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Abstract. The convergence of the integral over the local charge density toward the
global charge is investigated within the framework of quantum electrodynamics.

1. Introduction

In relativistic quantum field theories one frequently considers oper-
ators which are formal integrals over the entire three dimensional space
of the zero component of a conserved quantity. In particular, one
writes e.g. for the charge formally

Recently one has learned that in case the theory does not contain states
of arbitrarily small energy-momentum above the vacuum state this
expression is to be understood in the sense

(ψ\Qφ)=lπn(ψ\Qrφ), (1)

S Φ ° ) d 3 x , (2)

r ^ l , (3)

J α(x°) dx° = 1 (4)

with/ 0(jc)e^(fl 3), OL{xo)e2(B}). (The notation is explained at the end
of this introduction.) ψ and φ are not arbitrary vectors in the Hubert
space but are generated from the vacuum state by arbitrary local operators
[1-4]. This is from the mathematical point of view a rather weak kind of
convergence. Strong or weak convergence in the usual sense cannot
occur as is shown e.g. in [3] and [4]. On the other hand the result seems
to be rather reasonable from the point of view of physics.
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The question then arises of whether a similar statement holds in case
the theory contains states of arbitrarily small energy-momentum and
one may suggest that the same result holds provided one does not have
the case of a spontaneously broken symmetry [2,4], It is the intention
of the present note to show that this indeed is true for the electric charge
in quantum electrodynamics.

Mathematical Notations

Rn: with n = 1, 3,4: n dimensional real Euclidean space.
R\: positive real axis including the origin.
S)(Rn)\ test function space of arbitrarily often differentiable com-

plex functions over Rn with compact support.
Q)(K)\ subspace of 3>(Rn) of functions with support in a subset

KcRn.
3) {R4 — 0): Subspace of @(R4) of functions the support of which does not

contain the origin.
test function space of arbitrarily often differentiable complex
functions on Rn which as well as all their derivatives vanish
faster than any power for increasing arguments.

2\R% Q)\K\ 9\R4-% &"(Rn): the corresponding spaces of distribu-
tions.

x = (χ°? x) = (χ°? χ
x

9 χ 2

? χ 3 ) : four vectors in R4.
χ 2 = χ 0 2 _ χ 2

0w': 0oo = 1> 0 i i = - l f o r ί = l , 2 , 3 , gγV' = 0 for v + v\
I}(dμ)\ space of yU-Lebesgue integrable complex functions.
ί : in front of a term occurring in an equation this symbol

means that the equation becomes true if that term is multi-
plied with a certain finite and non zero constant number.

2. Assumptions and Statement

2.1. In quantum electrodynamics we have for the photon field
Λv(x) (v = 0,1,2, 3) and the electric current jv(x) the equations

37vM = 0. (6)

We assume that Λv(x) is an operator valued tempered distribution trans-
forming like a vector under a unitary representation of the inhomogeneous
Lorentz group on the representation space G. Unitary is ment with
respect to the indefinite metric ( | )G on G (G stands for Gupta) which
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may be expressed by a metric operator η and a scalar product ( | •) for
which G is a Hubert space

η commutes with the four translations Pμ. (However, it does not commute
with the Lorentz transformations.) Hence the translations are unitarily
represented on G which respect to its Hubert space metric and give
rise to a decomposition of unity.

G is assumed to contain a subspace Jf̂  spanned by the states on
which the auxiliary condition holds. ^ contains the unique Lorentz
invariant vacuum state Ω, J^x is invariant under Lorentz transformations
as well as under all gauge invariant operators (but there are, of course,
also non gauge invariant operators leaving ^ invariant). On 3^x we have

If one denotes by jf0 the set of vectors in jtf[ with

(ψ\ψ)G = 0

then the quotient space

tfl — eft-^1 <yc Q

is the Hubert space of physical states.On J f we have a unitary representa-
tion of the inhomogeneous Lorentz group, the spectrum of the transla-
tions vanishes outside the forward light cone.

