Operations and Measurements. II*

K.-E. Hellwig** and K. Kraus
Institut für Theoretische Physik der Universität Marburg

Received February 20, 1969

Abstract

Results of a preceding paper on pure operations are generalized. The application to local field theory is discussed in some detail.

1. Operations

In a previous paper [1] we investigated state changes of a quantum system, called operations.

The state space of the system is a Hilbert space \mathfrak{H}, and in the Heisenberg picture used here its state is described by a fixed density operator W, as long as no operations are performed.

An operation was assumed to consist of an interaction of the system with an apparatus, and a subsequent measurement of some property Q^{\prime} of the apparatus. If \mathfrak{G}^{\prime} is the state space of the apparatus, W^{\prime} its initial state, and S the unitary "scattering" operator in $\mathfrak{H} \otimes \mathfrak{H}^{\prime}$ which describes the interaction, the state W of the system is changed into
$\tilde{W}=\operatorname{Tr}^{\prime} \boldsymbol{W}, \quad \boldsymbol{W}=\frac{\hat{\boldsymbol{W}}}{\operatorname{Tr} \hat{\boldsymbol{W}}}, \quad \hat{\boldsymbol{W}}=\left(1 \otimes Q^{\prime}\right) \boldsymbol{S}\left(W \otimes W^{\prime}\right) \boldsymbol{S}^{*}\left(1 \otimes Q^{\prime}\right)$.
This state change may also be described as

$$
\begin{equation*}
\tilde{W}=\frac{\hat{W}}{\operatorname{Tr} \hat{W}}, \quad \hat{W}=\sum_{k \in K} \sum_{i=1}^{n} c_{i} A_{k i} W A_{k i}^{*} \tag{2}
\end{equation*}
$$

with the following definitions [1]. Consider the spectral decomposition

$$
\begin{equation*}
W^{\prime}=\sum_{i=1}^{n} c_{i} P_{\varphi_{i}^{\prime}} \tag{3}
\end{equation*}
$$

with a complete orthonormal system $\left\{\varphi_{i}^{\prime}, i=1 \ldots n\right\}$ in $\mathfrak{G}^{\prime 1}, c_{i} \geqq 0$ and $\sum_{i=1}^{n} c_{i}=1$. The subset of all i with $c_{i} \neq 0$ is denoted by I. Furthermore,

[^0]choose another complete orthonormal system $\left\{\psi_{k}^{\prime}, k=1 \ldots n\right\}$ in \mathfrak{G}^{\prime}, so that with a suitable subset K of $\{1 \ldots n\}$ the vectors $\psi_{k}^{\prime}, k \in K$ span the subspace $Q^{\prime} \mathfrak{H}^{\prime}$ of \mathfrak{H}^{\prime}. Then the operators $A_{k i}$ are defined by
\[

$$
\begin{equation*}
\left(\psi, A_{k i} \varphi\right)=\left(\left(\psi \otimes \psi_{k}^{\prime}\right), \boldsymbol{S}\left(\varphi \otimes \varphi_{i}^{\prime}\right)\right) \tag{4}
\end{equation*}
$$

\]

for all $\varphi, \psi \in \mathfrak{H}$.
In Ref. [1] we investigated a particular case of Eq. (2), called pure operations. The purpose of the present note is to investigate the general case.

For the following discussion it is convenient to define the $A_{k i}$ in a more abstract way [2]. The space $\mathfrak{G} \otimes \mathfrak{H}^{\prime}$ can be canonically identified with $\sum_{i=1}^{n} \oplus \mathfrak{H}_{i}$, with $\mathfrak{H}_{i}=\mathfrak{H} \otimes \varphi_{i}^{\prime}$ isomorphic to \mathfrak{H} for all i. Therefore, there are partially isometric mappings U_{i} from $\mathfrak{G} \otimes \mathfrak{G}^{\prime}$ onto \mathfrak{G} with

$$
\begin{equation*}
U_{i} U_{j}^{*}=\delta_{i j} 1_{\mathfrak{5}}, \quad U_{i}^{*} U_{i}=P_{\mathfrak{S i}_{i}}, \quad U_{i}\left(\varphi \otimes \varphi_{i}^{\prime}\right)=\varphi \tag{5}
\end{equation*}
$$

