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Abstract. The purpose of this work is to join Lie field structures with certain infinite-
dimensional Lie algebras with locally convex topology. These topological Lie algebras
allow topological groups which are a generalization of the connected nilpotent Lie groups.
We showed the existence of the continuous unitary representations of the gained groups
and then we proved the analogue of Carding theorem. Using this theorem we established
the existence of representations of Lie field structures into Lie algebras of skew-symmetric
operators on Hubert spaces.

Introduction

Infinite-dimensional Lie algebras with topological structures were
already the object of the investigation. The semisimple Lie algebras
with the topology of the Hubert space and a particular property of the
composition rule were considered by Schue [17, 18] and by
Balachandran [1]. Also the infinite-dimensional Filtred Lie algebras
with a topological structure were regarded by Veisfeiler [19]. Our aim
is to concentrate on the infinite-dimensional Lie algebras with the locally
convex topological structures which are the analogue of the nilpotent
finite-dimensional Lie algebras and to look for possible groups related
with these algebras.

The work is divided into sections with the following content. De-
finitions of different classes of the locally convex Lie algebras the analogue
of which in the case of the finite-dimensional Lie algebras are always
the nilpotent Lie algebras are given in Sections 1, 2, 3, and 4. We have
shown in Sections 5 and 6 the relation between certain topological
groups and the locally convex Lie algebras of Section 3. A construction
of the groups is offered in Section 5 and the connection of the unitary
representations of the groups and the representations of the related locally
convex Lie algebras is considered in Section 6. We proved an analogue
of the results of Garding [8] which is proved for the locally compact
groups. In Section 7 we indicated the possible application of the developed
theory in some problems of theoretical physics.
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1. Definition of Locally Convex Lie Algebra

1.1. A I.e. (locally convex) space over the field K of real or complex
numbers will be denoted by capital letters like X, E,..., ana its elements
by small letters like x,y,u,v,.... The base of absorbing, absolutely
convex and balanced neighbourhoods of zero of a I.e. space X will
be denoted by <%(X). Elements of a I.e. space will be called vectors when
only the property of the I.e. space is meant irrespectively on its possible
other algebraic structure.

An abstract Lie algebra over K is the object consisting of a vector
space X over K and a mapping L : X x X 3 (x, j;)->L(x, y) e X, where
L(x, y) is K-linear function in every variable, satisfying two conditions

L(x, x) = 0, L(x, L(y, z)) + L(y, L(z, x)) + L(z9 L(x, j,)) = 0, (1.2)

x, y, z e X. The second condition is called Jacobi identity.

1.3. Definition. A I.e. Lie algebra {X, τ} over K is the abstract Lie
algebra X over K and the complete I.e. space X over K with the I.e.
topology τ, such that the mapping L is continuous in the first variable
for any fixed second variable.

In the sequel we shall write X instead of {X, τ} if such shorthand
does not cause any misunderstanding. For two I.e. spaces {X, σ} and
[X, τ} we shall write {X, σ} C {X, τ} and σ > τ, if the σ-topology is finer
than the τ-topology.

2. Simultaneous Continuity of Mapping L

2.1. For the purpose of the Section 5, where the groups corresponding
to certain I.e. Lie algebras are considered, the simultaneous continuity
in both the variables of the mapping L of 1.1 from X x X in X is needed.
If the mapping L is not simultaneously continuous in both the variables
for a particular I.e. Lie algebra {X, τ}, we have a subsidiary task con-
sisting in looking for some other topology σ on X such that the mapping L
would be continuous simultaneously in both the variables from {X, σ}
x {X, σ} into {X, σ}. We do not know how to obtain this other topology

for the general I.e. Lie algebras and we can only tender a partial solution
to this problem.

If X is a metrizable I.e. space then the mapping L is simultaneously
continuous in both the variables (Bourbaki [4], §4, No. 1). In this case
the tensor produce X® X can be endowed with such topology ω, that
the canonical imbedding of the bilinear mapping L from X x X into X
to the linear mapping from {X ® X, ω} into {X, τ} is continuous (Gro-
thendieck [12]). It follows in particular that for every U etft(X), there
are Vl9V2e<%(X) such that pv(L(x,y)) ^ pVl(

x) Pv2(y\ where pw is the
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Minkowski functional of WeύU(X}. The right-hand side of the inequality
can be made symmetrical by use of the semi-norm pv defined by /v(x)
= sup{pVί(x), Pv2(x)}. Therefore we shall always have for the metrizable
I.e. Lie algebras

Pu(L(x9y))^pv(x)pv(y).

2.2. Let {X, τ} be the I.e. Lie algebra and [A^A] a family of homo-
morphisms from X into the I.e. metrizable Lie algebras Yα such that for
every xeX, xφO, we have an OLE A with Aaxή=Q. The linear space X
furnished with the topology τ(K) of the locally convex kernel of the spaces
Yα is a I.e. space {X, τ(K)} (see Kothe [14]). It is an immediate consequence
of the construction and of 2.1. that the induced mapping L from {X, τ(K)}
x { X , τ ( K ) } into (X,τ(K)} by the mapping L from {X,τ}x{X,τ}

into {X, τ} is simultaneously continuous in both the variables, if for
every aeA only a finite number of elements α1? α2, . . .,α ne>4 exists
such that L(Yα ι,Yα,.)nYαΦ{0}.

3. Classes of Complex Nilpotent Locally Convex Lie Algebras

3.1. For the subsets Y, Z of the I.e. Lie algebra X, we denote by
L(Y, Z) that subset of X consisting of all the elements of X which are
of the form L(y, z), j; e Y, z e Z. A subalgebra Y of the I.e. Lie algebra X
is the subspace Y of the space X such that L( Y, Y) £ Y. A subalgebra Y
is called closed if the subspace Y is closed in the space X.

