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Abstract. We prove that the Heisenberg picture fields for a self interacting Boson
field with the λ\φ\ interaction in four space time dimensions exists as weak limits of Heisen-
berg picture fields corresponding to the cut-off interactions.

1. Introductions

In an earlier paper [4], here after refered to as paper I, we studied
self interacting Boson fields with interaction densities of the form
V(φ(x)) in four space time dimensions, where V was a bounded continuous
function with a bounded uniformly continuous first derivative. We
proved in I that the Heisenberg picture fields existed as weak limits
of the Heisenberg picture fields corresponding to the cut-off interactions.

The purpose of this paper is to show that similar methods as these
used in I, may also be used to prove existence of Heisenberg picture
fields for more singular interaction densities. For this reason we shall
study the self interacting Boson field φ(x) in four space time dimensions,
with the formally local and relativistic invariant interaction

λ\\φ(x}\dx
R3

where \φ(x)\ is the absolute value of φ(x). As in I we introduce the cut-
off interaction

V*,r = λ J |φβ(x)|dx,
M^r

where φε(x) is the momentum cut-off field, and prove that the Heisen-
berg picture fields corresponding to the cut-off interaction converges
weakly as the cut-off is taken away.

2. The Cut-Off Interaction

We shall use the Fock space representation. The Fock space ̂  is a
Hubert space where the elements are sequences of functions/ = {/0 ,/i,...}
where fn(pί,..., pn) is a symmetric function of n-variables p1,..., pn with
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Pi in R3. The inner product in 3P is given by

oo p

n = 0 J

where ω(p) = (p2 + m2)* and we shall assume that m, the mass of the
free fields, is strictly positive. The annihilation operator a(p) is defined by

The creation operator α*(p) is the formal adjoint of a(p\ and we
have

The free energy operator H0 is defined by

n

(Hθf)n(Pl> ->Pn)= Σ ωtPi)fn(Pl> '>PιD
ί = l

//o is obviously self adjoint on its natural domain of definition D0.
Let h be in L2(JR

3). It is well known that a(h) = J a(p) h(p) dp and
a*(h) = J α*(p) h(p) dp are closed operators with domains containing D±,
the domain of //§, and on D^ we have the estimate

| |fl*(Λ)| |^m-*| |Λ| |2 | |(fl0 + l) ίVlU (2.1)

where a* stands for α* or α, and m is the mass of the free field.
Moreover α*(Λ) and a(h) have the same domain of definition and

are adjoints of each other, and on this domain a*(h) + a(h) is self adjoint.
a*(h) + a(h) is also essentially self adjoint on D0. We have also for h^
and h2 in L2OR3) that a*(h2) maps D0 into the domain of a*^), and on
DO we have the following estimate

l l^ ίΛJ^ίMl^w-MlΛi l l z l^ lL l l ίHo + i ϊ v l l . (2.2)

For the proofs of these statements and more details on the creation-
annihilation operators see Ref. [3].

The Boson field φ(x) is defined by

φ(x) = 2-*(2πΓ* f (eipxa(p) + ίΓ'>*α*(p)) ω(p)~- dp .

As for the creation-annihilation operators a*(p), we have also that φ(x)
is a improper operator valued function, or if we like operator valued
distribution; and only after integrating with smooth enough test func-
tions do we get operators. From what is said above about the creation-
annihilation operators, we see that

φ(h)=jh(x)φ(x)dx
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is a closed operator if ω~*h is in L2, where h is the Fourier transform
of h. We also see that if h is real then φ(h] is self adjoint and also essen-
tially self adjoint on D0.

Let g be a positive C°°-function on K3, with support contained in
the open unite ball B = {x; |x| < 1}, and such that J g(x)dx= 1. Define

1
9ε(x)=—9( — }> then gβ(x) has support in £ ε={x;|x|<ε} and gε(x)

ε \ ε /
converge to the Dirac ^-distribution as s tends to zero. As in paper I
we define the momentum cut-off field φε(x) by

From what is said above about the field φ(x\ we see that the momentum
cutt-off field φε(x) is a self adjoint operator which is essentially self
adjoint on D0 for all ε and all x.

Let U(x) be the unitary group of space translations on 3F. That is
U(x) is the strongly continuous group on 3F defined by

Since H0 commutes with l/(x), we see that U(x) leaves D0 as well
as Di invariant. By (2.1) D± is contained in the domain of φε(x) for all ε
and all x. Let \φε(x)\ be the absolute value of φε(x), i.e. \φε(x)\ = (φε(x)2)^.
Since φε(x) and |φε(x)| have the same domains of definition, we get that
Di is in the domain of \φε(x)\ for all ε and all x, and (2.1) gives us the
following estimation D±

(2.3)

where Cε is a constant depending only on ε. From the definition of
φ(x) we get that

φε(x)=U(-x)\φε(0)\U(x).