The same consideration with ψ_{k}^{\prime} and $\overline{\mathfrak{G}}_{k}=\mathfrak{H} \otimes \psi_{k}^{\prime}$ instead of φ_{i}^{\prime} and $\mathfrak{H}_{i}=\mathfrak{S} \otimes \varphi_{i}^{\prime}$ leads to partially isometric mappings V_{k} with

$$
\begin{equation*}
V_{k} V_{l}^{*}=\delta_{k l} 1_{\mathfrak{F}}, \quad V_{k}^{*} V_{k}=P_{\mathfrak{5}_{k}}, \quad V_{k}\left(\varphi \otimes \psi_{k}^{\prime}\right)=\varphi \tag{6}
\end{equation*}
$$

Then, obviously,

$$
\begin{equation*}
A_{k i}=V_{k} S U_{i}^{*} \tag{7}
\end{equation*}
$$

Eq. (7) now allows a very simple characterization of the operators $A_{k i}$. With $\sum_{i=1}^{n} P_{\mathfrak{S}_{i}}=\sum_{k=1}^{n} P_{\tilde{5}_{k}}=1_{\mathfrak{G} \otimes \mathfrak{Y}^{\prime}}$ and the unitarity of S, Eqs. (5) to (7)
lead to

$$
\begin{equation*}
\sum_{i=1}^{n} A_{k i} A_{l i}^{*}=\delta_{k l} 1, \quad \sum_{k=1}^{n} A_{k i}^{*} A_{k j}=\delta_{i j} 1 \tag{8}
\end{equation*}
$$

In other words, the $n \times n$ matrix of operators $A_{k i}$ represents a unitary operator in the direct sum of n copies of \mathfrak{G}. The conditions (5) and (7) of Ref. [1] are immediate consequences of (8).

However, only the operators $A_{k i}$ with $k \in K$ and $i \in I$ actually enter Eq. (2) which describes the operation. Eq. (8) implies that the " $K \times I$ " matrix of operators

$$
\begin{equation*}
A=\left(A_{k i}\right), \quad k \in K, \quad i \in I \tag{9}
\end{equation*}
$$

which maps the space $\mathscr{H}=\sum_{i \in I} \oplus \mathfrak{H}^{(i)}, \mathfrak{G}^{(i)} \equiv \mathfrak{H}$ into $\overline{\mathscr{H}}=\sum_{k \in K} \oplus \overline{\mathfrak{G}}^{(k)}$, $\overline{\mathfrak{H}}^{(k)} \equiv \mathfrak{H}$, is a contraction, i.e.,

$$
\begin{equation*}
A^{*} A \leqq 1_{\mathscr{H}}, \quad A A^{*} \leqq 1_{\mathscr{\mathscr { H }}} \tag{10}
\end{equation*}
$$

Conversely, any operator matrix (9) with (10) may be considered as a part of a unitary operator matrix. Consider the Hilbert space
$\hat{\mathscr{H}}=\overline{\mathscr{H}} \oplus \mathscr{H}$. The operator matrix

$$
\boldsymbol{T}=\left(\begin{array}{cc}
\left(1-A A^{*}\right)^{1 / 2} & A \tag{11}\\
A^{*} & -\left(1-A^{*} A\right)^{1 / 2}
\end{array}\right)
$$

then represents a unitary operator in $\hat{\mathscr{H}}$. This follows as a straightforward generalization of a well known result [3] ${ }^{2}$.

These results allow a complete characterization of operations. Any operation may be described by Eq. (2) with a " $K \times I$ " matrix A of operators $A_{k i}$ fulfilling (10) and numbers $c_{i}>0$ with $\sum_{i \in I} c_{i}=1$. Conversely, any state change described by Eq. (2) with $A=\left(A_{k i}\right)$ fulfilling (10) and numbers $c_{i}>0$ with $\sum_{i \in I} c_{i}=1$ is an operation in the sense defined above, i.e., there exists a Hilbert space \mathfrak{G}^{\prime}, a state W^{\prime}, and a property Q^{\prime} of an apparatus and a unitary operator \boldsymbol{S} in $\mathfrak{G} \otimes \mathfrak{G}^{\prime}$ so that the state change may also be described by Eq. (1).