Lemma. Every commutative subalgebra A of the I.e. Lie algebra X can
be imbedded into the closed commutative subalgebra Ά, where the closed
subspace A is the closure of the space A.

Proof. Let A be a commutative subalgebra of the I.e. Lie algebra X.
Then L(aί9a2) — L(a2,aί) = Q, a1,a2eA. On the other hand if A is a
subspace of the I.e. space X such that L(a1,a2) — L(a2,aί) = Q, al9a2GA9

then because of (1.2) we have L(aί,a2) = 0 for any α1? a2 e A, i.e. A is the
commutative subalgebra of the I.e. Lie algebra X. Hence to prove the
Lemma one has to show that L(al9 a2) — L(a2, a1) = Q also for α1? a2 e A.
This can be done as for any topological algebra.

3.2. The normalizer B of a subalgebra A of the I.e. Lie algebra X is the
set of all the elements b e X for which L(b, a) E A for any a e A. The
normalizer B of a subalgebra A is again the subalgebra. The subalgebra A
is called the ideal of the I.e. Lie algebra X if X itself is the normalizer of A

Lemma. The normalizer B of a closed subalgebra A is the closed sub-
algebra. For every ideal A ofX, the closed subspace A is also an ideal ofX.
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Proof. For the closed subalgebra A the sets B'(a) = (ada)~1(A)9 a
fixed, are the closed subalgebras containing the algebra B. The inter-
section Bf = P| B'(ά) is the closed subalgebra which contains the algebra

aeA
B and B' is the normalizer of A. Because of the maximality of B itjiolds
B = B = B'. For the proof_ρfjhe other part we notice that adx(/ϊ)c A.
As X D A it follows that L(Ά, A) C Ά, so that A is the subalgebra. Evidently
A is the ideal of X.

3.3. Let A1 and A2 be subalgebras of X where A2^Aί. The sub-
normalizer B of the algebras Al9A2, is the set of all the elements b e X
for which L(B, A2) ^A1.lt is easy to prove as in the last two similar state-
ments :

Lemma. The subnormalίzer of two closed subalgebras Aί9 A2, A1 C A2,
is also the closed subalgebra.

The subnormalizer of the pair Al = {0}, A2 is called the centralizer.
3.4. Let X be the I.e. Lie algebra. Denote by Xk the closure of the

set of all the elements of the form L(y, x), y e Xk~l, xeX, and X1 = X.

If X is a finite-dimensional Lie algebra for which Xn = {0} for some
natural number n we call this algebra nilpotent. Let us take now any
subalgebra X0 C Z, where Z is the center of the nilpotent Lie algebra X
and construct the subnormalizer X1 for the pair X0,X. The algebra
Xl is an ideal of X containing X0 . Extending this prescript we come to
a sequence X0 ζ X1 £ X2 £ £ Xn. For the nilpotent algebras X we have
Xn = X for a natural number n and therefore the finite-dimensional
Lie algebra X is nilpotent if and only if it has a finite chain of ideals
X0CXιC' CXn = X, where X0 is the center of X and Xk is the sub-
normalizer of the pair Xk_l9X. This nice situation brakes off when we
go to the infinite-dimensional I.e. Lie algebras. In particular there are I.e.

n

Lie algebras for which limXn= lim Γ}Xk = {0}, although X has no
σ M->OO w ~ > 0 0 k = l

center. An illustration of this mischief gives the following example.
Let X be the set of all the elements x = {xik \ xik = 0 for i ̂  /c, i, fe = 1, 2, . . . }

and xik are complex numbers. Hence X is the set of all triangle matrices
with the vanishing diagonal elements. X is the linear space if the opera-
tions of the linear space are defined as usually with matrices. Let us
introduce the norm on X by the non-negative function X 3 x-»||x||

/ oo \ I

= 2 I £ l*ί/cl 2 Γ e ^+ The algebraic operation
\i.*=l /

ί ^L(χ, y} = i Σ (χik Vkj - yik *kj) I u = ι» 2, .
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mapps X x X into X continuously simultaneously in both the variables as
||L(x, y)\\ ^ ||x|| ||j;||. In this way we formed a I.e. Lie algebra. The elements

χ(n,m)_ {δinδjm I ij= ι ?2,... n, m fixed n<m} form a basis of the I.e.
Lie algebra X. There is no non-trivial central element z 6 X, as the con-
dition L(x(n>m\ z) — Q for any pair rc, m, n < m, tells us that zik = 0 for all

i, fc = 1, 2,..., i < fc. The subalgebras Xk = L(X,Xk~l\ X^ = X, form the
n

properly decreasing sequence of the ideals of X. If y= lim Π Jf*
n-+oo fc = 1

were the ideal different from {0}, an element y= {yu \ ij= 1, 2,...},

||j;||>0, would belong to Y. But ||j;|HO as ||j;||2 = 4 f \ytj\
2 and ye Xk

i,j = l

for every fc, i.e. y^ — 0 for every i ^y + fe, fc = 1, 2,....
This forces us to operate with different kinds of Lie algebras the

analogue of which in the case of the finite-dimensional Lie algebras is
always the same object — the nilpotent Lie algebra. Here we define two
kinds of the nilpotent I.e. Lie algebras which will be handled easily
and usefully in our further investigations.

3.5. Let X be the I.e. Lie algebra with the center Z. The center is the
closed ideal of X because of its maximality and the Lemma 3.3. Denoting
X0 = Z, we consider the sequence of ideals X0QX1Q ", where Xk

is the subnormalizer of the pair Xk_ί,X9k = l,2, All Xk are the closed
ideals according to the Lemma 3.3.