In addition to the photon field there is the electron field ψ(x). The
fields are assumed as local, i.e. they commute resp. anticommute when
smeared with test functions the supports of which are space-like to
each other. When smeared with test functions, the smeared fields and
all polynomials of them are assumed to be applicable to Ω thus generat-
ing a dense set in G.

All these assumptions seem to be true for quantum electrodynamics.
However, up to now they are proved only for the case of free fields [5].

2.2. Consider now the Qr. They are supposed to generate a one
parameter group of internal symmetry transformations Φ^Φτ for the
local algebra 01 formed by the field operators smeared with test func-
tions e @(R4) [6]. In case of a conserved symmetry it holds on J f that
the vacuum expectation values are invariant

(Ω\ΦΩ) = (Ω\ΦτΩ)

for all local operators Φ on Jίf. (The elements of J f as well as the induced
operators on J^ carry a hat in order to distinguish them from those
of Jtf[ and G.) Hence there exists a uniquely determined family of unitary
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operators

U(τ)Ω = Ω,

The condition on the Qr for generating a conserved symmetry is

l i m ( Ω | [ β Γ , Φ ] Ω ) = 0
r—• GO

for all local operators on tff [7, 1-4]. The connection between Q and Qr

then is given by [1, 4]

lim (Ω I Φx Qr Φ2 Ω) = lim (Ω | Φx [ β r , Φ 2] Ω) + lim (Ω | Φx Φ2 Qr Ω)
r-*oo r->oo r—•oo

= (Ω I Φ± β Φ 2 Ω) + l i m ί Ω I ^ Φ a β . Ω )
r~* oo

for all local operators on 2tf. Hence we have to show

lim (ΦΩ I QrΩ) = lim (ΦΩ | QrΩ)G = 0
r-* oo r—> oo

for all local operators Φ on Jf resp. for all Φe^1 when 9t1 denotes the
operators from 0t which leave ^ invariant. This proves at the same time
that Φ -> Φτ is a conserved symmetry as well as the connection between
Q and β r .

Theorem. Under the assumptions mentioned in 2.1 it follows for every
Φe^

l im(ΦΩ|β Γ Ω) G = 0. (7)

3. Proof of the Statement

We apply an idea of Ref. [8] and [2] and make use of a Jost-Lehmann-
Dyson representation derived in [9]. Before doing so, we need some
preparations. In particular we extract from (5) together with the as-
sumptions in 2.1 some information concerning the behaviour of the
Fourier transform of

(ΦΩ|j o(x)Ω)G

near the origin. Together with the spectrum condition and the relative
locality oϊj0(x) and Φ this will enable us to prove the statement.

3.1. The assumptions imply a Kallen-Lehmann representation

(Av(x)Ω\Av.(y)Ω)G= J ei*χ-»{gvv.dμ1{p) + pvpv.dμ2(p)} (8)

where dμ2 (p) and dμx (p) define tempered Lorentz invariant measures on R4.
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[Proof. As usual one concludes that the Fourier transform of (8)
is a distribution of the form

where ρι and ρ2 are Lorentz invariant. We take that for granted and
concentrate on showing that ρ2(p)d4p defines a measure on R4. The
commutativity oϊη with Pμ implies that (9) is a measure on R4. In particular
that is the case for pί p2 ρ2(p)- Hence ρ2 is a measure on R4 — 0. The Lorentz
in variance of ρ2 will enable us to infer that ρ2(p) is a measure on R4:
Qi(p) i s clearly in Q)'(R4 — 0). Hence, by a result on Lorentz invariant
distributions [10] one has f o r / e ^ ( # 4 - 0 )

with the uniquely determined distributions ρee^'(R1\ ρoe@)'(R\) and

Consider now g(s) e S)(K) with a compact KER1 and put

With a suitably chosen non negative F(p2)eS)(R1) we have
- 0 ) a n d

fS(s) = g{s) a,

h(s) is apparently infinitely often differentiable and unequal zero for
all s ^ 0. By choosing F(p2) appropriately, this stays true for all values
se K. We now replace fx and f2 by respectively

f o r p G

for p φ supp f2 ,

23 Commun. math. Phys., Vol 14
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which are still in 3>{RA — 0). Then we have

and furthermore

sup /3(p)Pi Vi ^ sup g(s) Cκ ,
peR4 seK

Cκ= sup a'Pop
2

ίP

2

2F(p2),
p°2 -p*eK

Now we know that ρ2(p) ^ a measure, i.e. a distribution of order zero on
- 0). Hence

