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Abstract. Bogoliubov’s method of renormalization is formulated in momentum space.
The convergence of the renormalized Feynman integrand is proved by an application of
the power counting theorem.

1. Introduction

A general theory of renormalization has been developed by Bogoliubov
for arbitrary local and invariant interactions. It was shown by Hepp
that the renormalized Feynman integrals constructed according to
Bogoliubov’s rules converge to well defined distributions when the
regularization is removed [1-4].

In a recent paper [5] a different formulation of Bogoliubov’s method
was used which works in momentum space and does not refer to a
regularization. The starting point of this approach is the integrand I
of the unrenormalized Feynman integral

Jf(pl pr)z gl_i;r_{lo."dkl ”'dkm Il"(kl”'kma Pr pr) (11)
in momentum s‘pace. The integrand R, of the finite part of (1.1)
Fe(py - p)= lim [ dk; - dky Rp(k; - Kpopyp)  (12)

is defined as a rational function of the internal and external momenta
by substracting appropriate counter terms from I.. The method is thus
an extension of the original work of Dyson and Salam [6-8]!. For
handling the overlapping divergencies Bogoliubov’s combinatorial
technique is used which applies to renormalizable as well as non-re-
normalizable theories.

* On leave of absence from Courant Institute of Mathematical Sciences, New York
University, New York.
! For some references of other methods of renormalization see [9--12].
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In this paper the convergence of the renormalized integral (1.2) is
proved by a simple application of the power counting theorem [13-15].
The main problem will be to verify the hypothesis of the power counting
theorem, i.e. to check that the dimension of (1.2) and any sub-integral
along an arbitrary hyperplane in k-space has negative dimension. The
power counting theorem for Minkowski metric then implies that the
integrals are absolutely convergent for ¢ >0 and yield co-variant distri-
butions in the limit e—0 [15].

In Section 2 the definition of the finite part (1.2) is discussed. An
explicit formula for R is derived in Section 3. Section 4 contains the
proof that the renormalized Feynman integral meets the requirements
of the power counting theorem.

2. The Finite Part of an Arbitrary Feyman Integral

We consider a Feynman diagram I" with N vertices V,, ...,Vy. The
lines connecting the vertices V,, V, will be denoted by L(V,, V,,0) or
L,y.(c=1,...,v(ab)).V,, V,arecalled endpoints of L,,,,. Lines connecting
a vertex with itself are excluded, (a =b). Each vertex is supposed to be
endpoint of at least one line. No restriction is placed on the number
of lines joining at a vertex.

P(I') denotes the set of lines, 7(I') the set of vertices.

Yoo e

aba aba

denote sum or product resp. over all lines L,,, of the diagram I.

;r, Ir

a

denote sum or product resp. over all vertices V, of the diagram I'.
To each line L,,, we assign an internal momentum

labo’ = lbaa . (21)

To each vertex V, a momentum g, is assigned. In general the g, will
be linear combinations of external momenta p,, ..., p,

da=4ulP1-+ 1)) (2.2)

The internal and external momenta are subject to the relation of momen-
tum conservation at each vertex

Yolp,=q. a=1,..,N. (2.3)
bo

Here )¢ denotes the sum over all lines L,,, of the diagram I' having

bo
V, as one of its endpoints. As consequence of (2.1), (2.3) the external mo-
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menta must satisfy momentum conservation

Yr.d.=0 v=1,...¢ (2.4)

with I7,...,I, denoting the connected components of I
To each line L,,, we assign a propagator

At}l"bd = Paba(laba') (lfba - M(fbo’ + ig(lc%ba + :ugba-))_ 1’ &> O’ /131;(1 >0 (25)

where P,,, denotes a polynomial in the components of /,,,. To each
vertex V, we assign a polynomial

Pa = Pa(la)n JEICERES labtv(ab,)) (2.6)

in the components of the vectors I,,,,... Here V,, ..., V, denote the
vertices which are connected to V, by an internal line. With these insertion
rules the corresponding unrenormalized integral becomes

I woosp) = lim [k, - dky, [T 457 [1 P 27

aba a

The internal momenta in 44°?, P,(Eq. (2.5-2.6)) are of the form

laye =kKapo + Gaps - (2.8)
The q,,, are linear combinations
Qabo =Yabsld1> -+ qn) (2.9
of qq, ..., qy and form a particular solution of
bZ;,“r Qabo=4a>  Gabs +dbas=0- (2.10)

The q,,, are called basic internal momenta. The k,,, are linear combina-
tions

kaba:kabo’(kl’ "'9km) (211)
of the integration variables k,, ..., k,, and represent the general solution
of the homogeneous equations

Z?‘ kabazov kabo-+kbaa=0' (212)
bo

m of the forms k,,, are chosen as independent four vectors ky, ..., k,,.
We introduce the following abbreviations

k=(ky, ...k, 4=(q1s - qn)s P=(P1,--sD,). (2.13)
K denotes the set

K= {kabu'}Labae,S?(I“) s (2.14)
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of four vectors k,,, satisfying (2.12). Equations (2.2), (2.11) are written as

q=q(p), K=K(k). (2.15)
In this notation the Feynman integral becomes
J(p)= lim fdk, - dk, I(K(K), q(p) (2.16)
where
Ir(K, Q)=Er a5 I;[r P, (2.17)

A3%°, P, are given by (2.5-2.6) with the substitutions

laba = laba(Kq) = kabo’ + qaba(q) . (218)
In this section the finite part of (2.16) will be defined in the form?

where the modified integrand Ry (kq) is obtained from the original in-
tegrand I-(kq) by a suitable number of subtractions. Unfortunately the
definition of R, will depend on the choice of the basic internal momenta
Gaps(q)- Though the final integral (2.19) is the same for a large class of
basic momenta, we will — for the sake of definiteness — make a unique
choice of ¢,;, in the definition of the finite part. To this end we define
the canonical momenta as that solution of (2.10) for which the quadratic
form

2r dave (2.20)
abo
is stationary under the constraints (2.10). With the Lagrange multi-
pliers uy, ..., uy of the constraints (2.10) the ¢,,, become uniquely deter-
mined by

Qape =Ug — Up

2.21

bz(ll"qaba:qa’ Zl"vqazo' ( )

These are N —c¢ independent equations for the N —c¢ independent

differences u, —u, if ¢ is the number of connected components of I.

