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Abstract. Bogoliubov's method of renormalization is formulated in momentum space.
The convergence of the renormalized Feynman integrand is proved by an application of
the power counting theorem.

1. Introduction

A general theory of renormalization has been developed by Bogoliubov
for arbitrary local and invariant interactions. It was shown by Hepp
that the renormalized Feynman integrals constructed according to
Bogoliubov's rules converge to well defined distributions when the
regularization is removed [1-4].

In a recent paper [5] a different formulation of Bogoliubov's method
was used which works in momentum space and does not refer to a
regularization. The starting point of this approach is the integrand IΓ

of the unrenormalized Feynman integral

Jr(Pι ' Pr)= K™QSdkί ''dkmIΓ(kl km,pί --pr) (1.1)

in momentum space. The integrand RΓ of the finite part of (1.1)

FΓ(Pι- Pr}= tim^Sdk^ dknRrfa ' k^p^ pr) (1.2)

is defined as a rational function of the internal and external momenta
by substracting appropriate counter terms from IΓ. The method is thus
an extension of the original work of Dyson and Salam [6—8] 1. For
handling the overlapping divergencies Bogoliubov's combinatorial
technique is used which applies to renormalizable as well as non-re-
normalizable theories.

* On leave of absence from Courant Institute of Mathematical Sciences; New York
University, New York.

1 For some references of other methods of renormalization see [9—12"].
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In this paper the convergence of the renormalized integral (1.2) is
proved by a simple application of the power counting theorem [13—15].
The main problem will be to verify the hypothesis of the power counting
theorem, i.e. to check that the dimension of (1.2) and any sub-integral
along an arbitrary hyperplane in /c-space has negative dimension. The
power counting theorem for Minkowski metric then implies that the
integrals are absolutely convergent for ε > 0 and yield co-variant distri-
butions in the limit ε->0 [15].

In Section 2 the definition of the finite part (1.2) is discussed. An
explicit formula for RΓ is derived in Section 3. Section 4 contains the
proof that the renormalized Feynman integral meets the requirements
of the power counting theorem.

2. The Finite Part of an Arbitrary Feyman Integral

We consider a Feynman diagram Γ with N vertices Vί9 ...,F^.The
lines connecting the vertices Va, Vb will be denoted by L(Va, Vb,σ) or
Labσ(σ = 1, ,.., v(αb)). Va, Vb are called endpoints of Lαbσ. Lines connecting
a vertex with itself are excluded, (a = b). Each vertex is supposed to be
endpoint of at least one line. No restriction is placed on the number
of lines joining at a vertex.

JS?(Γ) denotes the set of lines, i^(Γ) the set of vertices.

Σr, Πr
abσ aba

denote sum or product resp. over all lines Labσ of the diagram Γ.

Σr, Πr

denote sum or product resp. over all vertices Va of the diagram Γ.
To each line Labσ we assign an internal momentum

(2-1)

To each vertex Va a momentum qa is assigned. In general the qa will
be linear combinations of external momenta pl9 ...,p r

<2α = <2α(Pl Pr) (2 2)

The internal and external momenta are subject to the relation of momen-
tum conservation at each vertex

ΣrU = <?α fl = l,. . , N . (2-3)
bσ

Here ££ denotes the sum over all lines Labσ of the diagram Γ having
bσ

Va as one of its endpoints. As consequence of (2.1), (2.3) the external mo-
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menta must satisfy momentum conservation

with Γl5 ...,ΓC denoting the connected components of Γ.
To each line Labσ we assign a propagator

(2.4)

^* = ̂ ,(/«J(/^^^^ β>0, /4σ>0 (2.5)

where Pabσ denotes a polynomial in the components of labσ. To each
vertex Va we assign a polynomial

^« = ̂ β(Ul> >Uv<β*τ)) (2 6)

in the components of the vectors Iabl9 ... Here F f t l, ..., Fύτ denote the
vertices which are connected to Va by an internal line. With these insertion
rules the corresponding unrenormalized integral becomes

J(Pl,...,pr)= lim fdV ^mΓK ΓL ^ (2.7)
ε^ + ° α&<τ a

The internal momenta in Aa

F

bσ, Pβ(Eq. (2.5-2.6)) are of the form

laba = kabσ + qabσ. (2.8)

The gα f c σ are linear combinations

<labσ = <ίaba(<ll>'~,<lN) (2 9)

of qί9 ..., ^fjy and form a particular solution of

Σr «<,»<, = ««, 9.t. + 96.σ = 0. (2.10)

The gα6σ are called basic internal momenta. The kabσ are linear combina-
tions

kabσ = kabσ(kί9...,kj (2.11)

of the integration variables fcl9 ..., fcm and represent the general solution
of the homogeneous equations

Σffc- tσ = 0, ^ + ̂ , = 0. (2.12)
bσ

m of the forms kabσ are chosen as independent four vectors kl9 ...9km.
We introduce the following abbreviations

denotes the set

(2.14)
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of four vectors kabσ satisfying (2.12). Equations (2.2), (2.11) are written as

q = q ( p ) , K = K(k). (2.15)

In this notation the Feynman integral becomes

J(p) = εlim S d k f . . dkm IΓ(K(k), q(p)) (2. 16)

where

aba a

abσAa

F

bσ, Pa are given by (2.5-2.6) with the substitutions

lata = lak<,(Kq) = kaba + qabM (2.18)

In this section the finite part of (2.16) will be defined in the form 2

FΓ(p) = lim f d/q - - dkm RΓ(K(k), q(p)) (2.19)

where the modified integrand RΓ(kq) is obtained from the original in-
tegrand IΓ(kq) by a suitable number of subtractions. Unfortunately the
definition of RΓ will depend on the choice of the basic internal momenta
qabσ(q). Though the final integral (2.19) is the same for a large class of
basic momenta, we will — for the sake of definiteness - make a unique
choice of qabσ in the definition of the finite part. To this end we define
the canonical momenta as that solution of (2.10) for which the quadratic
form

Σrώ, (2-20)
abσ

is stationary under the constraints (2.10). With the Lagrange multi-
pliers w l 5 . .., UN of the constraints (2.10) the qabσ become uniquely deter-
mined by

abσ = < a > rv < = .
bσ a

These are N — c independent equations for the N — c independent
differences ua — ub if c is the number of connected components of Γ.

