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Abstract. The electromagnetic interactions of hadrons are considered in a model in
which both the hadrons and the photons are spinless. The perturbation theory of this
model is developed in a way which takes the strong interactions rigorously into account.
An expression for the second-order electromagnetic mass shifts of the hadrons is derived.
The customary formula expressing these mass shifts as integrals over the Compton scatter-
ing amplitude is shown to be inaccurate. The correct expression differs from the old one
by a changed integration contour. In favourable cases the two expressions coincide if the
integrations over the four components of the photon momentum are carried out in a
certain order. This order of integration must in general not be changed.

I. Introduction

Attempts to calculate electromagnetic mass differences of hadrons
to lowest order in the fine structure constant often start from the relation
(here written for the meson case)

f d*q Kμv(q2} Mμv(p' q} ' (u)

where Kμv is the photon propagator and Mμv is the second-order forward
scattering amplitude of a photon with momentum q (not necessarily
on the mass shell) on a hadron of momentum p (on the mass shell).
This formula has been the source of some puzzlement in the last few
years, since current algebra arguments seem to indicate that it leads
to an infinite π+-π° mass difference [1]. Even though these arguments
are by no means compelling (see, e.g., Ref. 2 for pertinent criticism),
it is evidently desirable to know to what extent Eq. (1.1) can be trusted.

Equation (1.1) would be an immediate consequence of the Feynman
rules if the hadrons had no interactions apart from the electromagnetic
ones. However, the strong interactions cannot be neglected in this problem
and this makes a creditable derivation of a formula for δM2 considerably
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more difficult. Indeed, none of the existing derivations [3-7] can be
considered to be fully satisfactory. Either they proceed formally, ignoring
the problems connected with the (non-existent) definition of products
of field operators in a point and assuming the interacting fields to satisfy
canonical commutation relations, or they apply perturbation theory
also to the strong interactions and show (1.1) to be correct to all orders
in the strong coupling. In the work of Theis [7] the extent to which per-
turbation theory in the strong interaction is used has been reduced to
a minimum, but even so the question of the probable divergence of the
perturbation series remains.

In the present paper we propose to approach the problem within
the LSZ framework of field theory, without recourse to Langrangians or
canonical commutation relations. We shall develop a form of perturba-
tion theory for a "weak" interaction of the electromagnetic type, which
takes the strong interactions rigorously into account. Only mathematically
well defined operations will be used. The formalism will be developed
only up to second order.

Analogous formulations of customary perturbation theory (i.e.,
the variety starting from free fields as Oth approximation) have been
given by various authors. As relevant to our present purpose we mention
the work by Nishijima [8] employing time-ordered products and two
earlier papers by the present author [9] working with retarded functions.

Since some problems peculiar to electrodynamics (i.e., those connected
with gauge invariance and the infra-red divergences) are not yet fully
understood in axiomatic field theory, we shall not deal with electro-
dynamics in its actual form. Instead we shall consider a model with
scalar photons which, moreover, have a small non-vanishing mass.
This mass can be put equal to zero in the final result, provided that no
infra-red divergences are thereby introduced. There is no doubt that
our result will carry over to real electrodynamics.

We shall also simplify the hadronic part of the theory by assuming
that only a single kind of hadrons exists, corresponding to a hermitian
pseudoscalar field. This is merely a labour-saving device. The generaliza-
tion to more realistic situations does not present any difficulties.

We shall find that the expression for δM2 derived in this way is not
(1.1) but differs from this by the shifting of an integration path. (1.1)
is thus only correct if this shift is allowed.

The programme of the paper is as follows. In Section II the model
under consideration will be stated and the field theoretic background
will be explained. Perturbation theory to second order will be developed
in Sections III-V. A formula for the electromagnetic mass shift will be
derived in Section VI and discussed in Section VII; which latter section
will also contain some miscellaneous remarks.
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II. The Model

We consider a theory of two local hermitian fields, the pseudo-
scalar "hadron" field A(X) and the scalar "photon" field B(x)1 satisfy ing
the Wightman axioms [10, 11]. If applied to the vacuum, the fields
A, B shall create one-particle states with masses M and m respectively,
with 0 < m <^ M. We assume asymptotic completeness, i.e., the asymptotic
fields Aίn, Bίn shall generate the full Hubert space § of the theory. This
means that § is of the form

where ξ>A and ξ>B are the Fock spaces of the free fields Aln and Bιn respec-
tively. The vacuum Ω of § is the direct product of the partial vacua
ΩA and ΩB. The subspace ξ>A®ΩB will often be called ξ>A by abuse of
language. The hadrons shall be strongly interacting among themselves
and shall interact with the photons via an interaction of electromagnetic
type, i.e., an interaction which is linear in B if expressed in Lagrangian
terms. For a non-Lagrangian definition of this notion we refer to
Section IV. The photons shall have no direct self-interaction. We assume
the theory to depend on the A — B coupling constant e in such a way
that all the requirements are still satisfied for e = 0. In this limit B is a
free field of mass m and the fields A and B are independent in the sense
that application of any polynomial in A to Ω yields a state in $A. The
parity assumptions on A and B ensure the automatic vanishing of the
vacuum expectation value of A(X) and of the mixed two-point function.
The correct parity behaviour of the theory will not be discussed explicitly
in what follows since it is trivial. The word "scalar" will from now on
only denote the transformation character under the connected Lorentz
group, i.e., it may stand for "scalar" or "pseudoscalar" as the case may be.