Definition. The properly nilpotent I.e. Lie algebra X is such I.e. Lie
algebra X for which a chain X0£X1£X2£-~ exists, where X0 is the
center of X and Xk is the closed ideal and the subnormalizer of the pair

00

Xk-ι, X, k = 1, 2,..., and X= (J Xn. If X = Xn for some natural number
n = 0

nX is called the finitely nilpotent I.e. Lie algebra if L(X,X)cXn-l.
3.6. In accordance with 3.4 the next reasonable class of the nilpotent

I.e. Lie algebras is given by
n

Definition. A I.e. Lie algebra X for which lim (°) Xk = {0}, where
"-*°°/c = l

Xk = L(Xk~1,X)9 Xl=X, is called the nilpotent I.e. Lie algebra.
3.7. The Theorem of Engel states that a finite-dimensional Lie

algebra X is nilpotent if and only if adx, for every x e X, is the nilpotent
operator on X. For the infinite-dimensional I.e. Lie algebras no analogous
statement can be made in general. To see this we offer an example of a
normal Lie algebra X for which adx, x e X, is bounded, quasinilpotent
operator on the Banach spaced, but X is neither the properly nilpotent nor
nilpotent I.e. Lie algebra. This example shows in the same time that
restricting our interest to the properly nilpotent and nilpotent I.e. Lie
algebras we occupy ourselves only with two classes of the I.e. Lie algebras
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the analogue of which in the finite-dimensional case is the nilpotent
Lie algebra.

Let / be the interval [0,1] and C(I x /) the linear space of all the con-
tinuous functions on IxL The semi-norm C(I xl)a x-> | |x| | ceR+

defined by ||x||2 = J |x(p, q)\2 dp dq gives the Hubert space L 2 (/x/)
= C ( / x / ) / { x e C ( / x / ) | ||x||c = 0} with the scalar product σ(x,y). The
structure of a Lie algebra on L2(I x /) can be introduced by the following
bilinear mapping

L 2(/x/)xL 2(/x/)θ(x,j;HL(x,j;):

= \$tx(p,r)y(r,q)-y(p,r)x(r,q)-]dr\p,qel}εL2(IxI).
(i J

It is easy to see that actually an abstract Lie algebra is gained in this way.
This abstract Lie algebra is inverted to the normed Lie algebra by the
norm Jf9x-» | |x | | =*2[σ(x, x)]*eR+. By the direct inspection one sees
that ||L(x, j;)|| g ||x|| ||j;|| for every x,yεL2(IxI) and therefore L 2 ( I x I )
is the complete normed Lie algebra. The subspace X of the space L2(I x I)
determined by all the vectors x e L 2 ( / x / ) for which a representative
x(p9 q) exists such that x(p, q) = 0 if p ̂  q gives us the complete normed
Lie algebra X already accomplished with all the desired properties.

Let z, ||z|| = 1, be a central element of X represented by the function
z(p, q). For any two closed intervals A1 and A3 of (0,1) such that A1 > A3

we shall denote by A2 a closed interval between them and by χ23(p, #)
the characteristic function of A2 xA^ClxL Because of L(z,χ23) (p,g) = 0
almost everywhere an A1xA3, the function j z(p, r) dr of one variable p

A2

almost everywhere vanishes on A±. The intervals Al and A3 are arbitrary
such that A1>A3 and z(p,q) = Q almost everywhere on { p , q \ p ^ q }
C / x / so that J z(p, q) dpdq = ΰ for any two closed intervals A, Be (0,1).

AXB
Hence z(p, q) vanishes almost everywhere on / x / contrary to the sup-
position ||z|| = 1. This means that X cannot be the properly nilpotent
normed Lie algebra.

Suppose now that X is the nilpotent normed Lie algebra, i.e. L(X,X) C X.
For any three non-trivial closed intervals A1,A29A3,A1^.A2^A39

of the interval (0,1) we consider two characteristic functions χ12 and χ23

of the sets Aί x A2 and A2 x A3 respectively. The function L(χ12, χ2s) (P> ^)
is proportional to the characteristic function of the set A1 xA3. In this
way we can construe the characteristic function of any square AxB
such that A > B which contradicts the supposition L(X, X) C X. Hence
our algebra cannot be the nilpotent normed Lie algebra.

It remains to show that ad x, x e X, is the quasinilpotent operator
on X. The vector (adx)"j; of the space X is the sum of 2" vectors each
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having the following form

Φ> q) = S *ΛI(P, rι) d^ xΛ2(rl9 r2) dr2 ... drB x«n + 1(rw, g),

where the integration is extended on the interval / x / x x /,
n-times

P^^i ^^2 ̂  •" = rn = <?5 aίljd one of xα ι,xα 2, ...,xα n + l is equal to y
and all the others are equal to x. Thus we have \z(p, q)\ :g || x \\n \\ y \\/2n +1 - n!
and therefore

- π , ι W^w-^-
It follows from the attained estimation that adx is the quasinilpotent
operator on X.

Let X be a complex complete I.e. space and A a continuous operator
from X into X. If A — λl has the two-sided continuous inverse (A — A/)" 1

for every complex λ, λ Φ 0, we shall say that A is the quasinilpotent opera-
tor on X.

In view of the example we have to be aware of the existence of the
objects defined in the following way.

Definition. The complex I.e. Lie algebra X for which adx, xeX,
is the quasinilpotent operator is called the quasinilpotent I.e. Lie algebra.