We introduce some combinatorial concepts which will be needed
later on.

Let £?(Δ) denotes the set of lines and V(Δ) denote the set of vertices
of a diagram A. To any set ^CQ^f(Γ) we define a subdiagram A of Γ
by the lines L 6 5£ and the vertices which are endpoints of a line in £?.

2 The integral does not depend on the choice of /c l 9 ..., km. For, any two sets /c1 ? ..., km

and k(, ..., k'm of m linearly independent internal momenta kabσ are related by an orthogonal
transformation.
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We say that the diagram A is spanned by the set 3? of lines. The
following definitions concern subdiagrams of a given diagram Γ. We
define A — Δλ r\A2 as the diagram spanned by

Al is called a subdiagram of A2, i.e. ΔlξΞΔ2 if e^(Al)Q^(A2) If
ζΔ2, the diagram Δ2\Δ^ is defined as the diagram spanned by

Let δ be a subdiagram of A with connected components (51? . . . , < 5 C .
We form the reduced diagram

A=A/δ = A/δl δc (2.22)

by contracting each line of δ to a point. More precisely the reduced
diagram A is defined by

δ)u{71, ..., FJ . (2.23)

Here

V^nδά Vc-nδc) (2.24)

serve as new vertices of A replacing the vertices of the reduced diagrams
<51? . . . ,(5 C . Two vertices F, V'ei^(Δ)\i^(δ) are connected in A by the
same lines as in A. Ve n^(Δ)\i^(δ] and Va are in Δ connected by all lines
of <£(Δ)\3?(δ) which in Δ connect V with any vertex of Va. Va and Vb

are connected by all lines of JS?(J)\J£?(<5) which in A connect a vertex of δa

with a vertex of δb.
In the work that follows we will consider subdiagrams as well as

reduced diagrams of our original Feynman diagram Γ. Let y £ Γ be a
subdiagram of Γ. m(γ) denotes the number of independent internal
momenta, N(y) the number of vertices of 7. The unrenormalized integrand
Iy is defined by the same insertion rules as for 7r. Explicitly

aba a (2.25)

K — {^abσίLabσe^γ) ' # ~ Wα}καey(y)

z1^σ, Pa are given by (2.5-2.6) with the substitutions

labσ = Pabσ(K\ q*) = klbσ + qlbσ(qy] (2.26)

Here qy

abσ denote the canonical momenta defined in reference to the sub-
diagram y. I.e. qγ

abσ is that solution of

Σy <?ab, = la . ^bσ + qla, = 0, K, 6 ̂ (T) (2.27)

3 /ί \β denotes the difference of the two sets A, B.
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for which
Σrteϋ2 (2.28)

abσ

is stationary. The four vectors kΊ

abσ satisfy

Σ; wabσ = o, wabσ + kiaσ = o, va 6 ny) - (2.29)
abσ

We next define ky

abσ, qy

a as linear combinations of kabσ, qa by requiring

Γabσ(Kyqy] = labσ(Kq) (2.30)

for all Labσ e £?(y). According to

ql(Kq)= ^.labσ(Kq), ky

abσ(Kq] = labσ(Kq) - qy

abσ(Kq] (2.31)

the klbσ, ql are uniquely determined by this requirement. Equation (2.31)
implies

ql(Kq) = - Σr\y labσ(Kq} = ~ Στ\γ(kabσ + VabM) (2-32)
abσ abσ

It can further be shown that the k}

abσ depend only on the kabσ. For
the Eqs. (2.21) and (2.31) imply

<ίabσ(<ti = ua-ub for Kβ, Vbei^(y),

Σ°Vabσ(q) = qya(^q)
abσ

These equations, however, determine the functions qlbσ(Q, q).
Accordingly

and
k7

a

which proves the assertion. Hence we have the result that Kγ, qy are
linear combinations of the form

(2.34)

With the substitutions (2.26), (2.34) the unrenormalized integral Iy

becomes a function of K and q.
Let μ be a subdiagram of y C Γ. In an analogous way we introduce the

function
K" = K*(K*)9 qμ = qμ

y(Kyqy) (2.35)

by the requirement
l»bσ(K»q») = llbσ(K\qi}. (2.36)

For later use we note the relation corresponding to (2.32)

^(K V) = - ΣW&σ + tf»σteO) (2 37)
abσ



214 W. Zimmermann :

If 7 is proper we define the dimension ^(7) by

d(γ) = Σy d(Labσ) + Σγ d(Va) + 4m(y) . (2.38)

Here d(Labσ) is the degree of the propagator corresponding to Labσ

with respect to the components of labσ, d(Va) is the degree of the poly-
nomial assigned to Va. Apparently d(y) is the dimension of the un-
renormalized Feynman integral of 7. Proper subdiagrams of dimension
d(y) ^ 0 are called renormalization parts.