The LSZ formalism will be used as described in an earlier paper [12],
hereafter referred to as E. Unless otherwise noted, the definitions and
notations of £ will be used. Our main tools will be the retarded and time-
ordered functions as defined in E. Since we are now dealing with two
fields there exist two sets r(x1? ...,x6, ^Γ1? ..., Xa)anάr(X^ ...,Xα,xί9 ...,xb)
of retarded functions, depending on whether the distinguished first
variable is a photon or a hadron variable. Amputation of r with respect
to the variable Xj or xh will be denoted by a bar over this variable:

1 We shall always use capital letters for A-field variables, small letters for β-field
variables.
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The GLZ equations [13] read in our case

r(x9y9xl9 ...9xb9Xί9 ...9Xa)-r(y9x9xl9 ...9xb9Xl9 ...,Xa)

l Σ
L α,0 =

•(y,xR9XR9ϋί9...9vΛ9Vί9...,Vβ)-(x<r+y)
J

(2.3)

and similar equations obtained by replacing one or both of the variables
x, y by a hadron variable. The summation £ extends over all partitions

L

of the set (x1,...9Xa)mto two complementary subsets (XL, XL) and (XR, XR),
one of which may be empty. The singular functions Δ+ have to be taken
for the appropriate mass, i.e., m for photons, M for hadrons.

The backbone of our investigation is the GLZ theorem, which will
be used in the following formulation:

Theorem 1. Let r(xl9 ..., Xa)9 r ( X ΐ 9 . . . 9 x b ) be tempered distributions
with the following properties:

a) Equations (2.3) are satisfied.
b) The r are real, invariant under the connected Poίncare group and

symmetrical under permutations of all variables except the first one.
c) The support of r(x, x l 5 ..., xb9 Xl9 ..., Xa) is contained in the set

x-xheV+, x-XjE V+ for all hj (2.4)

and similarly for r(X9 ...).

d) The mass shell restrictions

= > l > 5 α > ~ α + l > 5 ~β>(ll>> '>Clγ? ~~^fy + l5 5 ~~ ^δ(2 J o =ω(Qj),gho = ω(qh)

of the r-functions in p-space exist in the sense explained in E and are
defined on test functions of the form

with φe^, φ^LΛi\ φ2 e ί/Γ*'^.
Then there exists an asymptotically complete Wightman theory of

two scalar, hermitίan, local fields with masses M and m such that their
retarded functions are the given ones up to the physically irrelevant
ambiguities inherent in the definition of the R-product.

In (2.5) we have used the notation



Electromagnetic Mass Shifts 137

y is the space of square integrable functions with respect to the measure

j π
2ω(Qj) V 2ω(qh) '

Comparison of this formulation with Theorem 6 of £ shows that
condition d) as stated here is somewhat too strong. Field theories
may exist in which it is not satisfied in this form. The exact form is,
however, quite complicated and we shall use the stronger one given
here for the sake of simplicity. Our procedure could easily be adapted
to the exact form.

It will be convenient to write (2.3) in a different way by amputating
all r-functions with respect to the ^-variables x, y, XΛ . This can be done
by putting bars over all those variables in (2.3). The original r-functions
can be recovered from the amputated ones by

Γ b

r(Xί9...9Xa9xl9...,xb) = Y[{duhAR(uh-xh)}r(Xl9...9Xa9uί9...9ub)9

J i

r(xί9...9xb9Xί9...9XJ (2.7)

Γ b

= duίAR(x1-ul)Y[{duhAR(uh-xh)}r(ul,...9ub9Xl9...9Xa).
J 2

It is easy to see what becomes of the subsidiary conditions of
Theorem 1 under the process of amputation.

The amputated system (2.3) together with the subsidiary conditions
is equivalent to the original assumptions, if we add yet another sub-
sidiary condition, to wit:

(2.8)

with F analytic in a neighbourhood of q2 — m2. This is the Kallen re-
normalization condition. It is a consequence of the unamputated form
of (2.3) but is lost under amputation and has therefore to be demanded
separately.

Henceforth we shall deal exclusively with amputated photon variables.
We can therefore drop the amputation bars over photon variables, with
the understanding that such variables are always amputated when they
appear as arguments of the field B or of a retarded or time-ordered
product of β's.

The amputation of (2.3) has the consequence that the terms on
the right-hand side containing the photon two-point function r(x,j;)
vanish, i.e., these functions occur only in the a = 0, b = 2 case on the left.
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The following abbreviated notation will be convenient: we define

r(x, XL, XL-*} r(y9 xR9 XR+-)

Ξ Σ -T {fl{dUjdVjΔ+(Uj-V$r(x9xL9XL9Ul9...9UJ (2.9)
α = 0 α! J 1

'r(y9xR9XR9Vί9...9VJ

where XL, etc., are sets of variables and the distinguished variables x, y
might also be hadron variables. (2.3) can then be written:

Σ Σ ~ W u h d υ h Δ + (uh-υh}} (2.10)
L β = 0 P

r ( x 9 y 9 ...)-

r(x9xL9XL,ul9...9uβ^)r(y9xR9XR9υί9...9vβ*-)--(x*-+y) .