We introduce some combinatorial concepts which will be needed
later on.

Let #(4) denotes the set of lines and V(4) denote the set of vertices

of a diagram 4. To any set ¥ C ¥(I') we define a subdiagram 4 of I’

by the lines Le ¥ and the vertices which are endpoints of a line in %

2 The in;ggral does not depend on the choice of ky, ..., k,,. For, any two sets ki, ..., k

T m
and k, ... k;, of m linearly independent internal momenta k,,,, are related by an orthogonal
transformation.
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We say that the diagram 4 is spanned by the set ¥ of lines. The
following definitions concern subdiagrams of a given diagram I We
define 4 =4, 4, as the diagram spanned by

L(A)=ZL(4)nZL(4,).

4, is called a subdiagram of 4,, ie. 4,C4, if £(4,)CZL(4,). If
4, £ 4,, the diagram 4,\4, is defined as the diagram spanned by
L(4)\Z(4,)

Let 6 be a subdiagram of 4 with connected components Jy, ..., J,.
We form the reduced diagram
A=A/0=A4/5,--- 9, (2.22)

by contracting each line of § to a point. More precisely the reduced
diagram 4 is defined by

LA =LANLES), V(D=7 (AH)\V (S)uiV,, ... V). (223)
Here
171 =78,),....,V.= 7(d,) (2.24)

serve as new vertices of A replacing the vertices of the reduced diagrams
0y, ..., 0. Two vertices V, V'e ¥ (4)\¥'(5) are connected in A by the
same lines as in 4. Ve ¥ (4)\#7(8) and V, are in A connected by all lines
of Z(A4)\%(d) which in 4 connect V with any vertex of ¥,. V, and 7,
are connected by all lines of £(4)\.#(d) which in 4 connect a vertex of J,
with a vertex of §,.

In the work that follows we will consider subdiagrams as well as
reduced diagrams of our original Feynman diagram [ Let yCT be a
subdiagram of I m(y) denotes the number of independent internal
momenta, N(y) the number of vertices of y. The unrenormalized integrand
L, is defined by the same insertion rules as for Ir. Explicitly

LK )= T1, 457 [T, P,
) abo 1 a N (225)
K= {k(lzba}Laboe&”(y) s 4= {qg}Vae‘t/("/) .

A%° P are given by (2.5-2.6) with the substitutions
laps = Lipol K7, @7) = Kipg + Qina(@) - (2.26)

Here ¢, denote the canonical momenta defined in reference to the sub-
diagram y. Le. ¢2,, is that solution of
Z(,I q;,;ba = qa H q;’;ba + ql);aa = 05 Va € 4/(,})) (227)
abo

3 A\B denotes the difference of the two sets A. B.
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for which
Y (dye)? (2.28)
abo
is stationary. The four vectors k], satisfy
Z/ kt}lba_o’ k;/ba+kgaazo’ I/cze V(Y) (229)
abo
We next define k], ., g as linear combinations of k,,,, g, by requiring

labo‘(K/ ) = laba(K q) (230)
for all L,,, € ¥(y). According to
aiKa)= 35 lpa(Kq), kino(Kq)=lipa(Kq) —qlye(Kq)  (2.31)

aba

the k2, ., g are uniquely determined by this requirement. Equation (2.31)
implies

qa(Kq Zf\y abo Kq Zf\ (kabd+qaba( )) (232)

aba abo

It can further be shown that the kI, depend only on the k
the Egs. (2.21) and (2.31) imply

Gaps(q) =u,—u, for V,Vye¥?(y),
Z} qaba qa 0 q)

abo

abo*

(2.33)

These equations, however, determine the functions ¢, (0, g).
Accordingly

Bi5(09) = G43,(q)
kips(09) = 1,55(09) — 41,,(0g) =0

which proves the assertion. Hence we have the result that K7, g* are
linear combinations of the form

K'=K'(K), 4" =q"(Kq). (2.34)

With the substitutions (2.26), (2.34) the unrenormalized integral I,
becomes a function of K and gq.

Let u be a subdiagram of y C I'. In an analogous way we introduce the
function

and

K" = KA(K?), ¢" =q!(K'q") (235)
by the requirement
lano(K*q") = 0 (K7, 47) . (2.36)
For later use we note the relation corresponding to (2.32)
4a(K'q") = = 3 5u(klpe + qlsa(a") - (2.37)

aba
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If y is proper we define the dimension d(y) by
dy) = Y, d(Laye) + 3, d(V,) +4m(y) . (2.38)

abo

Here d(L,,,) is the degree of the propagator corresponding to L,
with respect to the components of [,,,, d(V,) is the degree of the poly-
nomial assigned to V,. Apparently d(y) is the dimension of the un-
renormalized Feynman integral of y. Proper subdiagrams of dimension
d(y) =0 are called renormalization parts.

We next study reduced diagrams of I. Let y,, ...y, be subdiagrams
of I', proper and mutually disjoint. We consider the reduced diagram

F=Tly .7, (2.39)

We define the unrenormalized integrand Ir by the same insertion rules
asfor I except that thefactor 1 isassigned to thereduced vertices V3, ..., V..
Explicitly

Ir(@K) = nr Aaba l_[r (2.40)

abo

with (2.5-2.6) and (2.18). Here Hr’ ]_[f denotes the product over all

abo

lines L,,, or vertices V, resp. of I’ Wh]Ch do not belong to y,, ..., 7..
Apparently (2.40) agrees with the definition (2.17) if applied to the reduced
diagram T.