We next study reduced diagrams of Γ. Let y l 5 ... yc be subdiagrams
of Γ, proper and mutually disjoint. We consider the reduced diagram

Γ = Γ/yί...γc. (2.39)

We define the unrenormalized integrand Iτ by the same insertion rules
as for IΓ except that the factor 1 is assigned to the reduced vertices Fl5 . . . , Vc.
Explicitly

Iτ(qK)=YlfAaFbσllrPa (2-40)
abσ a

with (2.5-2.6) and (2.18). Here f|^ , J~]^ denotes the product over all
abσ a

lines Labσ or vertices Va resp. of Γ which do not belong to y l 5 . . . ,y c .
Apparently (2.40) agrees with the definition (2.17) if applied to the reduced
diagram Γ.

After these preparations we now give the definition of the finite
part of a Feynman integral. The integrand RΓ(K, q) of the finite part
(2.19) is defined by

RΓ(K, q) = IΓ(K, q) + £ /r/yi...J*, q) Π <W7% q^) (2.41)
y i . V c τ = l

with
Ky* = K?*(K), qγτ = q^(K9 q) . (2.42)

The sum extends over all sets s = (y1? . . ., yc) of renormalization parts of Γ
which are mutually disjoint

y τ n7 σ = θ for τ φ σ .

This includes the case that s consists of Γ itself provided Γ is a renormali-
zation part. The functions Oy are recursively defined for every renormali-
zation part 7 of Γ by

(243)
Π * l '

with
K^ = K?(K*) , q** = q!?(K\ q?) . (2.44)
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£'y denotes the sum over all sets s = (y1, ...,y c) of renormalization
parts ya φ y of γ which are mutually disjoint. The ' indicates that s = {7}
is excluded in the sum. tv

q

y applied to a function F(qy) of q\, . . . , qy

M denotes
the Taylor series in the components of the vectors q] up to the order v.
This completes the definition of the finite part.

We further introduce a function Ry by

Oγτ(K^qi*). (2.45)
7ί».yc τ = l

Apparently one has

Oy=-$y )*y (2.46)

RΓ is related to jRΓ by

RΓ = RΓ (2.47)

if Γ is no renormalization part and

RΓ = RΓ + 0Γ = (1-1$RΓ (2.48)

if Γ is a renormalization part.
The definition of the finite part can be generalized in various respect.

First of all we remark that it is sometimes necessary to consider other
sets of basic internal momenta besides of the canonical momenta.
We give the appropriate definitions for a sufficiently general class of
basic internal momenta.

Let qy

abσ be basic internal momenta given for every subdiagram 7 of Γ.
We consider the set S of all qy

abσ. Again we can define ql, ky

abσ as linear
combinations of q, k requiring that

ly

abσ(Ky

Λ

y}^labσ(KΛ] (2.49)
with

jy __ fry I ΠΊ (πy\Labσ ^abσ ~ tiαbσv ll / ? /^ cr\\

labσ = kabσ + qabσ(q)

The set S is called admissable if the momenta Ky depend only on K or
Kμ resp.

Ky = Kv(K), Ky = Ky

μ(Kμ) for any μ 3 y . (2.51)

The canonical internal momenta are an example of an admissable
set of basic internal momenta4.

Let {qy

abσ} be a set of basic internal momenta for Γ. Then a set of
basic internal momenta {qλ

abσ} for the reduced diagram Γ/δί...δc

4 It can be shown that the finite part (2.19) is the same for any admissable set of basic
internal momenta.
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may be introduced in the following way. For

Labσ G jS?(λ) , λ £ Γ/δ, . . . δc , λ = γ/δl . . . δe, y g Γ . (2.52)
Set

qλ

ahσ = ciy

aha (2-53)

{qλ

abσ} is called the set of basic internal momenta induced by {qy

abσ} in
Γ/δ1 ... δc. If {q}

abσ} is admissable {qλ

abσ} is also admissable. Apparently
the function lf(K,q] as defined by (2.40) is constructed by using the
basic internal momenta of Γ which are induced by the canonical momenta
of Γ.

Another generalization concerns the number of substractions.
Sometimes it is convenient to take more substractions than would
actually be necessary for convergence. For self-energy diagrams, for
instance, one will always take at least two substractions even if the dia-
gram should be convergent. To include this possibility we introduce a
function d(y) which assigns to every proper subdiagram y of Γ an integer
larger or equal to the dimension of y

d(y) ^ Σy d(Lab«) + Σy d(Va) + 4m(y) . (2.54)
abσ

d(γ) is called the degree of y*. Proper diagrams of non-negative degree
are called renormalization parts relative to d(y).

Relative to d(y) and an admissable set of basic internal momenta
the finite part and the functions jRr Or Ry are then defined by the same
equations (2.41-2.44).

3. Explicit Form of the Finite Part

The integrand RΓ of the finite part was defined recursively by Eqs.
(2.41—2.44). In this section we will derive explicit formulae for the function
RΓ . We begin with some combinatorial definitions concerning subdiagrams
of a given diagram Γ. The diagrams y1? y2 are said to overlap

if none of the following three relations holds

7 ι £ y 2 ? V i S y n 7ι^72=θ.

Otherwise y l 5 y2 are called non-overlapping

7ι 0 7 2

Let Γ be any diagram. A Γ-forest U is a set of diagrams satisfying the
following conditions

* In addition we require d(y) ^ d(γ) + Xd(yα) for any reduced diagram γ = y/γ1 ... yc

with d(γ) defined by (2.38).