We have yet to reformulate the conditions of Theorem 1 in terms of
the time-ordered functions τ (X 1 , . . . , Xa, x1,..., xb). We shall use a
definition of τ which differs from the one adopted in £ by a factor
( — i)a + b~1. The defining equation of the T-products (Eq. (19) of E)
becomes then

XR9xR). (2.11)

Here the sum extends over all partitions of {X2, ...9Xa9xί9 ...,xb}
into two complementary subsets {XL, XL} and {XR,xR}, the second of
which may be empty, but not the first.

We remember that the retarded and the truncated (= connected)
time-ordered functions are in p-space boundary values of the same
analytic function [14—16]. Let

(2.12)

r is a distribution on the plane ^P7 +Xp Λ = 0. r(pl9 ...,PJ is defined
analogously.

Introduce the complex four-vectors Kj = Pj + iQp kh = ph + iqh. Let
S be the subset of the plane X^ + Z^^O defined by the condition
that for any proper subset IC{Kl9 ...,kb} we have

or Σδ, + Σ^ = 0 and
i i \ / i )

(2.13)
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Then there exists a function H(K^ ..., Ka,kl, . . . , f e f r ) analytic in S,
such that

r(P1,...,p i,)= lim H^,. ..,*>)
Qj.qh^O (2 14)

r(p l 9...,P e) = lim
Qj.flh ^

where the limit must be taken from the set Q2, ..., Qα, <?ι, ...,
in the first case, from Q1? ..., Qa,q2, • ••, <?&£ F_ in the second case.

Let TcS be the set defined by the conditions

If fΣ ^7 + Σ PΛ^) = 0» either half cone is admissible for the corresponding
V / i j o

q-sum.
Let τr be the truncated τ-function and define

τT(P1,...,p f r) = δ4(lPJ. + Vp Λ ) ί : (p l 9 . . . s p f t ) . (2.16)

Then τ is again a boundary value of H in the sense of (2.14), where
the limit has to be taken from T.

The distributions τΓ(Pl5 ...,pb) have the following linear properties:
α) τr is Poincare-invariant, symmetrical under permutations of the

arguments and satisfies the PCT relation

τΓ(P1,...,pb) = ττ(-P1,...,-p f t). (2.17)

β) The mass shell restrictions of τr exist in the same way as those of
f defined in Theorem 1.

Furthermore, the ττ satisfy the completeness equations (better known
under the name unitarity equations) [8] :

ττ(Pί,...,Pb)-ττ\P,,...,Pb}
(Z.lδj

00 (2π}2β Γ Γ β ΎΣ -Sf" ΠW^^KW^^p^-w^f^p^w^) .
=0 P- LJ 1 JL β=0

The sum Σ extends over all partitions of {P1? . . . ,p&} into two non-
L

empty sets L and R. The definitions

= Σ -

δ+(W) = Θ(W0) δ(W2 - M2) , δ+ (w) - Θ(w0) δ(w2 - m2) (2.20)
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have been used. The truncated part of a complicated expression like
the right-hand side of (2.18) is defined as that part which does not contain
any c)4-functions besides the (54(X Pj -f X ph) expressing overall momen-
tum conservation.

Condition (2.8) holds for τ in exactly the same way as for r.

These conditions on τr are equivalent to the conditions of Theorem 1,
i.e., we have:

Theorem 2. Let τ(Pί9 ..., pb) be boundary values of functions H analytic
in S, the boundary being attained from T. Let ττ as defined by (2.16)
satisfy Eqs. (2.18) and enjoy the properties α) and β) above as well as (2.8).

Then the functions r defined by (2.14) and (2.12) satisfy the assump-
tions of Theorem 1.

The proof of this theorem proceeds by analytic continuation in p-
space and will not be given here. We think that the theorem is plausible
enough in itself.

III. Perturbation Theory : Generalities

We assume that the fields A and B are coupled through an interaction
with a small coupling constant e. We develop r with respect to e:

r(X1,...,xb) = Σ e'rσ(Xl,...,xί) (3.1)
σ = 0

and wish to determine the rσ such that the conditions of Theorem 1 are
satisfied in every order σ. (Actually, we shall only proceed as far as σ = 2.)

In Oth order we assume B to be free, i.e., we demand

r0(Xl9...9xb) = r<>(xί9...9Xa) = Q for α φ O , b φ O ,

r0(x l5 . . .,x f e) = 0 for b>2, (3.2)

The r0(Xί9 ..., Xα) shall be the r-functions of a self-interacting field
A0. They have then all the properties stated in Theorem 1, now for-
mulated for the case of one field only. In particular we have

(3.3)
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Inserting (3.1) into (2.10) we obtain as terms of order σ :

= -''Σ Σ - Σ l{duhdυhA + (uh~vh)} (3.4)
L β = 0 p ! v = θ

These equations we wish to solve by induction with respect to σ.
Assume that the rv with v < σ are known. Then (3.4) is a system of linear
equations for the unknown quantities rσ. It has been noted in Section II
that the right-hand side of (2.10) does not contain the two-point β-field
function. Due to this fact and to (3.2), the unknown rσ's appear in the
right-hand side of (3.4) only in the terms

-iΣ{rσ(X,XL,Xι>. .,Xι,-*)ro(Y,XR+-) (3 5)

+ r0(X9XL^)rσ(Y,XR9xί9...,xb+-)-(X++Y)}.