After these preparations we now give the definition of the finite
part of a Feynman integral. The integrand R(K, q) of the finite part
(2.19) is defined by

Rr(K,q)=Ir(K,9)+ Ir/v,...yC(K,tI)l_c] 0, (K™ q") (2.41)

. Vi Ye =1
with
K =K"(K), q¢~=q¢"(K,q). (2.42)
The sum extends over all sets s =(y,, ..., y.) of renormalization parts of I

which are mutually disjoint
Y.Ny,=0 for t+0.

This includes the case that s consists of I itself provided I” is a renormali-
zation part. The functions O, are recursively defined for every renormali-
zation part y of I' by

O0,(K"q")
LK S0 (K0 [ 0K

Vi Ve

(2.43)

with
K" =K*K"), ¢ =q(K", q"). (2.44)
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37 denotes the sum over all sets s=(y,, ..., . of renormalization
parts y, 7y of y which are mutually disjoint. The " indicates that s = {y}
is excluded in the sum. t}” applied to a function F(q’) of qi, ..., g}, denotes
the Taylor series in the components of the vectors ¢! up to the order v.
This completes the definition of the finite part.

We further introduce a function Ey by

R(K'¢)=L(K'q)+ Y"1, ,(Kq) [] 0, (K" q"). (245)
V1. Ve =1

Apparently one has
0,= —t4 R, (2.46)
R; is related to R, by
R, =R; (2.47)
if I' is no renormalization part and
Rr=R +0r=(1-t) R, (2.48)

if I' is a renormalization part.

The definition of the finite part can be generalized in various respect.
First of all we remark that it is sometimes necessary to consider other
sets of basic internal momenta besides of the canonical momenta.
We give the appropriate definitions for a sufficiently general class of
basic internal momenta.

Let g2, be basic internal momenta given for every subdiagram y of I'.

We consider the set S of all g7, . Again we can define ¢, k},, as linear
combinations of g, k requiring that

aba(K q )E labo’(K q) (249)
with

o=k Y 7,

abo aba + qaba(q ) (250)

aba kaba +qaba(q) .

The set S is called admissable if the momenta K* depend only on K or
K* resp.
K'=K'(K), K'=K}(K") forany uDy. (2.51)

The canonical internal momenta are an example of an admissable
set of basic internal momenta®.

Let {g},,} be a set of basic internal momenta for I'. Then a set of
basic internal momenta {G’,,} for the reduced diagram I'/5,...5

c

4 It can be shown that the finite part (2.19) is the same for any admissable set of basic
internal momenta.
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may be introduced in the following way. For

Ly, € 20), 2CT)Sy ... 8., 2=p/0,...0,yCT . (2.52)

Qiba = qzbo‘ N (253)

{4} is called the set of basic internal momenta induced by {g!,,} in
I/6,...6,. If {q%,,} is admissable {G%,,} is also admissable. Apparently
the function Ir(K, q) as defined by (2.40) is constructed by using the
basic internal momenta of I" which are induced by the canonical momenta
of I

Another generalization concerns the number of substractions.
Sometimes it is convenient to take more substractions than would
actually be necessary for convergence. For self-energy diagrams, for
instance, one will always take at least two substractions even if the dia-
gram should be convergent. To include this possibility we introduce a
function d(y) which assigns to every proper subdiagram y of I an integer
larger or equal to the dimension of y

d() 2 Y, d(Lape) + 3, d(V) +4m(y) . (2.54)

abo

Set

d(y) is called the degree of y*. Proper diagrams of non-negative degree
are called renormalization parts relative to d(y).
Relative to d(y) and an admissable set of basic internal momenta

the finite part and the functions R,, O,, R, are then defined by the same
equations (2.41-2.44).

3. Explicit Form of the Finite Part

The integrand R, of the finite part was defined recursively by Eqgs.
(2.41-2.44). In this section we will derive explicit formulae for the function
R;.Webegin withsome combinatorial definitionsconcerningsubdiagrams
of a given diagram I'. The diagrams 7, y, are said to overlap

Y1972
if none of the following three relations holds
715725 72571, 1N =0.
Otherwise y,, y, are called non-overlapping
T12Y2-

Let I' be any diagram. A I-forest U is a set of diagrams satisfying the
following conditions

I addi;ion we require d(y) = d(7) + Y.d(y,) for any reduced diagram § = y/y, ... 7,
with d(y) defined by (2.38).
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(i) the elements of U are proper subdiagrams of I',
(i) any two elements y’, " are non-overlapping

YoV,

(iii) U may also be the empty set.

If in addition each element of U is a renormalization part we call U
a restricted I'-forest.

Any subset U’ of a I-forest U is again a I-forest. All possible I~
forests are partially ordered by C. A I-forest U is called maximal if
thereisno other I'-forest U’ such that U C U'. Let Uy, ..., U, be the maximal
I'-forests. Then all possible I'-forests are given by the subsets of any U,.

We will next be concerned with the structure of a given [-forest U.
An element y of U is called maximal (minimal) if there is no other y e U
such that y Cy" or 7" Cy resp. Let 7, v” be two maximal elements of U.
Since y' Cy" and y" Cy" are excluded we must have

’y’ﬂ’yﬂze

for maximal elements of U.

Let 7 be any diagram of U. Denote by U(y) the set of all y" € U satisfy-
ing y' Cy. U(y) is a I'-forest as well as a y-forest.