Convergence of Bogoliubov's Method of Renormalization 217

(i) the elements of U are proper subdiagrams of Γ,
(ii) any two elements /, y" are non-overlapping

(iii) U may also be the empty set.
If in addition each element of U is a renormalization part we call U

a restricted Γ-forest.
Any subset Ue of a Γ-forest U is again a Γ-forest. All possible Γ-

forests are partially ordered by C A Γ-forest U is called maximal if
there is no other Γ-forest U' such that U C U'. Let Ul9 . . . , Uc be the maximal
Γ-forests. Then all possible Γ-forests are given by the subsets of any Ua.

We will next be concerned with the structure of a given Γ-forest U.
An element j of U is called maximal (minimal) if there is no other / e U
such that y C / or y' C y resp. Let /, y" be two maximal elements of U.
Since y' C y" and y" C y' are excluded we must have

y' r\y" = 0

for maximal elements of U.
Let y be any diagram of U. Denote by U(γ) the set of all y' e U satisfy-

ing y' C y. 17(7) is a Γ-forest as well as a 7-forest.
Let 71? . . . ,7 C be the maximal elements of U(y). Then we define

y(U} = y/y1...yc. (3.1)

A Γ-forest U containing Γ itself is called full, a Γ-forest U not con-
taining Γ is called normal. If Γ is no renormalization part all restricted Γ-
forests are normal. If Γ is a renormalization part then there is a one-to-
one correspondence between full restricted Γ-forests Γ and normal
restricted Γ-forests U given by

Γ=£/u{Γ}. (3.2)

Note that the empty set 17 = 0 corresponds to T= {Γ}.
Let U be a normal Γ-forest and 7 be an element of 17. By P(7) we

denote the set of all y' e U with

Since

for any two elements of P(y) the set P(7) is totally ordered by C.
We now define the position n(y) of 7 in U by the number of elements

contained in P(7). Any two renormalization parts with the same position
in U are disjoint.
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Let T be a full Γ-forest. Then we assign the position 0 to Γ in T.
For any other element y e T we define the position in Γ by the posi-

tion which y has in

Let «£?(£/) denote the set of all lines which belong to at least one
diagram of U. All elements of U containing a given line LabσE^(U)
are totally ordered by C. Hence there is a uniquely determined ele-
ment yabσ with

Labσ

such that

Labσφ&(y) if γcγabσ, yeU.

Therefore &(U) is partitioned into mutually disjoint sets

^υ (3.3)
y'(U)=Q for y Φ / .

The discussion of the recursive Eq. (2.43) can considerably be simplified
by introducing substitution operators of the following kind. Sμ denotes
the substitution operator

Sμ:Ky^Ky(K'1), q^q^K^q^) for yCμ. (3.4)

SΓ denotes the substitution operator

SΓ:K'-*A7(K), qv-*q*(K,q). (3.5)

More precisely Sμ is defined as follows. Let /be a function of the variables

where γ runs over all renormalization parts of Γ. Then Sμ f denotes
the function which is obtained from / by substituting

for all variable K\ qy with y C μ. With the notation

KΓ = K, qr = q

this definition holds for SΓ too. In addition we use the abbreviation

t» = ty. (3.6)
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With this notation the defining Eqs. (2.41) and (2.43) for RΓ and Oy become

l\Oyτ(Ky*qy*)> (3.7)
τ = l

c

The following lemma states an explicit formula for the 0-functions.

Lemma 3.1. The 0-function of a renormalization part y of Γ may explicitly
be written as

or

The sum in (3.9) extends over the set Λ, of all normal restricted y-forests U
including the empty set. The sum (3.18) extends over the set Ĵ . of all full
restricted y-forests. Iy(U) is essentially the function Iy but with a special
choice of the variables. We define

(3.11)
abσ

with (2.5-2.6) and the substitutions

U = ωW) if Lab,e£>(γ) (3.12)

and

laha = lah«(K,q) if Labaφ^(U). (3.13)

In the product

U ( - t γ s y ) ,
γeU

the factors — ty S
γ are ordered from left to right according to increasing

position. For elements of equal position in U the order is irrelevant since

tvSyt
y'Sy, = ty'Sy,t

ySy for yny ' -θ .

Proof. We use the notation

Π(- ίTS ί). (3.14)

(3.15)

yeU

First we note that the function
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may also be written as

Oy(Kq)= X D(T)Iy(T) (3.16)

using the relation (3.2) between full and normal forests. We prove
Oy — Oy by showing that Oy solves the recursive Eq. (2.39). First we re-
write the right hand side of (3.15)

X D(U)Iy(U)=-tUy(KVqV)-t?Sy X; X D(U)Iy(U). (3.17)
UeΛ- y i .yc UeK(y1...γc)

Here K^ ... yc) is the class of all normal restricted γ-forests having the
maximal elements yl9 . . . , yc. The first term of the r.h.s. of (3.17) corresponds
to U = θ. Now any U e K(y1 . . . y c ) has the form

C/=T 1(y 1)u-uΓ c(y c) (3.18)

where Tτ(yτ) is the set of all y E U with y gyτ. Tτ(yτ) is a full restricted yτ-
forest. On the other hand any set Tl9 ..., Tc of full restricted yτ-forests
defines a U e K(yl ...yc) by

Hence

([/)=Π Σ
UeK^L..-?^ -

c
r / Ύ^y γ\ T~T V^

where &τ denotes the set of all full yr-forests. Using (3.16-3.17) we get

c

OΛK\ qγ) = - fl(K\ q'} - f>SΊ Σ'y /γ/y, y (K\ qy) Π 0Jτ(K^, q^)
y \ 7 J. / ,\ ' Λ / y £_j / / / l / c x J- -»- J- / τ v

V 1 - . . Ϊ C τ=1

which proves Oy = Oy.

Theorem 3.1. The function RΓ is given explicitly by

RΓ(Kq) = SΓ X l\(-tvSy)IΓ(U) (3.21)
VeWr yeU

ith the sum extending over the set ύliγ of all restricted Γ-forests.