All the photon variables appear always in the same factor. This has the
important consequence that Eqs. (3.4) decouple with respect to the
number b of external photon variables.

IV. Perturbation Theory: First Order

For σ = 1 Eqs. (3.4) are homogeneous in the unknown functions rl.
It has already been noted that they decouple with respect to b:

ri(X9Y9...9Xj9...9xH9...)-rί(Y9X9...9Xj9...9xh9...)

= ~iΣ{rι(X>XL, ,XH, ..^)r0(Y9XR<-) (4.1)

An obvious solution (for a given b) is rl(Xί, ...) = r1(x1, ...) = 0
for all a. In the electromagnetic case this is true for all bφl. Only this
case will be considered further:

rί(Xi9...9Xa9xl9...9xb) = ri(xl9...9xb9Xl9...9XJ = Q for b φ l . (4.2)

This condition corresponds to an interaction Lagrangian which is
linear in B.

The equations to be solved in the case b= 1 are (4.1) with only one
photon variable, called x, present.

We note that no summation over intermediary states containing
photons occurs in (4.1). Hence we can consider (4.1) as an equation
referring to ξ>A only. We obtain:
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Lemma 1. Let ri be a solution of (4.1) satisfying conditions b)-d) of
Theorem 1.

Then
00 1

converges strongly on all states in ξ>A with a finite number of incoming
particles. J(x) is a scalar, hermitian field which is local with respect to
A0(X).

The proof of this lemma is essentially an adaptation of the proof
of Theorem 5 of £. It is obvious that the matrix elements of the series
(4.3) between in-states with a finite number of particles converge, since
in this case only a finite number of terms are different from zero. In
order to prove strong convergence we must look ahead to second-order
perturbation theory. There, expressions of the type

MX,̂ ,...,̂ )̂ ,̂ ,...,̂  (4.4)

will occur. These expressions must exist, or else our perturbation proce-
dure will break down already in second order. We shall therefore assume
the existence of (4.4), whence the strong convergence of (4.3) can be
proved as in E.

It is obvious that J is scalar and hermitian. Using

(4.5)

we can calculate the commutator [J(x), ^40(X)]. By reducing products
of Wick products to sums of Wick products in the customary way and
making use of (4.1) we find

= Σ 7rίdt/ι -•• dUfafrX, Ult ..., UJ-r^X.x, Ul} .-., Dt)-] (4.6)

from which the relative locality of J follows because of the support
conditions imposed on rγ. Due to a theorem of Borchers [17] J is then
also local relative to itself.
Furthermore we want to have r1 (x) = 0, which leads to

(Ω,J(x)Ω) = 0. (4.7)

On the other hand, it is clear that any scalar hermitian field J in ξ>A,
local relative to A0, and with a vanishing vacuum expectation value,
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will produce a solution of (4.1) via the definition

r1(x,X1,...,XJ = (Ω,R\:j(X)A0(X1)...A0(XJ]Ω)

X1) ... A0(Xa)J(x) ] Ω ) ,

the R-product being defined as in E.
Hence :

Theorem 3. The general solution of (4.1) in the case b=l, satisfying
the required subsidiary conditions, is given by (4.8), where J(x) is an arbitrary
scalar, hermitian, local (relative to A0) field in ξ>A with a vanishing vacuum
expectation value.

The choice of this field J specifies the interaction, i.e., J replaces the
interaction Lagrangian (or Hamiltonian) of the conventional formula-
tion of perturbation theory.

How such an operator can be characterized explicitly is no known
at present. The ansatz

./(*) = ΣcvCΛMΓ (4.9)

(plus terms containing derivatives of A0) does of course formally satisfy
our requirements. It has been shown by Zimmermann [18] how ex-
pressions of the type (4.9) can be defined rigorously, if perturbation theory
is used with respect to the strong interactions also. It is not known whether
this method of definition can be applied in an exact theory, much less
whether all possible J could be obtained in this way. We shall leave this
question open and shall simply assume that an operator J(x) is given
somehow.