Let 9, ...,7, be the maximal elements of U(y). Then we define

HOY=v/11 7 (3.1

A I'-forest U containing I itself is called full, a I'-forest U not con-
taining I' is called normal. If I' is no renormalization part all restricted I'-
forests are normal. If I is a renormalization part then there is a one-to-
one correspondence between full restricted I-forests T and normal
restricted I-forests U given by

T=UuU{T}. (3.2)

Note that the empty set U =0 corresponds to T = {I'}.
Let U be a normal I-forest and y be an element of U. By P(y) we
denote the set of all y" e U with

V27
Since
‘yl (_\ ,y/l 4: G

for any two elements of P(y) the set P(y) is totally ordered by C.

We now define the position n(y) of y in U by the number of elements
contained in P(y). Any two renormalization parts with the same position
in U are disjoint.
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Let T be a full I'-forest. Then we assign the position 0 to I' in T.
For any other element y € T we define the position in T by the posi-
tion which y has in

U=T\{TI}.

Let £(U) denote the set of all lines which belong to at least one
diagram of U. All elements of U containing a given line L, e £(U)
are totally ordered by C. Hence there is a uniquely determined ele-
ment y,,, with

Labc € g(yabq)
such that
Lab0¢g()}) lf ')’C)’aba, ‘YEU

Therefore £(U) is partitioned into mutually disjoint sets £ (3(U))

2U)= ) £GW),
el (3.3)
YU)NY(U)=0 for y=*vy.

The discussion of the recursive Eq. (2.43) can considerably be simplified
by introducing substitution operators of the following kind. S, denotes
the substitution operator

S,:K'->K'(K"), ¢"—>q"(K" ¢*) for yCpu. 3.4)
S; denotes the substitution operator
S K'->K'(K), ¢—q"(K,q). (3.5)
More precisely S, is defined as follows. Let f be a function of the variables
K,K’ q,q"

where y runs over all renormalization parts of I'. Then §, f denotes
the function which is obtained from f by substituting

K (K*), q;(K*, q*)
for all variable K7, g” with y C u. With the notation
K'=K, q'=q
this definition holds for S, too. In addition we use the abbreviation

= 140 (3.6)
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With this notation the defining Eqs. (2.41) and (2.43) for Ry and O, become

Ri(K,q)=I(Kq)+ Sy Z

71

I, (K@) [10,(K7q7),  (37)
=1

Ye
0K'q) =~ L(K'q)=1'S, ¥, L, . [10.(K"q). (38)

Y1ee Ve =1
The following lemma states an explicit formula for the O-functions.

Lemma 3.1. The O-function of a renormalization part y of I may explicitly
be written as

0,(K'q)=—1'S, ¥ [](=*SHL(U)

Ueky ieU (3.9)
or
O(K'q)= 3% [](=t*S,L(T). (3.10)
Te% AieT

The sum in (3.9) extends over the set N, of all normal restricted y-forests U
including the empty set. The sum (3.18) extends over the set %, of all full
restricted y-forests. 1(U) is essentially the function I, but with a special
choice of the variables. We define

L(U) =[], 4[] P. (3.11)

abo a

with (2.5-2.6) and the substitutions

labe =lipo(K'q") if Loy, € Z(7) (3.12)
and
labe =lapa(K; @) if Loy ¢ L(U). (3.13)
In the product
— 17
yg}( t'S,),

the factors —t,S" are ordered from left to right according to increasing
position. For elements of equal position in U the order is irrelevant since

tyS},ly'S),;ZlylSyrtySY for ymy’:@,
Proof. We use the notation

DU)=[] (-t'S,). (3.14)
veU
First we note that the function
0,(Kq)=—1t'S, Y D(U)I(U) (3.15)

UeNV
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may also be written as
0,Kq)= Y D(T)I(T) (3.16)

TeF
using the relation (3.2) between full and normal forests. We prove
0, =0, by showing that O solves the recursive Eq. (2.39). First we re-
wrlte the right hand side of (3.15)

Y DU)L(U)=—t"L(K'q")—1t'S, ) Y, DWUILWU). (3.17)
Uet y1.--7e UeK(v1...7¢)

Here K(y; ... y,) is the class of all normal restricted y-forests having the
maximal elements y,, ..., 7. The first term of the r.h.s. of (3.17) corresponds
to U=0. Now any U € K(y, ... y.) has the form

U=Ti(y)u---vT(y) (3.18)

where T.(y,) is the set of all ye U with y Cy_. T,(y,) is a full restricted y,-
forest. On the other hand any set T, ..., T, of full restricted y .-forests
defines a U e K(y, ... 7.) by

U=T,u---uT,.
Hence

DWLW=]] ¥ DT)LW)
t=1 T.e

UeK(yy...7v¢c)

$

. (3.19)
;m wc(Kq n D(Tr)I«,-t(Tz,)
=1 T.e %

where .7, denotes the set of all full y -forests. Using (3.16-3.17) we get

0-/(K77 q“/) = - tyl“,'(K}'7 qy) - t}’Sy Z')I Iﬂ,’/ﬂ/l“.yc(K)’a qy) I_[ éyt(Ki‘r’ qh)

Yi-e-Ve =1

which proves Oy =0,.

Theorem 3.1. The function Ry is given explicitly by

Ri(Kq)=S; Y T[] (=18, IU) (3.21)
Ue%, yeU

with the sum extending over the set U, of all restricted I-forests.

Proof. From (3.7) and the explicit formula (3.10) for O, we obtain

Rp(Kq)=I(Kq)+Sr Z Irm +(Kq) l_[ Y. D(T,)L(T)

V1. ‘tlTlE./’z

=I(Kq)+S Y DWU)I(U).