Proof. From (3.7) and the explicit formula (3.10) for Oy we obtain

Sr Σ IΓ/yί...yc(Kq)U Σ
yι . . .y c τ = l ΓVτe^τ

Sr Σ Σ D(U)IΓ(U).
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Formula (3.21) can considerably be simplified by using the identity

Π(- ί ySy)/y(t7) (3.22)
ye l/o l/ς l/o

which holds for any Γ-forest C/0. Let now Γ be a diagram with no over-
lapping divergencies, i.e.

for any two renormalization parts of Γ. Then the set U of all renormaliza-
tion parts is a Γ-forest. The subsets of U0 form all possible restricted
Γ-forests. Using (3.21) and (3.22) we obtain the following theorem.

Theorem 3.2. Let Γ be a Feynman diagram with no overlapping re-
normalization parts. Then the integral of the finite part is given by

RΓ(Kq) = SΓ Π (1 - ίy) Sy /r(E/o) (3-23)
yeί/o

where the product extends over all renormalization parts of Γ.

Formula (3.23) represents Dyson's prescription for removing non-
overlapping divergencies [16]. Using the power counting theorem it is
not difficult to prove that the corresponding integral (2.19) is absolutely
convergent. A generalization of (3.23) to the case of overlapping diver-
gencies can be given. The formula obtained, however, is not useful for
proving convergence. We therefore quote the result only.

Theorem 3.3. Let L/1? ..., Uc be the maximal restricted Γ-forests of
a diagram Γ. Form the intersections

(3.24)

for all subsets

(some of the intersection (3.24) may be empty). The integrand of the finite
part is then given by

RΓ(Kq) = SΓ £ (-ir1 Π (l-ty)Vr(^,..ϋ (3-25)
i i . . iv yel/ ( 1 ...t/ l v

For the convergence proof of the following section it is convenient
to use Eq. (3.21) in a more general form given by the following theorem.

Theorem 3.4. The function RΓ is given explicitly by

RΓ(Kq) = SΓ £ YK-fSJIriU) (3.26)
E/e<% yet/

16 Commun math Phys., Vol 15
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with the sum extending over the set U of all Γ-forests. Here the conven-
tion is used that

ty = 0 of d(γ)<0. (3.27)

The proof is trivial since on account of (3.27) all non-restricted Γ-
forests give zero contribution to (3.26).

4. Convergence Proof

In this section it will be shown that the finite part

iRr(K(k)9q)dki...dkn (4.1)

satisfies the requirements of the power counting theorem. In a previous
paper the power counting theorem was proved for integrals of the form

dk m

 P<M) (42)

where P(k, q) is a polynomial in k and q. Clearly (4.1) is of the form (4.2)
since RΓ(K, q) may be written as

A

*r~^7'
BI = ΓΊrCiL - WL + 'Xβ. + A&Λ) .

B2 = Π ΓL Ml ~ t&a + "WL + μ2

akσ}}cm , (4'3)

γ abσ

lab* = kabσ + qabσ(q) , ky

abσ = klbσ(K)

where A is a polynomial in K and q. The product ]Ί[ extends over all
y

renormalization parts y of Γ.
The hypothesis of the power counting theorem is contained in the

following theorem

Theorem 4.1. The finite part of a Feynman integral

$dkRΓ(K(k),q) (4.4)
H

has negative dimension for R4m and any hyperplane H described by a
set of linear equations

(4.5)
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With this result the power counting theorem (Theorem 2 of Ref. [6])
implies that (4.1) is absolutely convergent for ε>0 and approaches a well
defined distribution in the limit ε -> + 0 .

For the proof of the theorem we begin with a couple of definitions.
A Γ-forest U is called complete on H if Γ e U and if for any y e U

either (i) all lines Labσ e &(γ) are variable on H relative to y
or (ii) all lines Labσ E J£(y) are constant on H relative to y.

A line Labσ e &(Γ) is called constant on H relative to y if

kγ

abσ = const on H, i.e. ky

abσ(T) = const.

Let U be an arbitrary forest of Γ. We are going to define a completion U
of U which will be shown to be the unique minimal complete forest
containing U.

We begin defining U for a full [/, i.e. Γe U. Let W(U) be the set of
all y e U with the property that at least one line of γ(U) is constant
relative to y. For any y e W(U) let s(γ U) be the subdiagram of y which
is spanned by the set of constant lines of γ(U) relative to y 5. Let <51? ..., δc

be the connected components of y\s(yU) 3. We first show that each δa

is proper.

Lemma 4.1. Each connected component of y\s(y U) is proper.

Proof. Assume that Labσ e &(y) is an improper line of y\s(y U). Then
momentum conservation at each vertex implies

By definition of s(y U) the momenta ky

a.bισ. are constant on //, hence also
kγ

abσ is constant on H. If Labσ e &(γ) we have a contradiction because
s(yU) is the set of all constant lines of y(U). Therefore Lφ^(y)9 i.e.
Le & (φ) with φeU, φCy. Since φ is connected we have φζδa. If L
were an improper line of δa it would also be an improper line of φ which
is impossible. This completes the proof that y\s(yU) does not contain
improper lines i.e. each δa must be proper.

We define j/(L7) as the set of all diagrams τ φ U which are connected
components δa of y \s(γ U) with y e W(17). The completion of a full forest U
is then defined by

£7=l/uj*(l7). (4.6)

Our first aim is to show that U is a forest. We begin with

Lemma 4.2. // τ is a connected component of γ\s(yU) and y 'e (7,
y' C y we have

y'nτ = θ or y ' ζ τ .
5 Note that s(γ(U)) is defined as a subdiagram of y but not of γ(U). That means that no

vertices of are identified in s(y(U)).