The statement that J(x) defines the interaction has yet to be qualified
somewhat because the definition of the ^-product contains ambiguities.
If J is given, then r^x.X^ ...,Xa) and r^X^ ...,Xa9x) are defined un-
ambiguously if all the variables are put on their respective mass shells.
That means that the first order S-matrix elements are unambiguously
defined. However, r1(Xί,X2,...,Xa,x) may contain ambiguities, i.e.,
the first-order term A1 of the hadron field:

^ιW= Σ-Jΐl*U1...dUldurί(X,Ul9...9Ul9u)

: A i n ( U ί ) . . . A i n ( U l ) B ί n ( u ) :

will contain ambiguities which will influence the S-matrix in higher
orders. The interaction is therefore specified not by J alone but by J
together with a particular choice of the .R-product in (4.8). The ambiguity
can be reduced by imposing on rl conditions about the behaviour at
large momenta (or at small distances in x-space, which amounts to the
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same) of the type used in Ref. [9]. Loosely speaking, these conditions
demand that r behave at infinity as well as possible. Under favourable
circumstances this condition may actually remove the ambiguity, but
this question cannot be discussed without an explicit knowledge of r0

and J. Luckily, it will turn out that this indeterminacy does not influence
the second-order mass shift.

For later reference we shall briefly consider the non-trivial solutions
of (4.1) in the case b = 2. In this case one of those Eqs. (4.1) which have
not been written down explicitly reads

rί(x9y9Xί9...9XJ-rί(y9x9Xΐ9...9Xa) = 09 (4.11)

whence we see immediately that r1(x, y, X^ ...) has its support in x = y.
A similar argument as in the case b=l yields the result:

Theorem 4. The general solution of (4.1) in the case b = 2, with the
correct linear properties, is

(4.12)

and similarly for r^X^ ..., Xa9 x, y)9 where the sum extends over a finite
number of derivatives (with respect to x) D, and the JD are local hermitίan
field in ξ>A with covariance properties designed to make the D-sum invariant.

The same remarks on the ambiguities in the definition of the R-product
as given after Theorem 3 apply here.

V. Perturbation Theory: Second Order

lib is not equal to 0 or 2, Eqs. (3.4) for σ = 2 again reduce to the homo-
geneous form (4.1) and are solved by

r2(Xί9...9Xa9xl9...9xb) = r2(xl9...9xb9Xl9...9XJ = 0 for fcΦθor2.
(5.1)

This is the most regular solution and will therefore be assumed to be the
correct one.

Case b = 2. In this case we have to solve the equations

r2(X9Y9...9Xp...9xi9x2)-r2(Y9X9...9Xj9...9xl9x2)

+ i £ ( r 2 ( X , XL, *ι, x2-+)rQ(Y, **<-)
L

+ r0(X, XL-») r2( Y, XR, xίt x2«-) - (X~ Y)} (5.2)

= -iΣ{r1(X,XL,x1-+)rί(Y,XR,x2<-)
L

+ r1(X,XL,x2-+)rί(Y,XR,xί<-)-(X~Y)}
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and similar equations in which one or both of the distinguished variables
X, Ύ are replaced by an xh. They can again be considered as equations
in ξ)A and have the obvious solution

= l ) . . . A 0 ( X a } J ( x 1 ) J ( x 2 ) - ] Ω ) ,

J ( x 2 ) A 0 ( X 1 ) . . . A 0 ( X J ] Ω )

The general solution of (5.2) is given by (5.3) plus the general solution
of the corresponding homogeneous equation as described in Theorem 4.
The ambiguity can again be decreased by demanding optimal behaviour
for small distances. In favourable cases this may lead to a unique solution.
We shall assume this to be the case at least for a = 2 since only then our
derivation of a formula for the mass shift will be convincing.

If this procedure is applied to realistic electrodynamics, the require-
ments of gauge in variance will have to be taken into account. They may
enforce the addition of a homogeneous term to (5.3). Such an addition
may also be necessary in our model for the two-point case (a = 0) in
order to satisfy condition (2.8). We shall not discuss the point any further
since in electrodynamics this condition will presumably be satisfied
automatically due to gauge invariance, if our experiences gained in
Lagrangian field theory are at all to be trusted.

Case b = Q. Here it is convenient to work with the τ-functions instead
of the r-functions, i.e., to make use of Theorem 2. We have then to solve
the equations

L

= - 2πί X [f dw δ+(w) τf (PL, - w-») τ^, w«-)]r . (5.4)
L

Remember that both PL and PR must be non-empty.
We shall first try to solve (5.4) with the ansatz

.2 w — m 4- zε

suggested by the Feynman rules. Here τ2(P1} . . . ,PΛ,p l 5p 2) is obtained
from f2(P l s ...,p2) by analytic continuation as explained in Section II.

Consider the holomorphic function H2(K^ ..., Ka, /q,/c2) of which
both r2(P1? --iPi) and τ2(P1? . ..,p 2) are boundary values. Fix the values
of the variables K } such that their space parts are real : Kj = P, and that

Qi\ ^ 0 f°r a^ Pr°Per subsets / of (1 , . . . , a). Then H2(..., Ka, w, — w)

is, for real w, analytic in the full w0-plane with the exception of the cuts

K ±[Λί/(P ,w) + ρ] (5.6)
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Fig. 1. The integration paths C l 5 C2 and C3. The w0-plane is shown with some of the cuts (5.6)
marked by bold lines

for all /, including the empty set. Here Ml is a real function of its ar-
guments with Mj ^ m, and ρ ̂  0 is parametrizing the cut. The two sign
alternatives are independent of each other.