4. Relation between Complex and Real Lie Algebras

4.1. A real finite-dimensional Lie algebra X has the extension to the
complex Lie algebra Xc such that dimcX

c = dimRX. This extension Xc

is called the complexification of the real algebra X. We shall define in
analogy with the finite-dimensional case the complexification of the
I.e. Lie algebra over the field of real numbers. The tensor product
χc = c (x) X is furnished by the topology of bi-equicontinuous convergence
(Grothendieck [12], see also Pietsch [16]. In the latter reference the
topology is named ε-topology). The mapping C x XC3 (λ, £α f cxΛ)
-> X λ αfc xk E Xc is continuous so that X after completionis the complete I.e.
space. Ifjhe mapping__L from X x X into X is extended to the mapping
L from Xc x Xc into Xc by

L(x, y) = X akβl L(xk, yt) (4.2)

for x = X akxk E Xc and y = X βlyl E Xc, then we check easily that this
mapping satisfies (1.2). The continuity of L in the first variable for the
fixed second variable is induced by the corresponding continuity from
X into X and the definition (4.2). Hence Xc is the I.e. Lie algebra.
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4.3. The real I.e. Lie algebra'Jf is properly nilpotent or nilpotent if and
only if its complexification is properly nilpotent or nilpotent respectively.
This statement is easily verified. The I.e. Lie algebra over the field of real
numbers is called quasinilpotent if its complexification is the quasi-
nilpotent I.e. Lie algebra.

5. Topological Groups Allowed by the I.e. Lie Algebras

5.1. We try now to associate certain groups to the algebras which
were pondered in Section 3. We shall use the construction of the group
proposed by Birkhoff [2] or Dynkin [7] lent on the Campbell-Hausdorff
formula. Birkhoff and Dynkin construed the local topological group
for every normed Lie algebra (finite-dimensional or infinite-dimensional
as the construction is the same). We found that the Dynkin's method is
the most appropriate one for our case. Even more, because of nil-
potency in one or the other way of the algebras considered here, it is
possible to construe the whole connected group but not the local one only.

The aim of this work is not to consider unitary representations of the
constructed groups but only to use these representations in order to show
that there are representations of certain classes of I.e. Lie algebras into
a Lie algebra of operators on Hubert spaces which are skew-symmetric
on a common invariant domain. The lack of an invariant measure on
the groups forced us to use the invariant means and invariant functionals.
For the survey of the invariant means the modern book by Hewitt and
Ross [13] would be of a significant help for an uninitiated reader.

5.2. We shall say that the I.e. Lie algebra {X, τ] allows the topological
group G if the underlying space G is homeomorphic to the I.e. space
[X, y}, (X, y] n [X, τ] is a dense linear subspace of {X, τ}, such that the
unity e e G is mapped to 0 e [X, y} by this homeomorphism. Hence the
induced mappings [X, y] x [X, y] 3 (x, y) -> x o y e [X, γ} and {X, y}
9X-**"1 e {X,y} are continuous in the y-topology and the former one
is continuous simultaneously in the both variables.

00

Lemma. The properly nilpotent I.e. Lie algebra X = (J Xn, for which
n = 0

the mapping L is simultaneously continuous in both the variables, allows
the topological group G the topological space of which is the strict inductive
limes of Xn, n = 0,1, 2,... .

00

Proof. Let X = (J Xn be properly nilpotent I.e. Lie algebra and Xn the
n = 0

subnormalizer of the pair X n _ 1 ? X, n = 1, 2,..., X0 the center of X. Xn is
the ideal of X and we can easily construct the group allowed by Xn.
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Let us remind that ad q adx2 ••• adxn_ x(xπ) = 0 for any n elements
x l 5 x 2 , ...9xneXn. By the Campbell-Hausdorff formula for any two
x, y E Xn we have

v v (~)m l 1

Z = χoy= % ^ ——

pi-times 4ι-times...<j w -times ^ ' '

xL(x,L(x,..., ίty,..., L(x, j))...),

where p{ + q{ > 0, / = 1, 2,..., m; gm = 0 or gw = 1. Because of /?; + q{ > 0,
i = 1, 2,..., m, and the nilpotency of Xn only the finite number of terms,
depending on n only, is different from zero in (5.3). We shall show now
that for every neighbourhood Ue^(X) a neighbourhood VE%(X)
exists such that V x Fa(x, y)->χo y e (7. According to the supposition
on L for every neighbourhood L^e^pO, there is a neighbourhood
ί/2e^CXl such that the corresponding Minkowski functional pυ^pV2

satisfy pUjL(L(x9y))^pU2(x)pU2(y). For the argumentation see 2.1. In this
way we choose a sequence of the neighbourhoods U = Uί9 U2, •••, Un,
for which pUlf(L(x,y))^Puk + ί ( x ) P u k + ί(y)> fc = l,2, ...,n-1. Now we
have the estimate

G O 1 1 1
^ Σ Σ —

where the index / has the value Σ(Pt + ^/) Because of p^ ̂  p t / k + 1 in our
construction we can estimate this inequality as

Pϋ(x oy)^ e2" max {pUn(xf-2

9 pUn(y)n~2} (pϋn(x) + pϋn(y)).

If y = e~2n Un then for every pair x ,ye V we have xoyeU what we
wished to prove. It is not difficult to see that ( χ o y ) o z = χ o ( y o z ) 9

χ o ( — χ) = 0. This enables us to recognize the following topological
group:

The I.e. space Xn is the underlying space of the topological group Gn

with the base ^(GM) = <%(Xn) of the neighbourhoods of the unity eeGn,
e = 0 e Xn9 if the group operation is defined by (5.3) and the inverse element
g"1 e Gn of the element g e Gn, g = xeXn, is defined by g"1 = — x e Xn.
The mappings Gn x Gn 9 (g1, g2) = (Xi, x2) -> x: o x2 = g1 g2 e Gn and
G π 3g = x-» —x = g-1 E Gw are continuous.

We now have the sequence of the groups G0 £ G1 Q G2 £ allowed
by the I.e. Lie algebras Xθ9Xί9X2,... . We shall define a topological

00

group G allowed by the properly nilpotent I.e. Lie algebra X = (J Xn
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as the topological group G = \J Gn the underlying space of which is
n = 0

the strict inductive limes of Xn9 n = 0, 1, 2, ... . The strict inductive limes
is possible as the topology of Xn_ί is the induced topology by
Xn, n = 1, 2, ... . Even more the space X = str. limXn is complete as Xn^1

is closed in Xn, n = 1, 2, ... . This finishes the proof.
It is not obvious that the abstract group G becomes a topological

group when furnished with the described topology. In general this
statement is valid if G0, G1? ..., have special properties. In our case the
I.e. Lie algebras Xθ9Xί9 ..., are finitely nilpotent and the statement can
be easily verified.