16*
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Proof. Since all y ' C y , γ'eU are connected and y ' Q y \ s ( y U ) it
follows y'£<5 α where δa is a connected component of γ\s(yU). Hence
y ' g c ) α φ τ or y ' £ τ . In the first case y 'nτ = θ, in the second case y '£τ .

Lemma 4.3. U is a forest.

Proof, (i) We first prove that any elements τ e j/(C7) and y 'e U do
not overlap. Let τ be a connected component of y\s(yU). We have

y ' D 7 , y 'ny = 0 or y ' C y .

y ' D y implies y ' D τ . y 'ny = θ implies y 'nτ = θ. y ' C y implies y ' C τ or
yf n τ = 0 (Lemma 4.2). Hence y' e> τ for any τ e j/( 17) and y' e C7.

(ii) We next show that any two different elements τ l 5 τ2 e j/ do
not overlap.

(a) Let τ 1 ? τ 2 both be connected components of y\s(yU). Then
τlr\τ2= θ.

(b) Let T! be a connected component of 7^5(7 j C7), τ2 be a connected
component of y2\5(y2 U). I ϊ γ 1 Cy 2 Lemma 4.2 implies y1 Cy 2 orτ 2 nτ 2 = 0.
Hence τ t C τ2 or τ± n τ2 — θ.

If on the other hand y1 ny 2 = θ then also τ1 nτ2 = θ. This completes
the proof that U is a forest.

Lemma 4.4. Let τ e jtf(U) be a connected component of y\s(yll).
Let U(τ) be the set of all σ e U with σ C τ and y l 5 ..., yc fee ί/ie maximal
element of U(τ). Then all lines of

are variable relative to τ.

Proof. Let Lαί?σ e J5f(τ(Ϊ7)). By definition

( ' j

Setting gy = 0 we obtain

<ί 6, + ^,σ(^τ) - fc2fcσ , ^τ - ^τ(^y

; 0) , kibσ - fc;,σ(x^) . (4.8)

Since τ is a connected component of y\s(y 17) we have

(4.9)

Hence all qτ

a(Ky, 0) are constant on H. If kτ

abσ is constant on H Eq. (4.8)
implies that ky

abσ is also constant on H in contradiction to Labσ e jSf(τ)
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Lemma 4.5. U is complete.

Proof, (i) ΓεU.
(ii) Let y e U, y φ W(U\ All lines of y(U) are variable relative to y

since y(U) = γ(U).
(iii) Let γeW(U). Then &(y(U)) = &(s(γU)) i.e. all lines of γ(U)

are constant relative to 7. _
(iv) Let τ 6 s/(U}. Then τ(C7) = τ/yί ...yc where y x . . . yc are the maximal

elements of 17 (τ). Lemma 4.4 implies that all lines of τ(U) are variable
relative to τ.

Lemma 4.6. Lei U be a full forest. Any set V with

UgVgΌ (4.10)

is a forest with completion U.

Proof. Clearly V is a forest. We will show that W(V] = W(U).
(i) y e W(U) implies y e W(V) since s(y U) = s(y V\

(ii) yeU,yeW(V) implies yeW(U) since

(iii) If τ e V\U g *t(U) all lines of τ(V) = τ(U) are variable.
Combining (i)-(iii) we obtain W(V) = W(U). Hence

and V=U.
Next we will define the base U of a forest U which will turn out to

be the minimal forest among all forests with the completion U. The set
$(U) is defined as the set of all diagrams τ e U satisfying

(i) τφW(U).
(ii) τ is a connected component of y\s(yU) with yeW(U). Let U

be full. The base U of U is defined by

U=U\@(U)\{Γ} (4.11)

C7 is a forest. Furthermore define a full forest £/' by

U'=U\@(U). (4.12)

Lemma 4.7. // (7 is α complete forest on H the sets W(U) and
are given by the following conditions:

W(U) is the set of all y E U for which all lines of y(U) are constant re-
lative to y.

If y φ W( U) all lines of y( U) are variable on H relative to y.
&(U) is the set of all diagrams τ E U satisfying
(i) τφW(U).

(ii) τ is a maximal element of U(γ) with γ e W(U).
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Proof. The first and the second statement follow immediately from
the definition of W(U).

If U is complete we have

for yeW(U) (4.13)
or

- . .uy c ) , (4.14)

where y ± . . . y c are the maximal elements of U (y). Hence the connected
components of y\s(yU) are identical with the maximal elements ya

of U(y). This proves the last statement.
Lemma 4.8. For any full forest U holds

W ( U ' ) = W ( U ) . (4.15)

Proof, (i) If τeU\U' = &(U) the diagram τ(U) does not contain
any constant lines relative to y. Hence

τ e U \Uf implies τ φ W ( U ) . (4. 1 6)

(ii) Let y e [/', yeW(U). Then y(U) contains a line Labσ which is
constant relative to y. Since <j£?(y(£/)) g JSf(y (£/')) tne line Lαb<τ belongs to
y(I/') Hence

y e t / ' , y e W ( l 7 ) implies y e W ( U f ) . (4.17)

(iii) Let y eU',y φ W(U). Then y(l/) does not contain a line which is
constant relative to y. By definition y(U) = y/y1 ...yc where yι ..yc

are the maximal elements of U(y). Since y φ W ( U ) each yfl belongs to
17', therefore yO/Ή

y e I/7, y ^ W ^ ( l / ) implies 7^^(17'). (4.18)

Combining (4.16-4.18) we obtain the statement of the lemma.

