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Causal Groups of Space-Time
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Abstract. The present paper is concerned with a finite dimensional space, considered as
a real ordered linear space, directed with respect to a partial ordering relation (causal
relation) in which a given reflexion (called temporal inversion) is antiisotone and the
positive cone is closed in the euclidean topology.

A generalized Zeeman theorem [1] is obtained, which states that the causal group
relative to the causal relation is a subgroup of the affϊne group of M.

Let M be a AΓ-dimensional linear real space (N > 2) with the vectors
represented by (x°, x), where x° e R (R is the real field) and x e M (M is
a N — 1 -dimensional linear real space).

A causal relation of M is a partial ordering relation ^ of M with
regard to which M is directed [2] (for any x, y e M there is z e M so that
z ^ x, z^y). The causal group G relative to the causal relation is the
group of permutations /: M —> M which leave invariant the relation
^ (f(x) ^ f(y) if and only if x ̂  y).

One defines T: M -> M by T(x) = (- x°, x). Let 0 = (0,0) be the origin
ofM.

Theorem. // the causal relation of M is compatible with linearity,
T is anti-isotone (if x^y, then T(y)^T(x)) and the positive cone
C = {x I x e M; x ^ 0} is closed in euclidean topology of M, then the causal
group relative to the causal relation is a subgroup of the affine group of M.

The compatibility of ^ with linearity is equivalent to the trans-
lations and dilations of M belonging to G (if x ^ y, a e M, λ e R+, then
λx + a ̂  λy + a; R+ is the set of strictly positive natural numbers), and
M is called an ordered linear space [3]. If M is an ordered linear space,
then M is directed if and only if C generates M (the Clifford's theorem [2]).

In the particular case for which C is the Minkowski cone, the theo-
rem has been proved by Zeeman [1]: G is generated by translations,
dilations and orthochronous Lorentz transformations of M. There are
also some generalizations of this theorem [4-6].

Let Q and intC denote the boundary and the interior of C.
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Lemma 1. There is a norm \\ \\ in M so that:

Q = {x\xeM;εx° = \\x\\}, intC - {x|xeM;εx°> ||x||} , (1)

where s = l if (-ί,0)φC and ε = -l if(l,Q)φC.

Proof. Since M is generated by C, for any x E M there are the vectors
y, z e C so that x = y — z. We define u = y— T(z\ which belongs to C
and ΰ = x. Then for every x e M there exists inf εy°, which we denote by
||x||, for y e C with y = x.

We have defined the map || || : M^R such that (εp||, x) e Q.
The following properties can be written:

C + C-C; λC = C9(λeR+); Cn(-C) = {0};

Γ(C)=-C; C = Quint C, [3].

We show now that || || is a norm.
If x e β, then - T(x) e C and x - T(x) = (2ε\\x\\, 0) e C. But 0 e β,

then ||x|| ^ 0 and ||0|| = 0. If ||x||_= 0, then (0, x) e Q implies (0, x) e T(C).
As Cn T(C) = {0} we have x = 0. It follows that ||x|| = 0 if and only if
x = 0.

One obtains - T(x) = (ε||x||, -x)eC if xeQ. But (ε||-3c||, -3c)eβ
consequently ε||x|| = ε\\ — x\\. Similarly ε|| — 3c|| = ε||5c||, whence ||3c||
= | |— x||, and according to the definition of || ||: | |A3c|| =λ||3c||, λeR+,
then μx|| = μ| ||x||, λ<=R.

_Now (ε\\x\\9x), (ε\\y\\,y)eQ implies (e||x|| +fi| |p| |,x + p)e C. But
(ε||x + 3;||,x + j;)e6 and consequently ||x|| + ||p|| = \\x + y\\. Taking into
account the definition of || || it follows that if x e C then εx° ^ ||x|| and
the Lemma 1 is proved. -1

There exists only one norm of M so that Lemma 1 is true. Hence
there is a one-to-one correspondence between causal relations of M
and norms || || of M so that x ^3; is equivalent to x° — y° ^ ||3c — p||.
If || || is the euclidean norm of M, then C is the Minkowski cone of M.