The last statement follows easily from Eq. (11). The Hilbert space $\hat{\mathscr{H}}=\sum_{k \in K} \oplus \overline{\mathfrak{G}}^{(k)} \oplus \sum_{i \in I} \oplus \mathfrak{S}^{(i)}, \overline{\mathfrak{G}}^{(k)} \equiv \mathfrak{H} \equiv \mathfrak{S}^{(i)}$ is canonically isomorphic [2] to $\mathfrak{G} \otimes \mathfrak{H}^{\prime}$ with a " $K+I$ "-dimensional Hilbert space \mathfrak{G}^{\prime} and a suitable basis $\left\{\chi_{k}^{\prime} \mid k \in K\right\} \cup\left\{\eta_{i}^{\prime} \mid i \in I\right\}$ in \mathfrak{H}^{\prime}. Then $W^{\prime}=\sum_{i \in I} c_{i} P_{\eta_{i}^{\prime}}, Q^{\prime}=\sum_{k \in K} P_{\chi_{k}^{\prime}}$, and $\boldsymbol{S} \equiv \boldsymbol{T}$ as given by (11) have the desired properties.

To every operation there belongs a Hermitean operator

$$
\begin{equation*}
F=\sum_{k \in \mathbb{K}} \sum_{i \in I} c_{i} A_{k i}^{*} A_{k i} \tag{12}
\end{equation*}
$$

with $0 \leqq F \leqq 1$ (Ref. [1], Eq. (7)), called effect. The physical meaning of F is explained in Ref. [1]. The transition probability from the state W to the new state \tilde{W} is $\operatorname{Tr} \hat{W}=\operatorname{Tr}(F W)$ [1]. Therefore, we speak of an operation to act selectively, or non-selectively, on the state W, if $\operatorname{Tr}(F W)<1$ or $=1$, respectively, and an operation with $F<1$, or $F=1$, is called selective, or non-selective, respectively. $\operatorname{Tr}(F W)=1$ implies $F W=W$ since, with $W=\sum_{i} \alpha_{i} P_{\varphi_{i}}, \operatorname{Tr}(F W)=\sum_{i} \alpha_{i}\left(\varphi_{i}, F \varphi_{i}\right)=1, \alpha_{i}>0$ and $\sum_{i} \alpha_{i}=1$ yield $\left(\varphi_{i}, F \varphi_{i}\right)=1$, and since $F \leqq 1, F \varphi_{i}=\varphi_{i}$ for all i.

2. Local Operations

In field theory with local von Neumann algebras \mathfrak{R}_{C}, the natural requirement

$$
\begin{equation*}
\boldsymbol{S} \in \mathfrak{R}_{C} \otimes \mathfrak{L}\left(\mathfrak{H}^{\prime}\right) \tag{13}
\end{equation*}
$$

for operations performed in the space-time region C implies $A_{k i} \in \mathfrak{\Re}_{C}$ [1]. Conversely, with $A_{k i} \in \mathfrak{R}_{c}, k \in K, i \in I$ fulfilling (10), the operator
${ }^{2}$ We take this occasion to point to a missing minus sign in front of $\left(1-A^{*} A\right)^{1 / 2}$ in Eq. (11) of Ref. [1].
\boldsymbol{T} given by (11) belongs to $\mathfrak{R}_{C} \otimes \mathfrak{L}\left(\mathfrak{G}^{\prime}\right)$ [2], and therefore such operators $A_{k i}$ describe a local operation.

Quantum theory predicts the statistics of experimental results for many repetitions of the same experiment. In field theory, "the same" means: identical except the location in space-time. It is then almost inevitable to assume that, prior to any experiment, the field is in a state W which is invariant with respect to space-time displacements. Otherwise, the statistics of experimental results would depend on the spacetime location of the trial experiments. The only candidate for this state is, in the usual framework, $W=P_{\omega}$ with the unique vacuum vector ω.