Let ψ be in D^. Since U (x) is strongly continuous and leaves D^ invariant,
we see that U(x) ψ is a strongly continuous function contained in the
domain of |φ£(0)|. Using now that \φε(0)\ is closed we see that \φε(0)\ U(x) ψ
is strongly continuous, hence that \φε(x)\ ψ is strongly continuous in x
for all ψ in D^.

Let ψ be in D^, then we define the cut-off interaction Vε r by

V^ψ = λ f \φε(*)\ψdx (2.4)
No-

where the integral is a strong integral. The strong integral in (2.4) exists
since the integrand is strongly continuous and the domain of integration
is compact.
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From (2,3) we get the following estimate on D±

(2.5)

where C depends only on ε, r and λ. Since (H0 + 1)̂  is infinitessimally
small with respect to H0, i.e. for any α>0 there exists a b>0 such that
for all ψ in D0

0 + l)*ψ\\£a\\H0ψ\\+b\\ψ\\9 (2.6)

we see that Vε >r is infinitessimally small with respect to H0 for all ε, r
and λ. Therefore

is self adjoint with the same domain of definition D0 as HQ.
We now introduce the free Heisenberg picture fields

and in the same way we define

and

Since eitH° leaves ZX invariant we see that φl(h) and ^(x) are self
adjoint operators with domain containing D±. Since Vε r is a symmetric
operator with dense domain it is closable, and we will also write Vε>r for
its closure. By (2.4) D± is contained in the domain of 7βfΓ, hence Fε>r(ί)
is also a closed symmetric operator with domain containing D±.

It follows from (2.2) that if h^ and h2 is in L2, then ^(/ϊa) maps D0

into the domain of <ps(ftι). From the commutation relations the anni-
hilation-creation operators we get that the following commutation
relations are valied on Z)0

y) J(x - y, s - 1) . (2.7)

The function A (x, t) is given by zl (x, 0) = 0, and for t φ 0

(2.8)

~<5(x2-ί2)+^0^^

Since
K.r(0 = A J \φl(x)\dx (2.9)
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and \φl(x)\ has the same domain as φKx), we see that the domain of
Vε>r(t) contains the intersection of the domains of φ'(h) with h in L2.
But since φs(hι) maps D0 into the domain of φ*(h) if h and hl is in L2,
we get that for h in L2, φs(/0 maps D0 into the domain of VE >r(t). We will
also need the following lemma.

Lemma 1. Let h be in L2. Then Vε>r(t) maps D0 into the domain of
φs(h\ and φs(h) maps D0 into the domain of Fε>r.(ί). Moreover on D0 the
cummutator \_φs(h\ V ε r ( t ) ] is a bounded operator given by

W(h),VΛ,r(t) ] = iλ f dxttdydzh(y)gε(x-z)A(y-z,s-t)sgnφt

ε(x)
\x\*r

where the integral over x is a strong integral.

Proof. We have already seen that φs(h) maps D0 into the domain of
VEtr(t). To prove that V ε r ( t ) maps D0 into the domain of φs(h), we shall
prove that e~lτφS(h)V£tr(t)ψ si strongly differentiable from the right at
τ = 0 whenever ψ is in D0. We have that

_L (e-iτφS(VVε,r(t) eίτφs(h) - Vε>r(t))

— (e~iτφs(h)ψ — ψ) converge strongly to —iφs(h)ψ, since D0 is con-

tained in the domain oϊφs(h). We have already proved that φs(h) maps D0

into the domain of Vε r(t). Using now that Vε>r(t) is a closed operator

we see that Vε>r(t) — (e~iτφs(h}ιp — ψ) converge strongly. To prove strong

convergence of the first term, it is enough to prove that

— (έΓlτ* w7βfΓ(ί) eiτφs(h} - Vε>r(t)) (2.10)

is uniformly norm bounded and converge strongly, since e~lτφs(h)ψ is
strongly continuous in τ.