5.4. The nilpotent I.e. Lie algebra X, f| ^m = {0}, X1 = X,

Xm = L(X,Xm *), can be mapped into the finitely nilpotent I.e. Lie
algebra Ym = X/Xm in a natural way and the corresponding mapping
Am is the continuous linear homomorphism from X onto Ym. Let us
introduce the topology on the set X by the kernel topology of the locally
convex kernel KmA~1({Ym, τm}), where by τm is denoted the topology
of the space Ym = X/Xm induced by the τ-topology of the space X. The
kernel topology will be denoted by τ(K). The neighbourhoods of zero
of [X, τ(K)} are the sets {Λf1^), Aϊl(U2\ •••}, where Uk are the neigh-
bourhoods of zero of the spaces Yk for the finite number of indices
fc = 1, 2,..., and for all other fc, Uk = Yk. In fact {X, τ(K)} is the topological
projective limes of the complete I.e. spaces Ym. This results to the com-
pleteness of the space {X, τ(K)} (see for instance Kothe [14]).

Lemma. The nilpotent I.e. Lie algebra X, for which the mapping L
is simultaneously continuous in both the variables, allows the topological
group G the underlying space of which is (X,τ(K)}.

Proof. For every neighbourhood U = {A^1(U1\ A21(U2), ..} we
consider the associated neighbourhoods C/ l 5 ί/2,..., of the finitely nil-
potent I.e. Lie algebras Y1? Y 2 , . . . . By 5.2 a neighbourhood Vk can be
picked for every Yk, fc=l, 2,..., such that VkxVk3(x,y)-*χo yeUk,
i.e. the mapping Yk x Yh (x, y) -> x o y e Yk is the continuous mapping.
The mapping Yk 3 x -> — x E Yk is already continuous. Then for the neigh-
bourhood V={Aϊί(Vί), A2l(V2\...}, where Vk = Yk if Uk=Yk9 we
have VxV3(x,y)-*χoyeU and, of course, L / a x - ^ — xeU. We
obtained the topological group of the Lemma.

5.5. Let G be the topological group allowed by the I.e. Lie algebra X.
Then every subalgebra Y of X allows some subgroup H of G and every
ideal Y of X allows some normal subgroup H of G. These assertions are
the quick consequences of the formula (5.3) which defines the group
operation (see for instance Birkhoff [2] or Dynkin [7]).
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5.6. Let G be the topological group and X a real I.e. space X with a
basis {ek \ k = 1,2,...}. We shall say that the topological group G admits
a coordinate system G 3g->T(g) = {ίk(g)| fc= 1,2,...} if a homeo-
morphism T from the underlying space of G onto ^Γ exists such that T(g)
= Σtk(g)ek f°r every g e G and T(e) = 0 for the unit element eeG.
Hence the I.e. space X can be considered as the underlying space of the
topological group G where the group operation X xX 3(x = ̂ skek,
y = Σtkek)-+Σzk(sι> ίι,s2, f 2 , - )ekeX is defined by the sequence of
real functions z1? z 2,..., of real variables s1? ί l 9 s2, £2? ••• The functions
zk,k= 1,2,..., receive finite values for those values of S1,ί1,s2, ί2, . . . j
for which Σskek e X and Xf f c e k e Z.

Definition. The topological group G for which three conditions listed
below are satisfied is called the real entire Lie group.

1) Any two elements g l5 g2 e G can be placed in a subgroup H C G
admitting a coordinate system H 3h-*T(h) = (tk(h) \ k = 1, 2,...}.

2) If TfeHXs^ and Γ(g2) = Xί f ce k,g 1,g 2efί, then T(glg2)
= Xzk(51? ί1? 52, ί2, ...)ek and zk(sι> tί9s29 £ 2 > . . . ) , fe=l,2,...5 are entire
functions of any finite number of variables with all other variables fixed.

3) zk(0,0,0,...) = 0 and _ίL z/(0,0,0,...) =-^(0,0,0,...) - δkl .osk otk

5.7. Theorem. Every real properly nilpotent I.e. Lie algebra X for
which the mapping L is simultaneously continuous in both the variables
allows a real entire Lie group.

Proof. The Lemma 5.2 offers a topological group G for every properly
nilpotent I.e. Lie algebra {X, τ} of the theorem. As the underlying space
of G is identified with the subspace {X,y} of the space {X,τ} the homeo-
morphism T of 5.6 is trivial whenever the conditions 1) of 5.6 is fulfilled.
Therefore, we write x instead of g. Any two elements x l5 x2 e G = {X, γ}
are in some Gn = Xn as every bounded set of the strict inductive limes
X= str. limJ^, where Xn is closed in Xn + ί9 n = 0,1, 2,..., is contained
in some Xn and is bounded there (Dieudonne and Schwartz [5]). The
elements x 1 ?x 2 of the Lie algebra Xn generate a real nilpotent finite-
dimensional Lie algebra Y. Then the elements x1? x2 of the group Gn = Xn

can be placed in the real nilpotent finite-dimensional Lie subgroup H,
the Lie algebra of which is Y. Thus the conditions 1 -3 of 5.6 are fulfilled.
The theorem is proved.

5.8. Theorem. Every real nilpotent I.e. Lie algebra X for which the
mapping L is simultaneously continuous in both the variables allows a
real entire Lie group.

