the desired properties in C'^{5} .

If he wants a state φ very different from the vacuum in C', i.e., $(\varphi, P\varphi) \ge (\omega, P\omega)$ for some $P \in \mathfrak{R}_{C'}$, (14) implies that the transition probability $||A\omega||^2$ is very small, and therefore the preparation of the field state φ may be practically impossible. We hope this remark solves the apparent paradox mentioned above.

Acknowledgement. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft.

References

- 1. Hellwig, K.-E., Kraus, K.: Commun. Math. Phys. 11, 214 (1969).
- Dixmier, J.: Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neumann), Chap. I, § 2, No. 3 and 4. Paris: Gauthier-Villars 1957.
- 3. Riesz, F., Nagy, B. SZ.: Functional analysis. Appendix of the 3rd. Ed. New York: F. Ungar 1960.
- 4. Hellwig, K.-E., Kraus, K.: To appear in Phys. Rev.
- 5. Schlieder, S.: Commun. Math. Phys. 7, 305 (1968).
- 6. Araki, H.: J. Math. Phys. 5, 1 (1964).
- 7. Licht, A. L.: J. Math. Phys. 7, 1656 (1966).
- 8. Haag, R., Schroer, B.: J. Math. Phys. 3, 248 (1962).

KE. Hellwig	K. Kraus
Lehrstuhl I für Theoretische Physik	Institut für Theoretische Physik
der Technischen Universität	der Universität
1000 Berlin 12, Straße des 17. Juni 135	3550 Marburg, Mainzer Gasse 33

⁵ Note that $(\omega, P\omega) \neq 0$ unless P = 0 since ω is a separating vector. Therefore, the vacuum state has "virtually" any desired property.