\Qe\j9~\\ = tfftbήPiPiQiip) d4P\ ^ sup
pel?4

^ sup g(s) C1 - Cκ

seK

and

\Qoίd1\ =

(C t and C2 depend on K too).
Hence [11] ρe and ρ 0 are Radon measures on R1 and R\ respectively.

We know that PiP2Q2(p) is a measure on R4 with value zero at the
origin. Hence it is fixed uniquely by its values on testfunctions from

- 0) and we have for fe@(R4)

We extend now ρ2(p) to all of ^{R4) by

with

= $f(p)δ(p2-s)d4p,

which is possible, since fe(s\ f°(s) are continuous on R1 and /£+ re-
spectively. Furthermore we have for feS){Kι) with a compact K1 CR4
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and with suitable numbers C#i, Cfi

p / ( ) ^ i p
seR' peK1

sup / ° ( s ) ^ C | . sup /(p).

Hence Q2(p)dp = dμ2(p) defines a Radon measure on JR4, and so does
pvpV'Q2dp = pvpv'dμ2(p) and Q^dp^dμ^p). The temperedness is
implied by the temperedness of Av(x)~\.

From (5) and (6) it follows that

(/v(x)Ω|Jv(y)β)G= ί J*χ-y)tf)2faPv-P29vv)dμ2ip)
peR4

and in particular

(jo(x) Ω \jo(y) Ω)G = J ^ - ^ ( p 2 ) 2 \p\2 dμ2(p). (10)

Since the current is gauge invariant, it follows that μ2(p) is a positive
measure off the light cone. The spectrum condition on J f implies that
p2 dμ2(p) vanishes outside the forward light cone.

3.2. Consider Φ e ^ l 5 define Φ(x) = U(x) ΦU~ί(x) where

is the unitary representation of the space-time translations, xe/? 4 ,
pe RA, px = p°x° — xp. In

σ(p) is a tempered complex measure on R4 which is locally finite.
(This follows like the next equations immediately from the translation
in variance and fromy0(;c) being an operator valued tempered distribu-
tion.) σ(p) vanishes outside the forward light cone due to the spectrum
condition. Hence &(p°) dσ(p) with a(p°) e ^(Rι) is a finite complex measure
on J?4. With the notation Φ[g] = j Φ(x)g(x)d4x, etc., we have due to
translational invariance (g(x) = g( — x)):

with g{p) = \eipy g{y)d4y. This holds for all test functions
and all x e R4. Therefore, it follows for every Borel set ΔeR4 that

j g(p)dσ(p)= J
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From this we get by Schwarz' inequality on

I g(p) dσ(p) Γ
= \\ΦΩ\\Gtt\g(p)\2(p2)2\p\2 dμ2(p)}1/2

We now put g(p) = gι(p)δc(P°) with α(p°)e^{R ι\ g^e^iR4) and
write g(p) instead

If gip)δ(p°)dσ(p) ^ | |ΦO||G {f |£(p)|2(p2)2 |/>|2 |α(p°)|2 dμ2(p)\ι'2 . (11)

ot(p°)dσ(p) and |α(p°)|2 dμ2(p) define finite measures on # 4 . (11) holds
for every continuous function g(p) bounded by a polynomial for large p,
in particular for g(p)= 1. Application of the Radon-Nikodym theorem
[12] implies