Lemma 4.9. For each yeW(U')=W(U) the two sets s(yU), s(yU')
are equal

s(yU) = s(yU') (4.19)

Proof. Let y e W(U). Any line of y(U) also belongs to y(U'). Hence

Suppose that Labσe 3f(s(yU'))\s(γ U). Labσ must belong to a τ
which is a connected component of y\s(yU) with y e W(U). It cannot
belong to any σeU with σ C τ since 3P(s(yU'))Q3f(y(U')). Hence
Lβ b < yeτ(l7). Using Eqs. (4.7-4.9) of Lemma 4.4 we find that

kγ

abσ = const on H implies kτ

abσ — const on H

in contradiction to the requirement on the elements of £%.
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We now extend the definition of completion and base to normal
forests. If U is a normal forest we define the completion U and the
base U by

U^V,U=V where V=Uu{Γ}.

Lemma 4.10. Let U be a given forest with completion U and base U.
U is the completion of U and U is the base of U.

Proof. It is sufficient to consider a full forest U. Lemma 4.8 and 4.9
imply

With the notation B= U\ C= Ό

Lemma 4.4 implies

Hence C = C-

Theorem 4.2. Let C be a given complete forest with base B. The set
of all forests U with the completion C is given by the condition

BQUζC. (4.21)

Proof. Let U have the completion C. Then U g C and U= B
(Lemma 4.10). Hence B ς U Q C.

Since C is the completion of B (Lemma 4.10) any U satisfying (4.21)
has the completion C.

Theorem 4.3. The finite part of the integrand of a Feynman integral
is given by

RΓ(Kq) = SΓ £ XU9 (4.22)
17 e#

γeU

f(y)=l-e if yea(U)J(y)=-t* if yφ£(U). (4.24)

The sum in (4.22) extends over the set Ή of all complete forests of Γ.
The set &(U) is given by Lemma 4.7.

Proof. Two forests are called equivalent if they have the same com-
pletion. According to the Theorem 4.2 the corresponding equivalence
classes are given by the condition C £ U g C where C is a complete forest
with base C. This partition of the set of all forests into equivalence
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classes leads to the following formula (see Eq. (3.21))

RΓ= Σ *c, Xc = Sr Σ Π(- ί VS y)/Γ(t/). (4.25)
CeV CCUgC γeU

An alternative formula for Xc is

y)IΓ(Q. (4.26)
yeC

An equivalent definition of f(y) is

f(γ)=l-tv for y e C ^ C

/(y)=-f y for yeC.

In order to show the equivalence of the two formula for Xc we work
out the products of factors (1 - 17) in (4.26)

Xc = SΓ Σ ΠteQω^)/r(C),
Q ζ C - C γeQ (^'Z ' )

~ty f o r y e Q , 0 ( y ) = l f o r y ^ .

The sum extends over all subsets Q of C — C. Introducing V=C + Q
as new variable of summation we obtain (4.26) which can be rewritten
in the form (4.23).

The next aim is to give upper bounds for the degree of the function
Xv with respect to the parameters T of the hyperplane H. This will
eventually lead to the desired result that the dimension of the renormaliz-
ed Feynman integral is always negative.

We first state a recursion formula determining Xυ which follows
easily from the definition (4.23). The subscript U will be omitted in the
work that follows. For the sets W(U), &(U] given by Lemma 4.7 we
will use the notation

W=W(U).

Lemma 4.11. For a given complete forest U the function Xυ is deter-
mined by

Xv = X = (l-tΓ)YΓ (4.28)

where for any y e U

Y = I , S f Y f Y (4 29)•* y •*•">>Iγt y y J y , γ\ ' ' ' J yc Jc ' \ /

yί9..., yc denote the maximal elements of U(y). Ify is minimal we set Yγ= ly.
fy is defined by (4.24).

The function Yy has the general form

WίΉ-ϊA- (4-30)
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where A is a polynomial in Ky, qy and

Bl = ΓL (&σ ~ μaba + i£(l2abo + /4σ)) ,
αbσ

B2= Π Ylφ(kφ

ab

2

a-μ2

al,a + iε(kφ

aL + μ2aha)ϊ(γabσ}, (4.31)
φeU(γ) abσ

i _ hy _ι_ //ylabσ *Όbσ ' Ύ α δ σ '

feJbσ = ^(fey).

We next want to determine the degree of the function Yy. To this end
the following lemma will be useful.

Lemma 4.12. Let F be a function of the form

Y=4> C=l\(ll-μl + iε(ll±μD) (4.32)
^ α

where A is a polynomial in ί1? ..., tρ and

l* = aa+ΣcΛβtβ + ΣdΛβqβ

with all

ΣcΛβtβΦθ.
Then the relation

degr^F^/ (4.33)
implies

- φ F g / - d - l (4.34)

degrxF denotes the degree of a rational function F with respect to the
variables x = (xl ... xn).

Proof. We decompose the polynomial

A= X Ay (4.35)
y = 0

such that Ay is homogeneous in q of degree γ. (4.29) implies

de&etqA^e + δ (4.36)
if

degr f f ίC = δ . (4.37)

From (4.35) we get

y^e + δ-y. (4.38)

Since Ay is homogeneous in q

^-td

q)-=Ay(l-td

p'^-. (4.39)
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Here

Hence

d Ay < rf-ηJL
c c

using (4.34) and (4.36).
It is convenient to introduce the following integer

M(y) = 4 £y m(μ) (4.42)

where the sum extends over all μ satisfying the condition

μ e U , μ g y and μφW.

m(μ) is the number of independent internal momenta of μ. Apparently
M(Γ) is the number of independent integration variables on H. For μ
contains only variable lines if μ φ W while μ contains only constant
lines if μ e W.