Now we can define two topologies: the || || -topology in M with the
norm defined in Lemma 1 as the topology for which to any x e M cor-
responds a fundamental system of neighborhoods {5f

ε(x)}εejR+ where:

Se(x) = {3'l3'eM;[(>;0-x0)2 + ||p-5c||2]1/2< f i}, (2)

and the causal topology of M for which the fundamental neighborhoods
are the open ordered sets [2] F(α, b\ for any a,beM with b — a E int C,
where:

(3)

Lemma 2. The causal topology of M is equivalent to the euclidean
topology.
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Proof. For any Sε(x) given by (2) one chooses a,beM with

e, b° = x° + ~ ε, α = b = x= - - - , ~
1/2 J/2

and using the Lemma 1 it follows that V(a, b) C Sε(x). Conversely for
any V(a,b) given by (3) one obtains Sε(x) C V(a, b) for ;xeF(α, b) and:

0 ~

Then the causal and || || -topology are equivalent. Since M is finite
dimensional then its euclidean topology is equivalent to || || -topology
[7], and consequently the causal topology is equivalent to the euclidean
topology. — '

For the particular case when || || is the euclidean norm Lemma 2 has
been proved in [5].

Taking into account that any / e G is a homeomorphism in causal
topology, from Lemma 2 it follows:

Consequence 1. If f e G, then f is a homeomorphism of M in euclidean
topology.

Demonstration of the Theorem. Let F be the set of vectors x e β\{0}
for which there are no y, z e Q linearly independent and x = y + z.

The maximal simplex which contains u e Q and is contained in
{x I x e β, x° = u°} has the vertices in F. Then β\{0} C F (A is the convex
covering of A). But FcC\{0} and β\{0} - C\{0}. Hence F has the
following properties:

b) λF = F for any λeR + .
c) Ifx l 5 :x 2, . . . ,x w eFand x1+x2-{ — +xneF, thenx1 ?.x2, •••>*« are

two by two linearly dependent.
We denote Δ(u) = Cr\(u — C\ where ueC. It follows from the de-

finition of F that A (u) is one-dimensional if and only if u e F. Indeed if
uεC\F there exist uί9 u2 e Q linearly independent with u = u1+u2 and
M l 5 u2 e Δ(ύ). Then it follows that the dimension of Δ(u) is strictly greater
then one. Let u G F and x e A (u\ x φ 0, u\ x = u — v, then x = xl

-f-x 2H ----- \-χ

m

 and v = v1+v2-\ ----- \-vn, withx1 ? x2,...,xm, vί9 v2,...,vneF.
Now from the property c) of F the linear dependence of each xt upon u is
obtained. Hence A(u) = {x\x = λu,λe [0, 1]}. It follows that A(u) is
one-dimensional if and only if u e F.

It is easy to see that the relation f(A(u}) = /(O) + Δ(f(u) - /(O)) holds
and since / is bicontinuous it does not change the dimension of A (u).
Then it follows that u e F if and only if f(u) — /(O) e F and we have
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We introduce now:

( }

where x, y e M. It can be seen that for any x e M, u e F, fe G:

D(x, u) = FxnFx + u ; f ( F x ) = Ff(x};

f(D(x9 u)) = D(f(x)9 f(x + u)- /(x)) . ( }

Let u,vεF be linearly independent. One considers v' φ 0, v,
υ'eD(Q9υ) and feG. But x + v'eD(x9v)9 x + u + v' e D(x + u9v) and it
follows from (5) that there are μ, v e R so that:

f(x + u + v') - f(x + 1/) = v[/(x + 1/) - /(x)] ( }

Let us suppose /(x + w) — /(x), /(x + v) — /(x) and /(x + u + υ) — f(x + f)
linearly independent and μ φ v.

In this case there is u' e D(0, w) and w e F so that:

= D(f(x + υ)9 f(x +M + v)- f(x + v))nf(D(x + u, w))

is not empty (for w=f~1(f(x + u + υ)-f(x+υ) + f(x+u'))-x-u').
Then D(x + 1;, u)r\D(x + w, w) is not empty. It follows from the definition
of F that u and v are linearly dependent and this contradicts our assump-
tion about u and v. Hence f (x + u + v) — f(x + v) and /(x + w) — /(x)
are linearly dependent. Similarly one obtains that /(x + u + 1;) — /(x + M)
and /(x + v) — /(x) are linearly dependent. Consequently:

(7)

2. We consider now:

G0 = {/|/eG;/(0) = 0}. (8)

Let / e G0. It follows from (7) that:

/(M! + κ2 + + fO = /(HI) + f f a ) + - + / W > (9)

for any linearly independent vectors w l 5 w2, ..., unεF.
For any x e F we define φ J C:Λ+u{0}^.R+u{0} through f ( λ x )

=:φx(λ)f(x),λeR + v{0}. It follows from the consequence 1 that φx is
a continuous function strictly increasing (obviously φ(0) = 0 and
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Since M is generated by F there is a basis {3^=1,2 #CF.
There exists y e F linearly independent of each y^ because otherwise

Cn{x |xeM; |x°| = 1} would be not a simplex symmetric relative to
(ε, 0) according to Lemma 1 and T would be not anti-isoton. (A N - 1-
dimensional simplex with N vertices is not symmetrically relative to
any its point if N > 2.)

