The Even CAR-Algebra

ErLing StøRMER
Mathematical Institute, University of Oslo Oslo, Norway

Received October 27, 1969

Abstract

It is shown that the even CAR-algebra over a separable Hilbert space is *-isomorphic to the CAR-algebra.

Let K be a separable infinite dimensional complex Hilbert space. Let $\mathfrak{A}(K)$ be the CAR-algebra over K. Then $\mathfrak{A}(K)$ is the C^{*}-algebra generated by elements $a(f)$, where $f \rightarrow a(f)$ is a linear map of K into $\mathfrak{H}(K)$ satisfying the canonical anticommutation relations

$$
\begin{aligned}
a(f) a(g)^{*}+a(g)^{*} a(f) & =(g, f) I, \\
a(f) a(g)+a(g) a(f) & =0,
\end{aligned}
$$

for all $f, g \in K, I$ denoting the identity operator in $\mathfrak{A}(K)$. Let γ be the *-automorphism of $\mathfrak{Y}(K)$ such that $\gamma(a(f))=-a(f)$ for all $f \in K$, and let $\mathfrak{A}(K)_{e}$ be the C^{*}-algebra of even elements in $\mathfrak{H}(K)$, i.e. $x \in \mathfrak{A}(K)$ if and only if $\gamma(x)=x$. It has been shown by Doplicher and Powers [1] that $\mathfrak{A}(K)_{e}$ is a simple C^{*}-algebra. In the present note we sharpen this result by showing that $\mathfrak{A}(K)_{e}$ is ${ }^{*}$-isomorphic to $\mathfrak{M}(K)$. We refer the reader to the thesis of Powers [3] for an account of the general theory of the CAR-algebra.
Theorem. $\mathfrak{A}(K)_{e}$ is ${ }^{*}$-isomorphic to $\mathfrak{A}(K)$.
Proof. Let f_{1}, f_{2}, \ldots, be an orthonormal basis for K. Let K_{n} be the linear span of f_{1}, \ldots, f_{n}, and $\mathfrak{A}\left(K_{n}\right)$ the CAR-algebra over K_{n} considered as a subalgebra of $\mathfrak{A}(K)$. Let $\mathfrak{A}\left(K_{n}\right)_{e}$ be the even subalgebra of $\mathfrak{A}\left(K_{n}\right)$. Since $\gamma\left(\mathfrak{A}\left(K_{n}\right)\right)=\mathfrak{A}\left(K_{n}\right)$ we clearly have $\mathfrak{A}\left(K_{n}\right)_{e}=\mathfrak{H}\left(K_{n}\right) \cap \mathfrak{A}(K)_{e}$. Let $U_{i}=I-2 a\left(f_{i}\right)^{*} a\left(f_{i}\right), V_{n}=U_{1} U_{2} \ldots U_{n}$. Then for $x \in \mathfrak{A}\left(K_{n}\right), \gamma(x)=V_{n} x V_{n}$. Indeed, it suffies to show this for each $a\left(f_{j}\right), j=1, \ldots, n$. But

$$
V_{n} a\left(f_{j}\right) V_{n}=\prod_{i=1}^{n} U_{i} a\left(f_{j}\right) \prod_{i=1}^{n} U_{i}=U_{j} a\left(f_{j}\right) U_{j}=-a\left(f_{j}\right)=\gamma\left(a\left(f_{j}\right)\right) .
$$

Let P_{n} and Q_{n} be the spectral projections of V_{n} in $\mathfrak{A}\left(K_{n}\right)$, so that $V_{n}=P_{n}-Q_{n}$. Then P_{n} and Q_{n} are both projections of dimension 2^{n-1} in the $2^{n} \times 2^{n}$
matrix algebra $\mathfrak{A}\left(K_{n}\right)$. Let

$$
J_{1}=\left\{i: 1 \leqq i \leqq 2^{n-1}\right\}, \quad J_{2}=\left\{i: 2^{n-1}<i \leqq 2^{n}\right\}
$$

and let $L_{1}=\left(J_{1} \times J_{1}\right) \cup\left(J_{2} \times J_{2}\right), L_{2}=\left(J_{1} \times J_{2}\right) \cup\left(J_{2} \times J_{1}\right)$.
Let $\left\{e_{i j}^{(n)}: i, j \in J_{1} \cup J_{2}\right\}$ be a complete set of matrix units for $\mathfrak{A}\left(K_{n}\right)$ such that

$$
\sum_{i \in J_{1}} e_{i i}^{(n)}=P_{n}, \quad \sum_{i \in J_{2}} e_{i i}^{(n)}=Q_{n}
$$

Then $e_{i j}^{(n)}$ is even (resp. odd) if and only if $(i, j) \in L_{1}$ (resp. $\left.(i, j) \in L_{2}\right)$. Let

$$
b_{i j}^{(n)}=\left\{\begin{array}{l}
I \quad \text { if } \quad(i, j) \in L_{1} \\
a\left(f_{n+1}\right)-a\left(f_{n+1}\right)^{*} \quad \text { if } \quad(i, j) \in L_{2} .
\end{array}\right.
$$

Let $E_{i j}^{(n)}=e_{i j}^{(n)} b_{i j}^{(n)}$. Then $E_{i j}^{(n)} \in \mathfrak{A}\left(K_{n+1}\right)_{e}$. Furthermore a straightforward computation shows that the set $\left\{E_{i j}^{(n)}: i, j \in J_{1} \cup J_{2}\right\}$ is a complete set of $2^{n} \times 2^{n}$ matrix units. Let $\mathfrak{B}\left(K_{n+1}\right)$ be the $I_{2^{n}}$ factor which they generate. Then we have $\mathfrak{A}\left(K_{n}\right)_{e} \subset \mathfrak{B}\left(K_{n+1}\right) \subset \mathfrak{A}\left(K_{n+1}\right)_{e}$. Thus $\mathfrak{H}(K)_{e}$ is generated by the $I_{2^{n}}$ factors $\mathfrak{B}\left(K_{n+1}\right)$, hence is a UHF-algebra of type $\left\{2^{n}\right\}$, so it is ${ }^{*}$-isomorphic to $\mathfrak{A}(K)$, see [2].

References

1. Doplicher, S., Powers, R. T.: On the simplicity of the even CAR algebra and free field models. Commun. Math. Phys. 7, 77 (1968).
2. Glimm, J. G.: On a certain class of operator algebras. Trans. Amer. Math. Soc. 95, 318 (1960).
3. Powers, R. T.: Representations of the canonical anticommutation relations. Thesis Princeton Univ. (1967).