Under the above restrictions for Kj we obtain from (5.5)

(5.7)

k2-m2

The integration contour Q is given in Fig. 1. The d 3w integration runs
over real w.

This H2 can easily be shown to have the correct analyticity properties,
provided that the integral (5.7) exists at all. Since the integrand is on
C1 analytic in w, existence depends solely on the behaviour at infinity.
We shall assume that the integral (5.7), and therefore (5.5), exists and that
the mass shell restrictions of τ j exist as explained in Section II (property β).
Moreover, we shall assume that the w-integration in (5.5) can be inter-
changed with the Pj-integrations over test functions.

Note that (5.7) can exist for at most one solution r2 of (5.2). The
difference between two solutions is, according to Theorem 4, a poly-
nomial in w and will therefore give a divergent contribution to (5.7).
The one good r2 (if it exists) will be distinguished by its behaviour at
infinity, i.e., it will be the special solution chosen above. If such a distin-
guished solution does not exist (i.e., if our regularity requirements do not



Electromagnetic Mass Shifts 147

fix the solution of (5.2) uniquely), then most likely no H2(...,w, — w)
will give a convergent integral (5.7). This is the reason why we assumed
the existence of a unique solution of (5.2) with optimal behaviour at
infinity in p-space.

In variance and symmetry of τ2(P l5 ..., Pa) as given by (5.5) is obvious.
The same is true for the relation

once we have noted that the corresponding relation holds for τ I ( . . . , Pβ, p1 , p2)
as a result of the reality of r2(..., Xa, Xι,x2).

The one-point function τ2(P) vanishes automatically due to the
pseudoscalarity of A(X). (This automatic vanishing is true for realistic
hadrons.) Otherwise we should have to obtain this desirable property
by adding a constant to the field A2(X).

It remains to be seen whether (5.5) satisfies the completeness Eqs. (5.4).
Inserting (5.5) into (5.4) and using

[<Uw) + <U-w)], (5.8)
w2—m2 + iε w2—m2

we obtain for the difference A of the two sides of (5.4)

W — ΐΐl

dwδ+(w)jτ2(P1,...,Pfl,w,-w)-τf(P1,...,Pa,w,-w) (5.9)

We note that in the first term any odd function of w can be added
inside the curly bracket without changing the integral. With the help of
the equation (derived from (2.11))

(5.10)
L

+ iτf(P,,...,P a J-w->)τ 1(HM-)

Commuπ math Phys , Vol. 15
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the first term of (5.9) can be transformed into

dw

w2 — m2 — zεw 0

f2(-w,w,P1 ? ...,PJ

+ iπ

whence
7

Δ=i 5 - 2 - : -w 2 -m 2 -ιεw 0

(5.11)

w2 —m 2 —

the curly bracket vanishing on account of τ2 being a solution of the τ-
completeness equations corresponding to (5.2).

Thus the ansatz (5.5) solves the completeness equation only if the
expression (5.11) vanishes. The integrand of (5.11) is analytic in Imw0 < 0
and the integration path runs along the lower rim of the real w0-axis.
The integral vanishes if this path can be closed by an infinite semicircle
in the lower half plane, i.e., if f2( —w, w,...) decreases rapidly enough
for w0-»oo in the lower half plane. Otherwise A φO, and (5.5) does not
solve (5.4)! Note that the assumed existence of the integral (5.5) does not
necessarily imply a strong decrease of f2 (or τ2) at infinity. If H2 shows
an oscillatory behaviour along C1? then (5.5) may converge conditionally
and yet A may be different from zero.

The form of the remainder term (5.11) suggests that we might obtain
a true solution by integrating in (5.7) along the path C2 of Fig. 1 instead
of Q. We can achieve this by adding to (5.7) the integral along C3 and
this can be determined as follows.

Define a new kind of product of field operators S by

L

from which identity S can be constructed recursively. Let
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S is a cycle in the sense of Ruelle [14] taking an intermediate position
between retarded and time-ordered products.

σ(pl9p2,Pι, ~,PO)> defined as in (2.12), is again a boundary value
of H, where the limit now has to be taken from the domain

(5.14)
q2eV_, q2 + ΣQj£v- for all subsets / of {!,..., a}.

The contribution of the C3-integral to τ2 is

σ2(-w,w,P1 ; ...,Pβ2 - —.2 LJ w 2 -m 2 - ίεw 0

so that our new ansatz is

2
I */ V. ~

(5.15)

which is to replace (5.5). The same assumptions about the existence of
this expression will be made as earlier for (5.5). All the required linear
properties are again satisfied and substitution of (5.15) into (5.4) will
show that this equation is now exactly solved.

The general solution of (5.4) is obtained by adding the general homo-
geneous solution (whose form is unknown) to the particular solution
(5.15). Again we assume that the solution (5.15) is distinguished by its
optimal behaviour at infinity. Otherwise the freedom in the choice of
the homogeneous addition would introduce undetermined parameters,
in particular an undetermined mass renormalization, which would
make a calculation of the mass shift from first principles impossible.
This problem also occurs if the integral (5.15) does not converge for any
τ2(..., w, — w). (5.15) then still constitutes a formal solution from which
a finite solution can be derived in the customary way by adding a suitable
homogeneous solution with infinite coefficients. Indeterminate para-
meters are thereby necessarily introduced and the mass shift becomes
a free parameter which cannot be calculated.