A local operation in the space-time region C transforms the original field state W into \tilde{W} (Eq. (2)) in the future and side cone of C. This is explained in detail in a forthcoming paper [4]. (Compare also Schlieder [5].) Sequences of local operations may be described with the formalism proposed there.

Some propositions about local operations may now be proved easily.

Proposition 1. A local operation is non-selective if and only if it acts non-selectively on the vacuum state $W=P_{\omega}$.

Proof. "Only if" is trivial. Vice versa, $\operatorname{Tr}\left(F P_{\omega}\right)=1$ implies $F \omega=\omega$. As a consequence of the Reeh-Schlieder theorem ${ }^{3}$, ω is a separating vector for \mathfrak{R}_{C}. Thus $F \omega=\omega$ implies $F=1$.

Proposition 2. A local operation in C which acts non-selectively on the field state W leaves invariant expectation values in the side cone C^{\prime} of C.

Proof. $\operatorname{Tr}(F W)=1$ implies $\tilde{W}=\hat{W}$ and $F W=W$. Take $B \in \mathfrak{R}_{C^{\prime}}$. By locality, $\left[B, A_{k i}^{*}\right]=0$, and thus

$$
\operatorname{Tr}(B \tilde{W})=\operatorname{Tr}(B \hat{W})=\operatorname{Tr}\left(B \sum_{k \in K} \sum_{i=1}^{n} c_{i} A_{k i}^{*} A_{k i} W\right)=\operatorname{Tr}(B F W)=\operatorname{Tr}(B W)
$$

Proposition 2 expresses the causal behavior of non-selective local operations.

According to Licht [7], a state W is called strictly localized outside C if $\operatorname{Tr}(B W)=(\omega, B \omega)$ for all $B \in \mathfrak{R}_{C}$. Proposition 2 then leads to:

Corollary. A non-selective local operation in C changes the vacuum state P_{ω} into a state \widetilde{W} strictly localized outside C^{\prime}.

Proposition 3. Any state \tilde{W} strictly localized outside C^{\prime} has the form $\tilde{W}=\sum_{k=1}^{n} B_{k} P_{\omega} B_{k}^{*}$ (including the possibility $n=\infty$) with $B_{k} \in \mathfrak{R}_{C^{\prime}}^{\prime}$, $\sum_{k=1}^{n} B_{k}^{*} B_{k}=1$, and $\left(\omega, B_{k}^{*} B_{l} \omega\right)=0$ if $k \neq l$.
${ }^{3}$ This theorem is used here in the form proved by Araki [6].
10 Commun. math. Phys., Vol. 16

This has been proved by Licht [7].
Corollary. Assume the duality theorem ${ }^{4} \mathfrak{R}_{C^{\prime}}=\mathfrak{R}_{C}^{\prime}$ for the region C. Any state \tilde{W} strictly localized outside C^{\prime} may then be produced from the vacuum state P_{ω} by a non-selective local operation in C.

Proof. Take $K=\{1 \ldots n\}, I=\{1\}, c_{1}=1$, and $A_{k 1}=B_{k} \in \mathfrak{R}_{C^{\prime}}^{\prime}=\Re_{C}$. This choice satisfies (10), Eq. (12) yields $F=\sum_{k=1}^{n} B_{k}^{*} B_{k}=1$, and Eq. (2) with $W=P_{\omega}$ leads to $\tilde{W}=\sum_{k=1}^{n} B_{k} P_{\omega} B_{k}^{*}$.

We conclude with a remark on the Reeh-Schlieder theorem [6], according to which vectors of the form $A \omega$ with $A \in \mathfrak{R}_{C}$ are dense in \mathfrak{H}. Any unit vector $\psi \in \mathfrak{G}$ or, in other words, any pure state of the field, may then be approximated in norm by vectors of the form $\varphi=\frac{A \omega}{\|A \omega\|}$ with $A \in \mathfrak{R}_{C},\|A\| \leqq 1$ or, in other words, by pure states which are generated from the vacuum state by a local pure [1] operation in C.