Yi--Ve UeK(v1...7¢)
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Formula (3.21) can considerably be simplified by using the identity

[TA-8,LU)=Y [](=¢S)1U) (3.22)

yeUgp UcUg yeU

which holds for any I'-forest U,. Let now I' be a diagram with no over-
lapping divergencies, i.e.

Y1972

for any two renormalization parts of I. Then the set U of all renormaliza-
tion parts is a I'-forest. The subsets of U, form all possible restricted
I'forests. Using (3.21) and (3.22) we obtain the following theorem.

Theorem 3.2. Let I" be a Feynman diagram with no overlapping re-
normalization parts. Then the integral of the finite part is given by

Rr(Kq)=Sr [T (1 =), Ir(Uy) (3.23)

yeUo

where the product extends over all renormalization parts of I.

Formula (3.23) represents Dyson’s prescription for removing non-
overlapping divergencies [16]. Using the power counting theorem it is
not difficult to prove that the corresponding integral (2.19) is absolutely
convergent. A generalization of (3.23) to the case of overlapping diver-
gencies can be given. The formula obtained, however, is not useful for
proving convergence. We therefore quote the result only.

Theorem 3.3. Let Uy, ..., U, be the maximal restricted I-forests of
a diagram I'. Form the intersections

U.

Igeady

=U,n---nU, (3.24)

for all subsets

(some of the intersection (3.24) may be empty). The integrand of the finite
part is then given by

Rr(Kq)=Sr ' Z (—1yp*t H 1-)8, (U, ;). (3.25)

it...dy yeUy ..Uy,

For the convergence proof of the following section it is convenient
to use Eq. (3.21) in a more general form given by the following theorem.

Theorem 3.4. The function R, is given explicitly by
Ri(Kg) =Sy ) [](=1"S)I(U) (3.26)

Ue veU
16 Commun math Phys., Vol 15
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with the sum extending over the set U of all I'-forests. Here the conven-

tion is used that
t'=0 of d(y)<0. (3.27)

The proof is trivial since on account of (3.27) all non-restricted I
forests give zero contribution to (3.26).

4. Convergence Proof
In this section it will be shown that the finite part
| Rp(K(k), q) dk, ... dk, 4.1)

satisfies the requirements of the power counting theorem. In a previous
paper the power counting theorem was proved for integrals of the form

J dk Pk, q) 4.2)

m

(o =1 — i +ie(l} + 1)
=1

J

where P(k, q) is a polynomial in k and q. Clearly (4.1) is of the form (4.2)
since R(K, q) may be written as

R.— A
" BB’
Bl = nr(lgba - ﬂazba + ia(lgbd + Niba‘)) >
abe 4.3)
BZ = n Hy{k;i[%a _‘#3[70- + l'S(ngd + Iugba)}c(yaba) >
vy abo

labo = kaba + Qabn(Q) s kZba = kZba(K)
where A is a polynomial in K and g. The product || extends over all
Y

renormalization parts y of I.
The hypothesis of the power counting theorem is contained in the
following theorem

Theorem 4.1. The finite part of a Feynman integral
[ dk R (K(k), q) (44)
H

has negative dimension for Ry, and any hyperplane H described by a
set of linear equations

k=k(t)y=a+bt,
a=(a), t=(t), b=(by), (4.5)
i=1..,m;j=1,...,h.
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With this result the power counting theorem (Theorem 2 of Ref. [6])
implies that (4.1) is absolutely convergent for ¢ >0 and approaches a well
defined distribution in the limit ¢— +0.

For the proof of the theorem we begin with a couple of definitions.
A I'forest U is called complete on Hif I' € U and if for any ye U

either (i) all lines L,,, € #(y) are variable on H relative to y

or (ii) all lines L,,, € #(y) are constant on H relative to y.
A line L,,, € £(I') is called constant on H relative to y if

k},,=conston H, ie. ki, (T)= const.

Let U be an arbitrary forest of I. We are going to define a completion U
of U which will be shown to be the unique minimal complete forest
containing U.

We begin defining U for a full U, ie. I'e U. Let W(U) be the set of
all ye U with the property that at least one line of $(U) is constant
relative to y. For any y e W(U) let s(y U) be the subdiagram of y which
is spanned by the set of constant lines of y(U) relative to y >. Let 64, ..., 5,
be the connected components of y\s(y U) *. We first show that each §,
is proper.

Lemma 4.1. Each connected component of y\s(y U) is proper.

Proof. Assume that L,,, € £(y) is an improper line of y\s(y U). Then
momentum conservation at each vertex implies

kipe =2 ikl pioir  Lapio, € L(s(U)).

By definition of s(y U) the momenta k}, , ,. are constant on H, hence also
kl,, is constant on H. If L,,,€ #(y) we have a contradiction because
s(yU) is the set of all constant lines of y(U). Therefore L¢ Z(9), ie.
Le L(p) with @ e U, ¢ Cy. Since ¢ is connected we have ¢ £d,. If L
were an improper line of ¢, it would also be an improper line of ¢ which
is impossible. This completes the proof that y\s(yU) does not contain
improper lines i.e. each J, must be proper.

We define o7 (U) as the set of all diagrams 1 ¢ U which are connected
components d, of y\s(y U) with y e W(U). The completion of a full forest U
is then defined by

U=Uu«U). (4.6)

Our first aim is to show that U is a forest. We begin with

Lemma 4.2. If 1 is a connected component of y\s(yU) and y' € U,
y' Cy we have
YNt=0 or y'Cr.

5 Note that s(y(U)) is defined as a subdiagram of y but not of (U). That means that no
vertices of are identified in s(y(U)).

16*
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Proof. Since all y'Cy, y e U are connected and 7 Cy\s(yU) it
follows y'Cé, where d, is a connected component of y\s(y U). Hence
¥y €d,% 1 or ¥ 1. In the first case Y"1t =40, in the second case y' C.

Lemma 4.3. U is a forest.