We consider now all the elements x e C\{0} for which there are
λl9λ2,...9λNeR+ such that:

i + aiλ^Q (i = l,2, ...,N), (10)

where y = a1yί + oc2y2 + ••• +α Jyj>Λ Γ;α 1,α 2, ...,aNeR.
From (9) and (10) one obtains:

φyt (λ, + M) = φyi(λj + βtφyt(λ) (i = 1, 2, . . . , N) , (1 1)

where /(y) = /J1/(y1) + /?2/(y2)+. . + /?N/(j;N); ft, β29 ..., /?Ne R.
The equation Λ(μ + v) = A(μ) + fι(v), where μ, v e J R + u { 0 } and

h: jR + u{0}-»jR+u{0} is a continuous function with /z(0) = 0 and
h(l) = 1, has a unique solution for /z, namely the identical map.

One obtains from (11) φy(λ) = λ,λeR+. Taking into account also
(9) and the properties a) and b) of F it follows that the restriction of/ to
C is linear and (7) is true for any xeM,u,veC and / e G0 (because
gx e GO, where gx(y) = f(x + y) - f(x\ y E M).

It follows from (8) and from the property of continuity of / e G0

that /(M) = — /( — M) for x -> — w and t; -> M, and /(M — t;) = /(M) — f(v) for
x -> — t;. Using these indications and the fact that M is generated by C it
follows that / is additive being also continuous according to Lemma 2
/ is linear. Then G is a subgroup of the affine group of M, because it is
generated by the translations of M and by the linear transformations
belonging to G0. -*

Remark ϊ. For N = 2 the former proof of the theorem is no more
applicable since F = {(ε\\λ\\, ±λ)',λeR + } and does not exist yeF
linearly independent of the vectors of the basis {yί = (ε||l||, 1),
y2 = (ε||l | |, —1)}, consequently there is not yeF which verifies (10).
In this case the non affine transformation will also belong to G and / e G0

has the following form:

h(η)y29 or

with x = ζy\+ηy2> where ξ,ηeR and g:R^R and h:R^R are the
continuous monotonous increasing functions [1, 3]. — '

Remark 2. We define G'0 = G0nSL(N, R) where SL(N,R) is the
R-1 . Ίi

special linear group of M. For example for ||x|| = X |xl|p

L« = l J
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x = (xl,x2, ...,xN~ί)eM, Go is the orthochronous Lorentz group for
p = 2 and it is the discrete group of the permutations and the symmetries
relative to the origin of the basis vectors of M for p > 2.

The factor group G0/G0 is the dilation group of M.
According to the theorem it follows that G is the semi-direct product

of the translation group with the direct product of the dilation group
with the subgroup G0 of SL(N9 R).

Finally G'0 is a topological subgroup of SL(N, R). It follows from
Lemma 1 and from its consequence that / e G0 if and only if f(Q + a)
= Q + f(a), a e M, and /(O) - 0.

Let {/„}„ = ! 2 . . . C G Ό be a sequence with /= lim/π. Since Q is
' ' ' ' ' H —> oo

closed, it follows that f(x) = lim fn(x) e Q + f(d) for any x e Q + a. One
n~* oo

obtains /e G'0 and G0 is a closed subgroup of SL(N, R). Hence G0 is a
Lie group [8]. -1

Conclusion. In particular for the four-dimensional space-time M
when the positive cone C is the Minkowski cone, the theorem was
proved by Zeeman [1]. We proved that the causal group is a subgroup
of the affine group of M not requiring a concrete form of the positive
cone. It is enough to suppose the compatibility of the causal relation
with the linearity of the space on which is defined the causal relation, the
antiisotony for time inversion and the closing of the positive cone.

The authors would like to thank Prof. C. Teleman for a helpful discussion and Dr.
I. Zamfϊrescu for reading an earlier draft of the present paper.
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