α(p°) dσ(p) = 2 2 2 ° 2

with m ^ e L 1 ^ 2 ) ! / ? ! 2 |α(p°)|2 <iμ2(p)). Inserting this into (11), we get

g(p)m(p)(p2)2\p\2\*(p°)\2dμ2(p)

(12)
5Ξ ||ΦΩ||G IJ \g(p)\2 (pΎ \p\2 \&(pΎ ^ 2 ( ) } 1 / 2

Let now zl be bounded, contain the origin and let g(p)^0 on A.
If m(p) is decomposed into its real and imaginary parts, then (12) holds
for each part separately. By decomposing A into A+uA~ (or AfuA^~
respectively) with Rem(p)^0 on A*, Rera(/?)<0 on A~ (respectively for
Imm(p)) [14], and by applying (12) on A* and A~ (or Af, AJ) separately,
one shows that

\g{p)\m{p)\{p2)2\p\2\di{p0)\2dμ2{p)
Δ

S 21/2 | |ΦΩ||C | | \g(p)\2 (p2)2 \p\2 |α(p°)|2 ̂ 2 (

We let now g(p) converge toward (p2\p\y1 point wise on A. Fatou's
lemma [13] shows that

m(p)el}{p2\p\)\φ°)\2dμ2{p). (14)

Since μ2(p) is tempered and p2 dμ2(p) vanishes outside the forward light
cone, this stays true (compare the last inequality!) if m(p) is multiplied
by any power of the components of p.
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3.3. Consider now with α(x°) e $){Rι)

{Φ\_a]Ω\jo(x)Ω)G

the Fourier transform of which, a(p°) dσ{p), is discussed above. Accord-
ing to [9] one has for this a Jost-Lehmann-Dyson representation

(Φ[ά]Ω|, 0 (x)Ω) G

= <t [d3ξ ί dσ(p) ά(p0)«-'"«' ( ^ - ip°\ Δfoix - ξ)

= ί \d3ξ>

D'

where Dί denotes a compact region in R3. We keep now x° finite (in fact,
we shall put it zero) and let x increase. Since D1 is compact, x — ξ' will
become space-like for sufficiently large x, and we get (observe the factor p2!)

= <t I d3ξ I dμ2(p)m(p)p2\p\2\a(p0)\2e2\p\2\a(p0)\2e-^
• J d

dx° -ιp-

n2 3

with the cylindrical function Kt. Hence for \x\ sufficiently large

m(P)\p2\p\2po\a(po)\2dμ2(Py sup

» 1

d3ξ' •SUpί/Xî -r-T,
yeR1 \X\

m(p)\p2\p\2\a(p0)\2dμ2(p) sup
yeR1 dy ^

Since for small y K1 (y)«1/j;, and since for large y K1 drops exponentially,
it follows for x° = 0 and |JC| large

. 4 "
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In particular, we see now that

lim (ΦΩ\QrΩ)
r —*• o o

exists.

3.4. We may write

(Φ[ά-]Ω\jo(x)Ω)G=Σj>

with

Fi(x)= <t \d3ξ' I dμ2(p)m(p)(p2)2

Pi\a(pΎe-ipξ' ( -^ -ip° ) Δfc,(x-ξr)

As in 3.3 it follows for x° = 0 and |JC| large

- , 1

Hence the Fourier transform F^p) of Ft(x, 0) is bounded and continuous
in p and

,Ω)β = jfr(p)ptFt(p)d3p

which converges toward zero for r-+oo as it was stated above.

Acknowledgement. I benefitted from discussions with Dr. P. Breitenlohner, Dr. D.
Maison, E. Rudolph and Dr. S. Schlieder.

Note added in proof. As it was pointed out to the author by J. A. Swieca, perturbation
theory indicates that ρ2(p) has a contribution of the first derivative of a delta function on the
light cone. The preceding proof works also if such a contribution is present because it does
not show up in the two point function of the current, and our statement stays true. How-
ever, the assumption that η commutes with Pμ then has to be modified. — I thank Prof.
Swieca for this information.
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