From (2.9) we see that the expression above may be written as

By using a variant of Lebesgues lemma on dominated convergence, we
see that it is enough to prove that the integrand above is uniformly
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bounded in τ and x, and converge strongly for each fixed x. Using (2.7)
we get

τβ(x)

where

We may therefore write the integrand in (2.11) as

By its definition φε(x) is unitarily equivalent to φε(x), and by the
definition of φε(x) we have φε(x) = a*(h) + a(h) for an h in L2. Set
P = (2i\\h\\lΓ1(a*(h)-a(h)). Then φe(χ) as well as P are self adjoint
operators, which satisfy the commutation relation [P, φε(xj] = i. By the
uniqueness of the representation of the commutation relation we get
φε(x) has absolutely continuous spectrum with constant multiplicity on
the whole real line. Therefore to prove that (2.12) is uniformly bounded
in τ and in x for |x| ^ r, and converge strongly as τ tends to zero, it is
enough to prove that

l(|ω + τjS(x)|-M) (2.13)

is bounded as a function of ω uniformly in τ and in x for |x| ̂  r, and
converge strongly as an operator on L2(dω) as τ tends to zero. But

-β(x) for ω^

-β(x)+ — (ω + τβ(x)) for -τβ

β(x) for ω ̂  τβ(x)

if β(x) ^ 0 and we get a similar expression for β(x) ̂  0. It follows from
the definition of β(x), that it is uniformly bounded for |x| ̂  r. Hence
(2.13) is uniformly bounded in τ and in x for |x| g j j r , and it tends point-
wise to β(x) sgnω as τ tends to zero. By Lebesques lemma on dominated
convergence we then get also that (2.13) converges strongly as an operator
on L2(dω) to /?(x)sgnω, and we have proved that 7βfΓ(f) maps D0 into
the domain of φs(h).

That the commutator \_φs(h\ Fε>r.(ί)] is bounded on O0, follows from
the formula for the commutator given in the lemma. It is therefore enough
to prove this formula. Using that Vε>r(ί) is closed and that φs(h) maps
/>0 into the domain of Fε>r(ί) and that Vε>r(t) maps D0 into the domain
of φs(h\ we get that

(2.14)
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is differentiable for ψ in D0, and with derivative at τ = 0 given by — i \_φs(h\

rβfΓ(ί)] V>
On the other hand we see that (2.10) converge to the derivative of

(2.14) as τ tends to zero. But we have already proved that (2.10) converge
strongly to λ J β(x) sgnφt

ε(x)dx. Consulting the definition of β(x) we
1*1 ^r

see that the formula of the lemma is proved.
This completes the proof of Lemma 1.

Corollary 1. Let hbe inL1nL2. Then

where C is a constant that depends only on the mass m of the free field.

Proof. The norm estimate of this corollary follows by a direct norm
estimate of the expression for the commutator given in Lemma 1, and
by using (2.8) together with the asymptotic behavior of J1 .

3. The Heisenberg Picture Fields

We define the Heisenberg picture fields for the cut-off interaction by

Since eltH^r leaves D0 invariant, we have that for h in L2, φε,r,t(h)
is a self adjoint operator with domain containing D0.

Lemma 2. Let h be in L1nL2. Then φε>r,t(h)~ Ψ*(fy is a bounded
operator and

where the integral is a strong integral.

Proof. Let ψ be in D0, then ei(t~s)H°eisHe'rψ is strongly differentiable
with respect to s, with derivative

By Lemma 1 this is in the domain of φ(h)9 and since φ(h) is a closed
operator we get that φ(h)ei(t~s)H°eisHε'rψ is strongly differentiable with
derivative

φ(h)eί(t-s)H°iVE>re
isHε'r.

From this we get that if ψί and ψ2 are in D0, then
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is a differentiable function of s with derivative equal to

(Vl, e-M 'lφ'-'W, /7βtΓ] eisH^ψ2) (3.1)

Integrating (3.1) from zero to t we therefore get

By Lemma 1 the integral above gives rise to a bounded operator,
and using now that D0 is dense in 3F we therefore get that φe,Γff(Λ) — φ*(h)
is bounded and

where the integral is a weak integral. From the formula in Lemma 1
we see that [φ*~s(h)9 Fε> J is uniformly bounded and depend strongly
continuous on s. Since also eisHε r is uniformly bounded and depend
strongly continuous on s, we see that the integrand above is bounded
and depends strongly continuous on s. Hence it is strongly integrable,
and using now that the weak integral is equal to the strong integral
whenever the strong integral exists, we see that we may replace the weak
integral by the strong integral in the formula above. This proves Lemma 2.

Lemma 3. Let hbeinL1nL2. Then φε,r}t(h) — φ*(h) is norm continuous
in ί, and the norm continuity is uniform in ε and r. Moreover we have the
following estimate for the norm

where C depends only on the mass m of the free field.