Lemma 4.13. The following inequalities hold

degr^ Yy(Ky(K\ qy) ̂  d(y) - M(y) for y e U, y φ W, (4.43)

degr, Y(Ky(K), q7) < - M(y) for yeW. (4.44)

Proof. As hypothesis of induction we assume the inequalities to be
valid for all maximal elements ya of U(y). It will then be shown that the
inequalities also hold for γ itself,

(i) Case yeW. Then the recursion formula holds with

/y β=-ίy" for y^W.

/ y β =l-t y « for γaφW.

We will find the following relations

degr,/y/n...yc = 0, (4.45)

degr,Sγf> Yyf<-M(γJ if γaeW, (4.46)

dQgϊ,Sγ(\-fήY^<-M(γa) if γ,φW (4.47)

(4.45-4.47) imply the inequality (4.44)

degr, y y ^-X

We next prove the relations (4.45-4.47):
(α) Relation (4.45) follows since all lines of γ(U) are constant relative

to γ (Lemma 4.7).
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(β) Proof of relation (4.46). According to the hypothesis of induction
we have

This implies

For it is
t γ __ td(γ) γ (Ίζy* nπy«\\
ly*Iy*~~lQ Iy(X^ 'QQ ;lρ = ι »

degrt if «> yyβ(Ky"(K), ρqyή £ degr, Yγa(K* (K), ρqy«) .

By definition of the substitution operator Sy

y) = (ty« Y
In qy"(K\ qy) only those fe^σ occur with Labσ E £?(y} which are constant
on H relative to 7. Hence

(y) Proof of (4.47). Let yα ^ FK According to the hypothesis of in-
duction.

Applying Lemma 4.12

degr,(l - 1 J YJK^(K), qi ) < -M(yα) .

Applying the substitution operator we obtain

(Sy(l - tj YJ (K*(K)9 q?) = ((1 - ίyα YJ (K*>(K)9 q?°) (K*(K)9 q?) .

Again qy« depends only on components ky

abσ of Ky which are constant
onΉ.

Hence

degrf(Sy(l - tj YJ (K*(K), qy) = degrt(l - ty«)YJ (JCy«(X), qy«)

and
degΓί(Sy(l - tj YJ (Ky(K\ qy) < - M(ya) .

(ii) Case yφW.
In that case the recursion formula reads

*;=w..rA(-u>v (-uv
The relations

n...yα = d(y) - 4m(y) , (4.48)

if yΛφ W, (4.49)

if yae W (4.50)
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imply
^ Ύy ^ d(y) - 4m(y) +

(4.51)

snce
(4.51) is the inequality (4.42) stated in the lemma.

We now prove the relations (4.48-4.50).
(α) The relation (4.48) follows from the definitions of /.
(β) The hypothesis of induction

Yy«(Ky"(K), q-") ^ d(ya) < M(yx)
implies

degr,,v. ί'" Yy.(K> (K), q"} ^ d(ya) - M (y.) .

Application of the substitution operator Sy to ty" Y^ yields

(S7 ί"« YJ (K'(K), ?) = (f* YJ (K*(K), q") (K*(K), q1) .

Since f" Yya is a polynominal in qγ" the substitution

q"-+?'(K>(K),?)

can only decrease the degree with respect to T, qy

(?• YJ (K* (K), q1') g d(yΛ) - M(yα) ,

(y) Proof of relation (4.50). We assume γx e W. According to the
hypothesis of induction

This implies

r(ίy. f Yγ,(K^(K), q") < d(γa) - M(yx) ,

£ degr,,v.(i,. yj (KT'(K), q") < d(Ja] - M(ya) .

This completes the proof of the lemma.
The results obtained in Lemma 4.13 will now be used in order to

show that the dimension of the integral (4.1) is negative. We have

X = (l-tΓ)YΓ. (4.52)

First let Γe W. Then

degϊtYΓ(Kq)<-M(Γ)
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implies
degr f(l-ί r)YΓ(Kg)<-M(Γ).

Let ΓφW. Then

implies

In any case

degr, X < - M(Γ) (4.53)

and therefore

degrtRΓ(Kq)<-M(Γ). (4.54)

Since MΓ is the number of independent parameters of the hyperplane
H it follows

dim j d/c #Γ < 0 .
H

This completes the proof of the theorem.

Appendix

We shortly indicate the proof of the following generalized form of
Eq. (4.54)

(AΛ)

which is useful for checking the equivalence of Bogoliubov's original
definition of the renormalized Feynman integral to the one used in this
paper [17] M denotes a subset

Mg{μabσ}

of the mass parameters.
First we note that under the hypothesis of Lemma 4.12

degrίM(l - φ F g degr ίMgF - a - 1 (A.2)

can be derived which is a generalization of (4.33— 4.34). The Eq. (4.43-4.44)
can be generalized to

degτtMqγ Y^K^K), q^} ̂  d(γ) - M(γ) for y e U , γφ W, (A.3)

degr ίMyy(/C)'(K),^)<-M(y) for yeW. (A.4)

These relations are derived from

degr(M /,/„...„ ̂ 0, (A.5)

degr r MS yί^y y α<-M(yJ if γ.φW, (A.6)

degr f MSy(l-ί ϊ )y y.<-Aί(yβ) if yΛφ W (A.7)
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if 7 e W and from

(A.8)

if yaφW, (A.9)

degr f A f, vSyί' YV β<φJ-M(yα) if y α e^ (A.10)

if y φ W. The result (A.I) follows if the Eqs. (A.3-A.4) are applied to (4.52).
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