At first sight this looks very paradoxical, for instance if we think of a field state ψ which is very different from the vacuum state ω at a large space-like distance from C [7]. However, the local pure operation $\omega \rightarrow \varphi=\frac{A \omega}{\|A \omega\|}$ which approximates ψ is in general a selective one. (It is non-selective if and only if the transition probability $\operatorname{Tr}\left(F P_{\omega}\right)=(\omega, F \omega)$ $=\|A \omega\|^{2}$ is equal to one.) Therefore Proposition 2 does not apply, and φ may be different from the vacuum in C^{\prime}.

Consider a field property measurable in C^{\prime}, i.e., a projection operator $P \in \mathfrak{R}_{C^{\prime}}$, and a pure state $\varphi=\frac{A \omega}{\|A \omega\|}$ as above. Then

$$
\begin{equation*}
(\omega, P \omega) \geqq(\varphi, P \varphi)\|A \omega\|^{2} \tag{14}
\end{equation*}
$$

in words: the probability for P in the vacuum state ω is greater than or equal to the probability for P in the state φ times the transition probability from ω to φ. Indeed, from $[A, P]=0$ and $\|A\| \leqq 1$ follows

$$
(\varphi, P \varphi)\|A \omega\|^{2}=(A \omega, P A \omega)=\|A P \omega\|^{2} \leqq\|P \omega\|^{2}=(\omega, P \omega)
$$

The same consideration applies if P is replaced by a local effect [1] $F \in \mathfrak{R}_{C^{\prime}}$.

The estimate (14) indicates that any deviation of φ from ω in C^{\prime} is produced solely by the selection performed in C. One may imagine that the observer exploits some vacuum fluctuations occuring simultaneously

[^1]in C and C^{\prime} with a suitable correlation, and thereby selects those fields, which have the desired properties in $C^{\prime 5}$.

If he wants a state φ very different from the vacuum in C^{\prime}, i.e., $(\varphi, P \varphi) \gg(\omega, P \omega)$ for some $P \in \Re_{C^{\prime}}$, (14) implies that the transition probability $\|A \omega\|^{2}$ is very small, and therefore the preparation of the field state φ may be practically impossible. We hope this remark solves the apparent paradox mentioned above.

Acknowledgement. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft.

References

1. Hellwig, K.-E., Kraus, K.: Commun. Math. Phys. 11, 214 (1969).
2. Dixmier, J.: Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neumann), Chap. I, § 2, No. 3 and 4. Paris: Gauthier-Villars 1957.
3. Riesz, F., Nagy, B. SZ.: Functional analysis. Appendix of the 3rd. Ed. New York: F. Ungar 1960.
4. Hellwig, K.-E., Kraus, K.: To appear in Phys. Rev.
5. Schlieder, S.: Commun. Math. Phys. 7, 305 (1968).
6. Araki, H.: J. Math. Phys. 5, 1 (1964).
7. Licht, A. L.: J. Math. Phys. 7, 1656 (1966).
8. Haag, R., Schroer, B.: J. Math. Phys. 3, 248 (1962).

K.-E. Hellwig	K. Kraus
Lehrstuhl I für Theoretische Physik	Institut für Theoretische Physik
der Technischen Universität	der Universität
1000 Berlin 12, Straße des 17. Juni 135	3550 Marburg, Mainzer Gasse 33

[^2]
[^0]: * Supported in part by the Deutsche Forschungsgemeinschaft.
 ** Now at Lehrstuhl I für Theoretische Physik, Technische Universität Berlin.
 ${ }^{1}$ Our discussion applies to finite n as well as to $n=\infty$.

[^1]: ${ }^{4}$ Haag and Schroer [8], Araki [6].

[^2]: ${ }^{5}$ Note that $(\omega, P \omega) \neq 0$ unless $P=0$ since ω is a separating vector. Therefore, the vacuum state has "virtually" any desired property.