VI. Mass Shift

In Section V we have assumed that the mass-shell restrictions of
(5.15) exist as stated in Theorem 1. We shall now show that this is in
fact not true.
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The one-particle structure of T2(P1? ...,Pα,p1,p2) (and of σ2) can
be studied with the methods used by Zimmermann [19] or, more direct-
ly with the help of the generalized retarded products and their com-
pleteness equations as given in E.

Assume that we wish to restrict the_amputated variable Pa to the
mass shell. Consider then τ2 (P1 , . . . , Pa _ ί , Pa, p^ , p2). This function contains

the pole term _ _ _

.. ..^^.^ = 2 , ^ - ' - ^ ^ ^ (6.1)

with P = Pa

Jrpl H-p2 Insertion into (5.15) gives as contribution to

T2(
pi,.»,p

f l-i,p«):

Π(P P}-ίπ τo(pι> > pα-ι> pα)

_ pL-M2 + > £ _ _ (62)
τ2(Pβ, -Pfl,w, -w) σ2(-w,w,Pα, -Pα)Λ

w2 — m2-Mε w2 — m2-Hεw0

We see that there is still a pole in the amputated function so that

Pa cannot be put onto the mass shell!
Under these circumstances our statement that (5.15) solves (5.4)

has clearly to be taken with a grain of salt. It is, however, still rigorously

true that

?2(A,P2) -τ|(JP1,P2) = 0 for P2

2~M2 (6.3)

for the two-point function defined by (5.15). Let

τ2(P, -P,w, -w) σ2(-w,w,P, -P)] (6.4),
= 1 αw

w2 — m2 —

Because of the invariance properties of τ2, A2 is a function of P2 only.

Due to (6.3) it can be written

M2) )S2(P2) (6.5)

where α2 = — iA2(M2) is a real constant and β2 is holomorphic in a
neighbourhood of P2 = M2.

Consider now the function τ(P1? ...,Pα) as far as terms of second
order: τ0-f e2τ2. It contains the following one-particle singularity in
the variable Pn:

τQ(Pl9...9Pa-l9PJ Γ £>2

P2-M2 + ίε I Pα

2-
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up to term of higer order. This form suggests that we consider
(P2-M2 + iεΓί[l-e2πoι2(P2-M2 + iεΓί'] as the first terms of the
development

1

P2-M2-δM2 + iε

P2

1

-M2 +
Γj« L

e2(£M2)2

' P2-M2-Hέ

(6.7)

+ Vι-iQ Vj^»-f tf»t*τπc 1

: J

where <5M2 is a power series in e2 with (δM2)() = 0 and

((5M2)2=-πα2. (6.8)

In other words, if we amputate τ(P1? ...,PJ with (P2 — M2 — δM2)
and define the mass shell by Pα

2 = M2 + δM2, then the mass shell restric-
tion of the amputated τ does exist up to second order:

(P2-M2-(5M2)τ^(P2-M2)τ0(P1,...,P f l)

-^2(όM2)2τ0(P1?...,Pα) + e 2(P 2-M 2)τ 2(P l 5... 5P f l)+- - .

The first term on the right exists to second order on the new mass shell
if we assume that τ0(P1, ..., Pa) is differentiable with respect to the trans-
versal (relative to the mass shell) component of Pfl, even if some of the
other PJ are also restricted to the mass shell. This has been proved by
Hepp [20] for the case of non-overlapping momenta and is a reasonable
assumption even for overlapping P. The pole in the second term of the
r.h.s. is cancelled by the pole (6.2) of the third term, whence the existence
of the new mass shell restriction follows.

The mass-shifted completeness equations differ from the original
ones in two respects : the integration variables Wj have to be amputated
with the new mass M2 + δM2 and the factors δ+(Wj) contain the new
mass M2 + δM2. This leads in (5.2) to additional terms of the form

r0(X9XL9xi9x29 £/!,.

from the new amputation prescription and

from the explicit M-dependence of the equations. Both types of term
vanish because of (3.2). Hence (5.3) satisfies the mass-shifted Eq. (5.2)
and from this fact we deduce that (5.15) satisfies the mass-shifted Eqs. (5.4)
exactly as we did in Section V for the original equations.
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Equation (6.8) is then our formula for the electromagnetic mass
shift of the hadron:

dw
τ2(P, -P, w, -w) σ2(-w, w,P, -P)

w2 — m2 w2 — m2 — z ε w 0

For P2 = M2 we have

<τ2( — w,w,P, — P) = r2( —w, w, P, — P),

(6.10)

(6.11)

the difference in the prescription for taking the limit of H2 being irrelevant
because H2 is analytic on the boundary in the critical variables.

Let \Py = Aϊn(P)Ω. The LSZ reduction formulae (see E) tell us

<P I f(p, q) I β>I - (2π)2 δ+(P) <S+ (β) τϊ(P, - β, p, 4)

;β)r2(p,q,p,-β)
whence

4π

T( — w, w)

w2 — m2 + zε w2 — m2 — iεw 0

This becomes, with the help of (2.11) and (5.8),

<5+ (P) <S+ (β) <34(P - β) - ((5M2), = 1

1 f rfw

4π w2 — m2 — iεwc

which is our final result.