Proof. The moreover part of the lemma follows from Corollary 1
and Lemma 2. By Lemma 2 we have for t1 ̂  t2

= i j e-isH* ''[<pt2-s(h)-φtl-s(h)9 Fε>J eisli< rds
o

+ i I e"isH^lφt2~s(h)9 VBt J eisH<-rds .
ίl

From the formula in Lemma 1 we see that the first integral tends in
norm to zero uniformly in ε, r as t{ tends to t2 or t2 tends to tl9 if h is
in CQ. By Corollary 1 the second integral tends also in norm to zero
uniformly in ε and r. Hence we have proved that φε>r>t (h) — φ^h) is norm
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continuous in t uniformly in ε and r if h is in CQ. Since CQ is dense in
L1r\L2 in the strong L x topology, we then get by the norm estimate of
Lemma 3 which we have already proved, that <pε,M(/0 — φ\h) is norm
continuous uniformly in ε and r for all h in L1 nL2. This proves Lemma 3.

Theorem 1. There exists a sequence εn tending to zero and a sequence
rn tending to infinity, such that for all hinLίnL2 and all f, φεn>rn>t(h) — φl(h)
converge weakly to a bounded operator φ(h, t) — φ*(h). Moreover φ(h,t)
— φ*(h) is norm continuous in ί, and satisfy the following norm estimate

\\φ(h,t}-φ\h)\\^C\λ\\tf \\h\\,,

where C depends only on the mass m of the free field.

Proof. Let h be in Lίn>L2 and ψί and ψ2 in 3F. By Lemma 3
(ψι9(φε tr ,t(Λ) — <Pt(h))ψ2) is a family of functions of t that is uniformly
bounded in ε, r for ί on compact intervals. By the same lemma it is also
an equicontinuous family of functions. The Ascoli theorem then gives
us that there exist sequences εn, tending to zero and rn, tending to
infinity such that the corresponding functions converge uniformly on
compact intervals. By passing to subsequences εn and rn we get that
(ψι ^ (ψεn,rn,t(ti) — <P*(h)) Ψ2) converge uniformly on compact intervals in t
for a countable dense set of ψ1 and ψ2, and a countable set of h that is
dense in L1nL2 with respect to the strong Lx topology. The uniform
norm estimate of Lemma 3 then gives us convergence uniformly on
compact intervals in t for all ψί9ψ2 and h. This proves weak conver-
gence. To prove that the limit is norm continuous in ί, we use again
Lemma 3. This lemma gives us that for any ε > 0 there exists a δ > 0
independent of n such that

\\<P£n,rn,t(h) - φ\h) - φεn,rn,t + τ(h) + φt+τ(h)\\ ^ ε

as soon as |τ| ̂  δ. Using now that the set of operators with norm smaller
or equal to ε is weakly closed, we get that

as soon as |τ| ̂  δ. This proves the norm continuity. The norm estimate
of the theorem follows from the norm estimate of Lemma 3 by using
that the set of operators with norm smaller or equal to C\λ\ |ί|3 | |/z||ι is
weakly closed. This proves the theorem.

Remark L We will like to point out that the method used in this
paper to prove Theorem 1 for an interaction density of the form A|φ(x)|,
would work just as well for any interaction density V(φ(x)\ where V(oϊ)
is any piecewise linear function. Combining the method of this paper
with those of paper I we see that Theorem 1 may be proved for any
interaction density V(φ(x)\ where F(α) is a continuous function, with
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a piecewise uniformly continuous and bounded derivative F'(α). In
paper I we get somewhat stronger results than in this paper, and a
carefull reader will have observed that the stronger results depend on
the boundedness of F(α) in addition to the boundedness of F'(α).

Remark 2. Having proved in this paper and in paper I, that the
Heisenberg picture fields exists as weak limits of the Heisenberg picture
fields corresponding to the cut-off interaction, for a rather general class
of interaction densities; we would naturally ask if these Heisenberg
picture fields are trivial or not. That is if the weak limit of φEn>rnίt(h) — φ\h),
which we have proved exists, is zero or not. The methods used in this
paper and in paper I, are of course not good enough to give an answer
to this question. A partial answer to this question may however be found
by considering the two interaction densities for which one is able to
compute the Heisenberg picture fields. Namely the linear and the qua-
dratic interaction. That is

V(φ(x)) = λφ(x) and V(φ(x)) = λφ(x)2 .

If we for these two interactions form φ^r^fy — φ^h) we will see by ex-
plicit calculations that the weak limits exist, and are different from zero.
The explicit calculations also gives us that the Heisenberg picture field
φ(h, t) we get by taking the limit is the correct Heisenberg picture field.
Namely in the linear case we get the free Heisenberg picture field plus
a scalar, and in the quadratic case we get a free field with mass m + λ.
Sice the calculations are straight forward we will not give them here
but leave it to the reader to verify these statements.

Of course these two trivial examples does not prove anything about
what happens in the general case, but they may be used as an indication
that the Heisenberg picture fields which we have proved to exist in this
paper and in paper I are not trivial.
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