Proof. (i) We first prove that any elements 7€ o/(U) and y' € U do
not overlap. Let T be a connected component of y\s(y U). We have

YDy, Yny=0 or 7y Cy.

y' Dy implies ' D1. Y’y =0 implies y’nt=0. ¥ Cy implies y' Ct or
y’n7=0 (Lemma 4.2). Hence y'2 1 for any 1€ .&/(U) and y' € U.

(i) We next show that any two different elements 7,,1,€.o/ do
not overlap.

(a) Let 74,7, both be connected components of y\s(yU). Then
7,1 T, =0,

(b) Let 7, be a connected component of y, \s(y, U), 7, be a connected
component of y,\s(y, U). If y; Cy, Lemma 4.2 implies y, Cy, ort,Nnt, =0.
Hence 1, C1, or 1y, =0.

If on the other hand y, Ny, =0 then also 7, "7, =0. This completes
the proof that U is a forest.

Lemma 4.4. Let te o/(U) be a connected component of y\s(yU).
Let U(z) be the set of all 6 € U with 6 Ct and vy, ..., 7y, be the maximal
element of U(t). Then all lines of

Oy =1/y, ... .
are variable relative to <.

Proof. Let L, € £(7(U)). By definition

k:lbﬂ + q:']ba'(qr) = zba + qzba(qy) ’
9°=q(K"q"), ki =kips(K).

4.7
Setting ¢” =0 we obtain

Kabe + Qavo(d) =klps» 4" =q"(K",0), kope=kips(K7) . (4.8)
Since 7 is a connected component of y\s(y U) we have

qo(K",0)=3 cikipo, s Lapo, € L (s U)). (4.9)

Hence all ¢}(K”,0) are constant on H. If k, is constant on H Eq. (4.8)

abo

implies that k?, is also constant on H in contradiction to L,,, € Z(7)
CZ{H\s(y U)).
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Lemma 4.5. U is complete.

Proof. (1) I'e U.

(i) Let ye U, y¢ W(U). All lines of J(U) are variable relative to y
since H(U) =5(U).

(iii) Let ye W(U). Then Z(3(U))= Z(s(yU)) ie. all lines of F(U)
are constant relative to y.

(iv) Lette o/(U). Thent(U)=1/y, ... y, wherey, ... y. are the maximal
elements of U(r). Lemma 4.4 implies that all lines of T(U) are variable
relative to t.

Lemma 4.6. Let U be a full forest. Any set V with

ucvel (4.10)
is a forest with completion U.

Proof. Clearly V is a forest. We will show that W(V)= W(U).
(i) ye W(U) implies y € W(V) since s(y U)=s(y V).
(i) ye U, ye W(V) implies y € W(U) since

LHW)ELGO)).

(iii) If te V\U £ «(U) all lines of T(V)=7(U) are variable.
Combining (i)—(iii) we obtain W(V)= W(U). Hence

A (V)= (U)\(V\U)
and V="0U.

Next we will define the base U of a forest U which will turn out to
be the minimal forest among all forests with the completion U. The set
A(U) is defined as the set of all diagrams 7 € U satisfying

(i) t¢ W(U).

(i) T is a connected component of y\s(yU) with ye W(U). Let U
be full. The base U of U is defined by

U=U\Z(U)\{I'} (4.11)
U is a forest. Furthermore define a full forest U’ by
U =U\%U). (4.12)

Lemma 4.7. If U is a complete forest on H the sets W(U) and #(U)
are given by the following conditions:

W(U) is the set of all ye U for which all lines of y(U) are constant re-
lative to y.

If y ¢ W(U) all lines of 7(U) are variable on H relative to y.

B(U) is the set of all diagrams 1€ U satisfying

(i) T¢ W(U).

(ii) 7 is a maximal element of U(y) with ye W(U).
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Proof. The first and the second statement follow immediately from
the definition of W(U).
If U is complete we have

L(s(GU)=2GU) for ye W(U) (4.13)
or
LH\s(U) =Ly 00y, (4.14)

where y, ...y, are the maximal elements of U(y). Hence the connected
components of y\s(yU) are identical with the maximal elements 7y,
of U(y). This proves the last statement.

Lemma 4.8. For any full forest U holds

W)= w(). (4.15)

Proof. (1) If 1e U\U' = %(U) the diagram 7(U) does not contain
any constant lines relative to y Hence

te U\U" implies t¢ W(U). (4.16)

(i) Let ye U', ye W(U). Then %(U) contains a line L,,, which is
constant relative to y. Since & (F(U)) € L((U’)) the line L,,, belongs to
y(U’). Hence

yelU, ye W(U) implies ye W(U'). 4.17)

(iii) Letye U’, y ¢ W(U). Then 7(U) does not contain a line which is
constant relative to y. By definition y(U)=1y/y, ...y, where y;...7,
are the maximal elements of U(y). Since y ¢ W(U) each y, belongs to
U’, therefore 3(U’) = 7(U). Hence

yelU’, y¢ W(U) implies y¢ W(U'). (4.18)
Combining (4.16-4.18) we obtain the statement of the lemma.

Lemma 4.9. For each ye W(U')= W(U) the two sets s(yU), s(yU’)
are equal

s(yU)=s(yU) (4.19)
Proof. Let ye W(U). Any line of J(U) also belongs to y(U’). Hence
syU)Ss(U).

Suppose that L,,, € Z(s(yU"))\s(y U). L,,, must belong to a te Z(U)
which is a connected component of y\s(y U) with ye W( ) It cannot
belong to any oceU with aCt since ZL(s(yU")<LFU’'). Hence
L., €T(U). Using Egs. (4.7-4.9) of Lemma 4.4 we find that

kl,,=const on H implies k,,= const on H

in contradiction to the requirement on the elements of 4.
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We now extend the definition of completion and base to normal

forests. If U is a normal forest we define the completion U and the
base U by

U=V, U=Y where V=UU{I}.
_ Lemma 4.10. Let U be a given forest with completion U and base U.
U is the completion of U and U is the base of U.