(6.12)

(6.13)

(6.14)

VII. Discussion

We have developed a form of perturbation theory for an interaction
of electromagnetic type which takes the strong interactions rigorously
into account. As a result we have obtained the expression (6.14) for the
second-order electromagnetic mass shift of hadrons. This expression
must be compared with the form (1.1), which reads for our model and
in our notation,

^
(7.1)

and which we would have obtained if (5.5) had been the correct form of τ2 .
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An obvious advantage of (6.14) over (7.1) is that the ambiguity in-
herent in the definition of the Γ-product is completely irrelevant. The
T-product occurs only in the first term, where both the hadron momen-
tum P and the photon momentum w lie on their respective mass shell.
There <P| T( — w, w)|Q> is unambiguously defined as the physical for-
ward Compton scattering amplitude. (Remember that the photon varia-
bles w and — w are to be amputated.) In the second, off-mass-shell,
term only the absorptive part of this amplitude enters and this is defined
unambiguously in terms of the fields.

The two expressions differ by the term

(7.2)
4π J w2 — m2 — iεw 0

The integrand is analytic in the lower half w0-plane. Hence A vanishes
if the w0 integration contour can be closed by an infinite semicircle in
the lower half plane. The remarks made after Eq. (5.11) apply here:
it may very well happen that (δM2)2 is finite and yet A φO. In this case
(δM2)2 is the correct value of the mass shift, (δM2)'2 is wrong. We remind
the reader that this situation may occur if the absorptive part shows an
oscillatory behaviour for large w0.

If Zl=0, then (δM2)2 = (δM2)'2. It is, however, important to note
how the integral A is defined. The following situation is of practical im-
portance: assume that the integrand /(w) of (7.2), considered as a func-
tion of w0, is bounded for large w0 by c(w) w0 |~

1~ ε, (ε>0), where c(w)
is not strongly decreasing for large \w\. Then

R

lim j d3 w j dw0 /(w) = 0. (7.3)

However,
R

lim j dw0 J d3w /(w)
R^co _R

need not even be defined, much less vanish. In this case the equality
(δM2)2 = (δM2)2 holds only if the right-hand side is defined as
J d 3 w Jdw 0 ..., and the integrations must not be interchanged without
full justification.

The reader might be inclined to find our derivation of (6.14) not too
convincing. In particular, he might distrust the admittedly rather vague

remarks on the existence of solutions distinguished by their optimal
behaviour at infinity. We should therefore like to point out that our
rejection of (7.1) does not rest on these arguments but on the simple
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fact that it violates unitarity (if A φ 0). It is therefore inadmissible also
in a canonical framework.

Another comment that ought to be made is this: it is well known that
δM2 is not measurable, since the electromagnetic interactions cannot
be switched off experimentally. One can measure only mass differences
between hadrons whose masses are expected to coincide in the limit
e->0. Let us then consider a theory with two hadrons A{ and A29 both
with the same zero-order mass M. It might happen that the individual
mass shifts turn out to be infinite, but that their difference is finite.
This situation seems to be quite satisfactory since the mass difference is
anyhow the only observable quantity in the problem. However, things
are not really that good because our formalism would then start from a
Oth-order theory describing strongly interacting particles of infinite
mass, a fact which would certainly detract somewhat from the credibility
of our procedure.

Finally we wish to make two remarks about our perturbation theory
in itself, without regard to the calculation of mass shifts.

a) We might decide to apply perturbation theory also to the strong
interactions and study things in every order of this. The Feynman
rules then clearly tell us that (5.5) is the correct form of τJ(P1? ...,PJ.
Do our results, then, imply that the Feynman rules are wrong? No,
because the τ-functions of perturbation theory never show an oscillatory
behaviour at infinity. Therefore, either both (5.5) and (5.15) diverge, or
both are convergent and equal, so that no contradiction is present.

b) The whole procedure becomes questionable if the hadron turns
out to be unstable under electromagnetic interactions, for then the struc-
ture of the Hubert space f> gets changed by the switching-on of the electro-
magnetic interactions, i.e., Eq. (2.1) is no longer correct. Such an instability
occurs in second order if the vertex function τ2(P, Pι,p2) does not
vanish for P2 = M2, p2=p2 = m2.

Let |p) ιn>out be a state with one incoming (outgoing) hadron of
momentum P, |pι,p2>

l n 'o u t analogously a two-photon state. Then
we have in our case

°u t<Pι,P2^>'2nΦθ. (7.4)

|P)m is no longer a stationary state, as stable one-particle states have
to be. However, if we calculate i n<pι,p2l jP)2 l ^Y summing over a com-
plete set of intermediary out-states, we find that this expression still
vanishes, so that (2.1) remains true in second order. This is related to
the fact that (δM2)2 is a real number, i.e., the shifted hadron pole in the
propagator still lies on the real axis and the cut starting at (2m)2 is not
yet present in second order.
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