Proof. A topological group G allowed by the nilpotent I.e. Lie algebra
00

X, Pi Xm = {0}, is constructed in the Lemma 5.4. We shall show now that
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this group is actually the real entire Lie group. As in 5.7 T is trivial map-
ping so that for gί9g2εG we have xί=gί9 x2 = g2> xl9x2ε{X9τ(K)}.
The subalgebra Y of the algebra (X,τ(K)} generated by two elements
xl9x2e {X, τ(K)} has a basis. We shall order this basis {ek \ k = 1,2,...}
such that ek + 1eXm

9 m = n, n+1,. . . , if ekeXn.
Let x, y e Y, x = Σskek> y = Σtkek The continuous linear mapping

Am of 5.4 maps [X, τ(K)} onto {X/Xm, τ}. The subalgebra Y is mapped
to the nilpotent finite-dimensional Lie algebra Am(Y)C {X/Xm, τ}.
Hence because of the special choice of the basis {ek \ k = 1, 2,...} C Y,
only a finite number Nk of terms in the formula (5.3) contain the vector ek

for a definite k(Nk + ί^Nk). This implies that the function zk (sί, ίx, s 2,1 2, . . .)
is a real polynimial in a finite number of variables so that the conditions
of the Definition 5.6 are satisfied. The theorem is proved.

5.9. One-parameter subgroups of the entire Lie group G are analytic
homomorphisms from R into G. The entire Lie groups of 5.7 and 5.8
have one-parameter subgroups of the form gx(t) = tx, xe{X, γ} and
they are the only ones. Even more for any two one-parameter subgroups
gx(t) and gy(t) we have

Hm -pr gx(t) gy(t) gx(-t) gy(- ί) = L(x, y ) .

The formula (5.10) together with the shape of any one-parameter
subgroup of the groups of 5.7 and 5.8 suggests to us to term the I.e.
Lie algebra [X, y} as the Lie algebra of the real entire Lie group of 5.7
and 5.8. We shall name in the following these two groups as the real
properly nilpotent and nilpotent entire Lie group respectively.

Perhaps, it would be of interest to see whether every real entire Lie
group G has the Lie algebra, i.e. a real I.e. Lie algebra X and a homeo-
morphism T from G onto X such that all the one-parameter subgroups
have the form gx(t) =T~1(tx), teR, and

Hm T(gx(t) gy(t) gx( -t) gy( - t)) = L(x, y)eX,

for any pair x, y e X. However, this is out of the scope of our work as
we are focused on the properly nilpotent and nilpotent I.e. Lie algebras
and their possible Lie groups.

6. Invariant Functionals and Representations

6.1. The space C(G) of all the continuous functions on the topological
group G is a Banach space with the norm C(G) /->||/||G
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A function /(g), /e C(G\ where G is the real entire Lie group having
Lie algebra X, is called infinitely differentiable in the g-direction if the
function fτ(t) = f(gx(t)\ gxφ=T~l(tx)9 g(l) = g, belongs to C*(R).
A function /(g), /eC(G), will be called infinitely differentiable on the
group G if this function is infinitely differentiable in every g-direction,
g 6 G. The set of all the infinitely differentiable functions on the group G
span a linear subspace C°°(G) of the space C(G).

The linear space C°°(G) is not empty for the real entire Lie group G
having Lie algebra X. Let H be any subgroup of G admitting the coordinate
system related with the homeomorphism T from G onto X. The function

n

/(g) defined on H by f(g) = fτ(tl9 12, ..., tn\ where T(g)= £ tkek + x,
k = l

and fτ(tl9t29...9tn)GCco(Rn)9 is certainly a vector of C°°(JΪ). Let us
extend the domain of the function /(g) from H to the whole of G setting

k = l

belong to any subgroup admitting the coordinate system related with
the homeomorphism T. The defined function is a vector of C°°(G).

It is easy to see that the linear subspace C°°(G) of the space C(G)
is the invariant space under the left and right translations. Furthermore,

if /eC°°(G) then -^Lh(t}f{g)\t = 0εC*>(G) and -^Xfc(t)/(g)|f = 0eC°°(G)

for any one-parameter subgroup h(t) C G, where Lh and Rh are operators
of the left and right translations respectively.

6.2. Let 9I(G) be the linear space of all the almost periodic functions
/(g) on the topological group G. The intersection 2lc(G) = 2l(G)nC(G)
is the linear subspace of the space C(G).

Lemma. For the real properly nίlpotent entire Lie group G the linear
space $ΪC(G) is a non-trivial subspace of the space C(G).

Proof. Let H be the connected, finitely-dimensional Lie subgroup
of G defined in the point 5.7. The group H has the non-trivial 2Ic(fiΓ).
The linear mapping φ : C(H) 3 fH -> φ(fH) = /G e C(G) defined by

<?(/«) (g) = /H,r(*i> •••> U is continuous as ||^(/H)||G = sup{|/G(g)| | g e G}
= sup{|/H(/ί)| I fte H} = ||/H||H Hence the image of every compact set
KH is a precompact set KG = φ(KH) in C(G). Consequently the set
KG = {LgfG I ge G} CC(G) is precompact as KG is the image of the
compact set KH = {LhfH \ h e H }, fH e 2IC(H). This proves that the function
/G is an almost periodic function on G. As /GeC(G) it follows that

6.3. Lemma. For the real nilpotent entire Lie group G the linear space
(G) is a non-trivial subspace of the space C(G).
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Proof. The real properly nilpotent entire Lie group H = G/Gn,
defined also by H = An G and An is the mapping of the point 5.4, has the
non-trivial 9Ic(/f) according to the Lemma 6.2. For every fH e 9Ic(/ί)
we define /c(g) = ///(£#) and gHeH is the element of H which is the
image under the natural mapping ψ : G 3 g -> ψ(g) = gH = g Gn e H.
Then the linear mapping φ:C(H)3fH->φ(fH) = fGEC(G) is con-
tinuous so that by the same argumentation as in 7.2 we conclude that