Proof. 1t is sufficient to consider a full forest U. Lemma 4.8 and 4.9
imply
A (U )=RB(U)u L (U).

With the notation B=U', C=TU
B=Bu#(U)uA(U)=Uu.«(U)=C
Lemma 4.4 implies
B(C)=L(U)uB(U).
Hence C=C — #4(C)=B.

Theorem 4.2. Let C be a given complete forest with base B. The set
of all forests U with the completion C is given by the condition

BCUCC. 4.21)

Proof. Let U have the completion C. Then U C C and U=B
(Lemma 4.10). Hence BC U L C.

Since C is the completion of B (Lemma 4.10) any U satisfying (4.21)
has the completion C.

Theorem 4.3. The finite part of the integrand of a Feynman integral
is given by

R(Kqg=S; Y Xy, (4.22)
Ue¥
Xp=[] () S,) L), (4.23)
yeU

J)y=1=v"if yeBU).fN=-0r" if y¢2U). (424

The sum in (4.22) extends over the set € of all complete forests of I.
The set B(U) is given by Lemma 4.7.

Proof. Two forests are called equivalent if they have the same com-
pletion. According to the Theorem 4.2 the corresponding equivalence
classes are given by the condition C £ U € C where C is a complete forest
with base C. This partition of the set of all forests into equivalence
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classes leads to the following formula (see Eq. (3.21))

Rr=Y Xe, Xe=Sr Y, JI(=t"S) I (U). (4.25)
Ce® CCUCC yeU
An alternative formula for X, is
Xc=S; [T (/0 S)IHO). (4.26)
veC

An equivalent definition of f(y) is

fiyy=1-t" for yeC-C=4%(C),
fly)y=—1t" for yeC.

In order to show the equivalence of the two formula for X, we work
out the products of factors (1 —¢7) in (4.26)

He=Sr & 1ot )10, 427)

go(y)=—t" for yeQ, go(y)=1 for y¢Q.

The sum extends over all subsets Q of C—C. Introducing V=C+Q
as new variable of summation we obtain (4.26) which can be rewritten
in the form (4.23).

The next aim is to give upper bounds for the degree of the function
Xy with respect to the parameters T of the hyperplane H. This will
eventually lead to the desired result that the dimension of the renormaliz-
ed Feynman integral is always negative.

We first state a recursion formula determining X, which follows
easily from the definition (4.23). The subscript U will be omitted in the
work that follows. For the sets W(U), 4(U) given by Lemma 4.7 we
will use the notation

B=RBU), W=W(QU).

Lemma 4.11. For a given complete forest U the function Xy is deter-
mined by

Xp=X=01-t" Y, (4.28)
where for any ye U
Y, =1 S, [ Y o Y (4.29)

Yy e By

V1> ---» ) denote the maximal elements of U(y). If y is minimal we set Y, = I,.
f, is defined by (4.24).

The function Y, has the general form
A
g = ———
Y,(K"q") B. B, (4.30)
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where A is a polynomial in K7, g” and

Bl = H)‘ (lgba - lutfbd + ig(lgbo + #fba)) 5

aba
By= [1 Tl.(ke2 — 12y, +ie(k22, + 2, )y 0, (4.31)
@eU(y) abo

liboe = Kipo + Qoo »
krba = kfba(ky) .

We next want to determine the degree of the function Y,. To this end
the following lemma will be useful.

Lemma 4.12. Let F be a function of the form

Y = _g_ C=T102— 2 +ie +p2) (4.32)

where A is a polynomial in t,, ..., t, and

Ly=a,+ Y copty+ D dypag

with all
D cptsEO.
Then the relation
degr, ,F <1 (4.33)
implies
degr,(1—t) F<I—d—1 (4.34)

degr F denotes the degree of a rational function F with respect to the
variables x =(x ... X,).

Proof. We decompose the polynomial

A=Y 4, (433)
y=0
such that 4, is homogeneous in g of degree 7. (4.29) implies
degre, ,A<e+0 (4.36)
! degr, ,C=9. (4.37)
From (4.35) we get
degr,4,Se+d—y. (4.38)

Since A4, is homogeneous in g

A 1
(A=) = A, =17

- (4.39)
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Here
degr(l—t‘;”)%g——é—d-ky—l. (4.40)
Hence
a Ay < a-n L
degr,(1 — t")T <degr, A, + degr,(1 —t; )? (4.41)
<e—d-1
using (4.34) and (4.36).
It is convenient to introduce the following integer
M(y) =47 m(f) (4.42)
I

where the sum extends over all u satisfying the condition
pelU, uCy and p¢W.

m(fr) is the number of independent internal momenta of fi. Apparently
M(I') is the number of independent integration variables on H. For i
contains only variable lines if u¢ W while i contains only constant
lines if pe W.

Lemma 4.13. The following inequalities hold
degr/, Y(K'(K),q")<d(y)—M(y) for yeU, y¢W, (443
degr, Y(K'(K),q")< —M(y) for yeW. (4.44)
Proof. As hypothesis of induction we assume the inequalities to be
valid for all maximal elements 7, of U(y). It will then be shown that the

inequalities also hold for v itself.
(i) Case ye W. Then the recursion formula holds with

f,,=—t* for y,eW.
f,=1—=t" for y,¢W.

We will find the following relations

degr, I, ,.= 0, (4.45)
degr, S, Y, <—M(y,) if y,eW, (4.46)
degr, S,(1—t") Y, <—M(y,) if y,¢W (4.47)

(4.45-4.47) imply the inequality (4.44)

We next prove the relations (4.45-4.47):
(«) Relation (4.45) follows since all lines of j(U) are constant relative
to vy (Lemma 4.7).
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(p) Proof of relation (4.46). According to the hypothesis of induction
we have

degr, Y, (K™(K),q"*) < —M(y,) .
This implies
degr, t,, Y, (K7(K), ¢') < — M(3,).
For it is
by Yy = ti;m Y, (K7™ 0q™)|,-
degr, 157 Y, (K™(K), 0q™) < degr, Y, (K'*(K), 04").
By definition of the substitution operator S,
(S, 1Y, ) (K'q") = (" Y, ) (K"(K"), g"(K", g")) -
In ¢"*(K?, g¢%) only those k2, occur with L,,, e £(y) which are constant
on H relatlve to 7. Hence
degr,(S, t"™ Y, ) (K'(K) q") = degr, (1> Y, ) (K"=(K), q™) .

(y) Proof of (4.47). Let y,¢ W. According to the hypothesis of in-
duction.

degr, ., Y, (K™(K(T)), ¢™) =d(y,) — M(,) -
Applying Lemma 4.12
degr (1 —1,) Y, (K™*(K), q7*) < =M(,) .
Applying the substitution operator we obtain
(8,1 —1,) Y, )(K'(K),q")=((1 — 1, Y, ) (K**(K), ¢"™) (K*(K), ¢7)

Again g’* depends only on components k], of K’ which are constant
on H.

Hence
degr(S,(1 —t,) Y, ) (K'(K), ¢") = degr (1 — "9Y, ) (K"*(K), ¢"*)
and
degr,(S,(1 —t,) Y, ) (K'(K), g") < — M(y,) .
(i1) Case y¢ W.
In that case the recursion formula reads

Yv = Iy/n Ve 7( ) Y ( tyc) ch .
The relations
degr, g Lyy, ., =d(F) — 4m(y), (4.48)

degr!qy S,’ tya Y = d(?a) - M(yo() lf ya ¢ Ws (449)

Yo =

degr,,, S, s Yiu <d(y,)—M(y,) if y,eW (4.50)
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imply
degr,» Y, Sd(7) —4m(7) + ) (d(y*) — M(y")
Sdy)—M(y)
since d(7) + 2 d(y,) <d(y).
(4.51) is the inequality (4.42) stated in the lemma.
We now prove the relations (4.48—4.50).

() The relation (4.48) follows from the definitions of I.
(B) The hypothesis of induction

degr,qyu Yya(Ky“(K)a q}'a) _S_ d(ya) < M(ya)

(4.51)

implies
degr, . t" Y, (K"*(K), ") = d(y,) — M(y,) -
Application of the substitution operator S, to ¢+ Y, yields
(S, 1" Y,,) (K"(K), g") = (" Y, ) (K"*(K), ") (K"(K), 97) .

Since t'* Y, is a polynominal in ¢’ the substitution

q)’«_)q‘/o:(K’/(K)’ q)’)
can only decrease the degree with respect to T, g7
degr, (S, t"* Y, ) (K¥(K), ¢")
< degr,,. (" Y, ) (K™(K), g™) £ d(y,) — M(7,),

(y) Proof of relation (4.50). We assume y,€ W. According to the
hypothesis of induction

degr, Y, (K'(K), ') < —M(y%).
This implies
degr, . U Y, (K™(K), q7) <d(y,) —M(7,) .
degr, (S, 1,, Y,,) (K"(K), q")
= degr,,(t,, Y,,) (K"*(K), ¢™) (K"(K), ¢')

< degrp, (1, Y,) (K™(K), ™) <d(y,) — M(7,) -

This completes the proof of the lemma.
The results obtained in Lemma 4.13 will now be used in order to
show that the dimension of the integral (4.1) is negative. We have

X=(1-1t) Y. (4.52)
First let 'e W. Then
degr, Y(Kq) <—M(I)
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implies
degr,(1 —t;) Yp(K q) < — M(I).
Let I'¢ W. Then
degr, , Y (Kg)=d(I') — M(I)

implies
degr (1 —1t) Yr(Kq) < —M(I).
In any case
degr, X < — M(I') (4.53)
and therefore
degr, Rp(Kgq)< —M(T). (4.54)

Since M} is the number of independent parameters of the hyperplane

H it follows
dimjdk Ry <0.
H

This completes the proof of the theorem.

Appendix

We shortly indicate the proof of the following generalized form of
Eq. (4.54)

degr, R (Kq) < —M(I) (A4.1)

which is useful for checking the equivalence of Bogoliubov’s original

definition of the renormalized Feynman integral to the one used in this
paper [17] M denotes a subset

M g {tuaba}

of the mass parameters.
First we note that under the hypothesis of Lemma 4.12

degr,y (1 —15) F < degr,p , F —d —1 (A.2)

can be derived which is a generalization of (4.33—4.34). The Eq. (4.43-4.44)
can be generalized to

degr, g Y,(K'(K), @") Sd(y) = M(y) for yeU, y¢W, (A3)

degr,, Y,(K'(K),q") < —M(y) for yeW. (A4)

These relations are derived from
degrip Ly, 5. =0, (A.5)
degr,, S, 7Y, < —M(y,) if v, ¢ W, (A.6)

degr,y S(1—0%) Y, < —M(y,) if y,¢W (A7)
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if ye Wand from

degririgr Ly, .y = A7) —4m(7), (A.8)
degrthV Sy e Yya é d(%) - M(‘Ya) if Ya ¢ W’ (Ag)
degr,pgy S, 7Y, <d(y,)—M(y,) if y,e W (A.10)

if y ¢ W. The result (A.1) follows if the Egs. (A.3—A.4) are applied to (4.52).
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