6.4. We denote by £ the normed space with the norm Fan—»||t/| | e.R + .
Let G x E 9(g, w)-» U(g)ueE be a continuous representation of the
topological group G on the space E. The linear functional MeF*
will be called invariant if M(U(g)u) = M(u\ g e G , ueE. The existence
of such functional follows from a simple consideration by Dixmier [6]
of an equivalent problem for semigroups. Let F be the subspace of the

n

space E spanned by all the vectors of the form / = Σ (uk~ ^(g/c) uk)>

where ul9...9un, and gι,...,gn, are any n vectors from E and any n
elements from G respectively. Let us define M(u) = 0, u e F. There is a
continuous non-trivial functional M on the space E which is a continua-
tion of the functional M defined by M(u) = 0 on F. The acquired functional
is invariant as M(u) — M(U(g)u) = M(u— U(g)u) = 0.

Let E = C(G) and F a left and right translationally invariant subspace
of C(G) which contains the constant function on G. An invariant func-
tional MeF* for which M(l)=l and M(/)^0 if /(g)^0, /eF, is
called a left invariant mean on F. Similarly one defines the right in-
variant mean and the invariant (two-sided) mean on F. The name is
justified as the conditions are equivalent to

There are groups for which no invariant mean exists on C(G). How-
ever, for every G the unique invariant mean exists on the subspace 91 (G)
of all the almost periodic functions on G (von Neumann [20]).

Let M be the invariant mean on 9lc(G). The function φ(g) = M((Lgf)f)
for every /e9Ic(G) is a continuous positively definite function on the
group G. The continuous positive definite functions on the topological
group G and the continuous unitary representations of G are in one-to-
one correspondence (Gelfand and Raikov [9]). Hence the real properly
nilpotent and nilpotent entire Lie groups G with Lie algebra X have
continuous unitary representations according to the Lemmas 6.2
and 6.3. This shows that the next theorem has a sense.

6.5. Theorem. Let G x § a(g, M)-> L/(g)we§ be a continuous unitary
representation of the real entire Lie group G having Lie algebra X on the
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00

separable Hίlbert space ξ>. Then § is the direct sum £ ®ξ>k of the sub-
k = l

spaces §k, k = l , 2, ..., each being the closure of the linear manifold
Dk where X)k, fc= 1, 2, ..., are invariant under the representation of the
group and invariant under the associated representation of the Lie algebra
X of G into the Lie algebra of skew-symmetric operators on T)k.

Proof. The construction of X)k, k = 1, 2, . . . , is in the full analogy with
the construction of the Garding's domain. Let us take u,veξ> and let
us consider the function /(g, u, u 9 f ) = f(g) (v, U(g) w)^,where/(g) e C°°(G).
Because of the continuity of the representation f(g,v,u9f)eC(G)
for a continuous left invariant functional M on the space C(G) we have
M(f(vlu9 /)) - M(Lgf(υ9 u, /)). The functional § x § x C ( G )
->M(/(ι;, w,/))eC is antilinear in the first variable linear in the last
two variables and simultaneously continuous in all three variables.
Hence

where Q(f) for a fixed /e C°°(G) is a bounded operator on § with the
norm not higher than K ||/||G, K is a positive constant.

Now we define Dx : ={Q(f)u1 |/eC°°(G)}, where t^ eg is a fixed
vector. ΐ)1 is a linear subspace of the space § as Q(f1 + /2) = Q(/ι) + 6(/2)
and Q(λf) = λ Q ( f ) 9 f ί , f 2 9 f e C c o ( G ) , λeC. If ̂  = ̂  φ § we choose

θ§ι and proceed in construing T>2. If (J T)kφ§ for every n
_ fc = l
00

then a sequence T^ , D2 , . . . , exists with (J Dk = §.
k = l

The invarinace of Dk under the representation of the group follows
from the invariance of the functional M as M(f(v9 u, /)) = M(Lg f(v9 u, /))
implies (υ9 Q(f)u)ξ> = (v, U(g) Q(Lgf)u)$. This gives us

From the unitarity of the representation and our construction we have
GO _

Dk J_ Dz if k Φ /. Hence § = ^ 0 §k, where §k = Dk .
k = l

The vectors t~1(U(gx(t)) — l)v, where gjc(ί) is the one-parameter
subgroup defined by T(gx(t)) = txe {X, γ}9 have the strong limes as
ί-»0 for every ι;eDk, k = l , 2, ..., and every one-parameter subgroup
gx(ί) C G. The statement is the consequence of the continuity of the map-
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ping C°°(G) 9/-^β(/)e £(§,§):

«)-/]β(/K-<

< JL(τ f _ n_. vSχ(-o/ / ^ . ll̂ b,

where /X(Λ)=—-, ). We read that the element

xe{X, y} is represented by the skew-symmetric operator dU(x)
d "°

= — U(gx(t))\t = 0 on £ £>k. The theorem is proved.
fc = lat

6.6. Let ρ : {X, y} 3x-»ρ(x)e Q(T>k, Dk) be the representation of
the Theorem 6.5 and let us suppose that the vectors uk e Dk are of norm
l : | |w f c | | s = l, A: =1,2, ... . The functions p f : £ ( ΐ > k , ΐ > k ) 3 ρ ( x ) - + p f ( ρ ( x ) )
= \\fx\\GeR+ define the convex, positive functionals because of

The vector space fi(Dk, 3\) furnished with the topology defined by the
family of seminorms pp /e C°°(G), is the I.e. space £G(Dfc, Dk) and in
the same time the I.e. Lie algebra if the mapping L of 1.1 is defined as the
bracket operation of two linear operators on T)k. The absolutely convex
hull of £G(Dk, Dk), fc = 1, 2, ..., is denoted by £G(D, D). It follows that
£G(D, X)) is the I.e. Lie algebra.

Lemma. The homomorphism ρ : {X, 7} 3x—>ρ(x) e £G(I), I)) is contin-
uous.

Proof. It suffices to prove the continuity of ρ from {X, y} into
£G(£)k, Dk) for every fc = 1, 2, . . . . The mapping {X, y} x G 9 (x, g)

[adΓ(g)]mxe{Xy} is continuous.
(m+1),

The topological spaces {X, y} and G are homeomorphic and, therefore,
the continuity of G9g-»/(g)eC, /eC°°(G), implies the statement of
the Lemma.

6.7. Corollary. Real properly nilpotent and nilpotent I.e. Lie algebras
[X, y} which are Lie algebras of real properly nilpotent and nilpotent Lie
groups G have continuous representations into the I.e. Lie algebra £G(^? X)
of skew- symmetric operators on the common invariant dense domain X)
in a Hubert space.



Locally Convex Lie Algebras 105

7. Remarks on Representations of Lie Field Structures

7.1. We do not intend to enumerate the works in theoretical physics
which deal with the infinite-dimensional I.e. Lie algebras of any type,
but only those works in which to our knowledge properly nilpotent or
nilpotent I.e. Lie algebras are considered. Bernstein and Halpern [3]
obtained a Lie algebra of operators on a Hubert space which is the sum
of a nilpotent ideal and a semisimple finite-dimensional Lie algebra.
As this algebra is already an algebra of operators on a Hubert space
we have not much to say about it.

7.2. More we can say about so called Lie field structures. A model of
a quantum field theory which is formally a Lie algebra of operators on a
Hubert space was proposed by Greenberg [10]. The existence of Lie
field structures as the I.e. Lie algebras regardless of its possible representa-
tion is proved by Lowenstein [15]. We do not know whether the LSZ-
axioms are satisfied for this model of quantum field theory but if they
are the model gives only the trivial S-matrix in sense of LSZ formalism
as is shown by Greenberg [11]. This question is still unanswered as the
information of our note is still far from being sufficient to respond to
this problem.

We can make a supplement to these considerations only concerning
the existence of the representations of Lie field structures into the Lie
algebra of symmetric operators on invariant common domain in a
separable Hubert space.

Let 7 be the linear space of functions x(p) : R4 3p-^x(p) e C such that
y is invariant under the representation of the Inhomogeneous Lorentz
group ILG x Y 3 ({A, a}, x)-> V(A, a)x: = {eipax(A~1p) \ p e R4} e Y. Let
{x0} be a one-dimensional Lie algebra and let us consider the following
composition rule for X = Y -f {x0} :

XxX3(x,y)-*L(x,y):

$c(p-q,q)x(p-q)y(q)dq4\pεR4}εX,

where x0 is the central element of X. Under certain conditions on the
functions Δ(p) and c(p, q) (see for instance Lowenstein [1]) the mapping
L satisfies the conditions (1.2) so that X becomes the abstract Lie algebra
over the field of complex numbers. The algebra X is the complexifica-
tion X = Xc of the real Lie algebra of all the functions x(p\ x ε Y, for which
x(p) = x( — p). We have an additional feature which indicates the nilpotency
of Lie field structures. Let us denote Hm = {pεR4\pQ— p2>m2,m>Q}.
Then supp(Sc(p-q)x(p-q)y(q)dq4)cHmι+m2nHμ if supp(x(p)) C Hmί

and supp(y(q)) C Hm2, where μ>0 is the minimal mass of the theory.
7.3. An example of Lowenstein [1] shows that c(p, q) may be a func-

tion bounded by 1 on R4 x ̂ 4. For such function c(p, q) we can introduce

8 Commun math. Phys., Vol. 14
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a topology τ on the linear space Ύ. Let Km, m = 1,2,..., be closed bounded
balls of JR4 centered at the origin with radii m. We take a sequence of
monotonically increasing functions ρ1(p\ρ2(p\..., of the variable
Po + P2> pe^4> where Qι(p)<Q2(p)< '"-> such that Qk~ι(p)/Qk(p) tends to
zero as p-*oo? /e—1,2, . . . , and every @k(p) fulfills the conditions:
a) £fc(p)lp = o ^ l > fc=l,2, ... b) ρ1(p)^M(p)| on every Kmιn#m?; and
c) Qk(P + #) = £fc + ι(p) + Qk-iiq}- To satisfy this last condition it suffices to
put lnρk + ί(p)^.lnρk(2p). The metrizable Lc. space Ύ with the topology
defined by the sequence of seminorms Ύ B x -» pk (x) = J ρk (p) x (p) | dp4 eR+

admits the I.e. Lie algebra {X, τ} if we postulate pk(xo) — 1, fe = 1, 2,...,
because of

jpfc(L(x, )>)) ^P!(x) pl(y) + pk + 1 ( x ) p k + 1 (y)^2pk + 1 (x)pk + ί ( y ) .

The Lc. Lie algebra {X, τ} is the nilpotent Lc. Lie algebra and for its
real nilpotent entire Lie group of 7.2 we can apply the results of Section 6.
By the Corollary 6.7 we know that the nilpotent Lc. Lie algebra {X, y}
with the topology γ of the Theorems 5.8 has the continuous representa-
tions into the Lc. Lie algebra of skew-symmetric operators on a common
invariant domain of a Hubert space.

7.4. The Lie field structure with the Lc. topology and the positive mini-
mal mass allows the real nilpotent entire Lie group G by the Theorem 5.8.
If the answer to 5.9 is affirmative the inverse would be possible, i.e.
the real nilpotent entire Lie groups with certain Lie groups of auto-
morphisms (for instance the Inhomogeneous Lorentz group) would give
the Lie field structures. In this case the real nilpotent entire Lie groups
might be more convenient objects in searching for Lie field structures.
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