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Abstract. The uniqueness of the possible infinitesimal deformation of the direct sum
of the Poincare and arbitrary internal symmetry algebra changing the structure of the direct
sum is proved. The necessary restrictions on the internal symmetry algebra are obtained.
The properties of this possible deformation are discussed. Its physical applications face
serious difficulties.

I. Introduction

The necessity to study deformations of the direct sum P 0^4, where P
is the Poincare algebra and A is any algebra of the internal symmetry of
the system, arose within the general frame of relativisation of the internal
symmetry after O'Raifeartaigh's "no-go" theorems [1] appeared. It was
first shown by Levy-Nahas [2] that the simple De-Sitter algebras are the
only nontrivial deformations of P, and the general method of connecting
the contraction and deformation theories was proposed. Later it was
proved that semisimplicity of internal symmetry algebras did not allow
to deform PQA nontrivially if one wanted to make internal and space-
time properties connectied [3]. The same appeared to be true also for the
algebras with abelian ideal of the special form studied in the previous
paper [4]. Thus the most interesting examples of internal symmetry
algebras were investigated. But the possibility of existence of more
complicated finite dimensional Lie algebras which meet all the necessary
requirements remained. They are studied in this article.

The problem is formulated somewhat differently. What deformations
of P@A are possible when the internal symmetry is quite general (finite
dimensional Lie algebra with abelian ideal)? In Section II the theorem
of uniqueness of the infinitesimal nontrivial deformation breaking the
direct sum structure in P@A is proved. In Section III the properties of
this deformation are discussed. There are great difficulties in its physical
applications. Though it seems possible to solve some of them with the
help of high order deformations.



Deformations of the Direct Sum P © A 71

II. Theorem of Uniqueness

Every finite dimensional Lie algebra A with zero characteristic may
be presented in the form A = B φ G where G is its radical, B is semisimple
and equals B = A/G. Let us consider the deformations of U = P@A.

Theorem. Among the nontriυial infinitesimal deformations of P®A
there is only one that changes the structure of the direct sum. The cor-
responding deforming function is

f ( t , g ) = h(g) t (1)

where teT — the translatίonal ideal of P,
g e G
h(g) is a constant depending on g.
h(g) = 0 if g G A1 — the first commutator subalgebra of A.

Proof. The number of nontrivial infinitesimal nonequivalent defor-
mations is not more than the dimension of the 2-cohomology group
H2(U, U). Using Serre and Hochschild's formula [5] one can simplify
the necessary group

)U, (2)

where #2(T©G, U)u is the group of 17-invariant elements in

All the infinitesimal nontrivial deforming functions are the elements
of 2-cocycles group Z2(T0G, U)u. The condition of U- in variance can
be formulated for the cocycles /eZ2(T0G, U)

/2) = [>, /(/ι,7'2)] - /(I>,7Ί],72)

where UE U =

£2(TφG, U) is the group of 2-coboundaries.
Suppose ρ denotes the map TφG-^U, then according to the defini-

tion of the group B2(T@G,U) one can reformulate the relation (3).

O,/(/ΊJ2)] -/d>,7Ί]J2) -/(/Ί, OJ2])

To simplify the narration we shall devide the proof into five pro-
positions.
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Proposition 1. I f j e TφG the U-invarίance condition for the cocycles
can be presented in the following form

( U ' f ) ( t ί 9 t 2 ) = ίtl9ρ(t2) ]-ίt2,ρ(tί)-], (5)

(w 7) (£ι> £2) = [gi, Q(g2Ϊ] ~ [£2> 0(gι)] ~ 0([gι> £2]) v (6)

(7)

These relations are the direct consequence of the linearity of all the
operators used. The antisymmetry of the map f(jiJ2) makes it possible
to consider only one relation for two functions /(/Ί 9 j 2 ) an<i /(/Wι)

According to the domain of values let / be represented in the form
/ = fL + /Γ + fB + /G . This decomposition and various values of u e U
can give us 16 different though not completely independent relations
from each of Eqs. (5), (6), and (7). We shall make use of only some of
them.

Among functions that satisfy (5) and (6) only four fB(tί9 "t2)9fG(tl9 t2)9

/L(gι, g2) and fτ(gl9 g2) can change the structure of the direct sum in U.

Proposition 2. Functions /β(ίι,ί2)
 αnα fottiih) αre not U-invαriαnt.

U-invαrίαnt functions /L(g1? g2) and fτ(gι, g2) are coboundaries.

lίu = beB one can obtain the following condition from the Eq. (5)

U>,fB(tl9t2) ]=Q. (8)

From the semisimplicity of B it follows that only zero maps fB(tί9 12)
are invariant.

Let us put u = I e L in the Eq. (5), then for fG(ί l9 ί2) we have

/G([Ullί2)+/G(ίl,CU2]) = 0. (9)

The subspace T is four-dimensional. Let us chose t1 and ί2 to be its
basic elements. Then in the subspace L we can construct such a basis
that it contains two elements /10 and /13 commuting with t2 and trans-
forming ίt into two other basic elements of T. This gives us fG(tQ,t2)
= /G(ί3,£2) = 0. If fG(ti, tk) = Q then (u fG)(ti9tk) is also zero. Using for
u the same elements /10 or /13 of L we get

fG(to9t2)=fG(tl9t2)^fG(t39t2) = 0. (10)

Using other basic elements of L and the linearity condition for /G one
obtains that all the L- in variant homomorphysms /G(ί, £') are zero maps.

Eq. (6) gives us for u = I e L the following relation
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In accordance with the standard basis one can write

/τ(gl> g2) = ίl/lfel, £2) + ί2/2fel, g2) + *3/3(gl» g2) + *4/4(gl, £2) >

where/,- are coefficients depending on gί and g2. The same can be done

for (?([gι»g2]) = ί?:r([gι>g2]) One can also choose the basic element lik

for leL and transform the Eq. (11) to

i (12)

wherefrom using C\ik)k for the corresponding structure constant we get

Taking different / m M eL one can write other expressions for /fc(gι,g2)
and see that all of them are equal. (In general maps ρτ in the Eq. (11) are
different for different elements / e L taken). So the new function

{?r([gι> g2l) = Σtk' &([gι» g2])

&([gι, g2]) = (CiwΓ1 ' ft([gι, g2]) i = 1, 2, 3,4| i Φ -*

is constructed so that

/r(gι>g2)
 = —§r([gι»g2]) (15)

whenever/T(g1? g2) is L-invariant. That means that in the case discussed
coboundaries are the only invariant homomorphisms.

Similar calculations lead to the same result for/L(g1?g2) maps.
Now let us study Eq. (7).

Propositions. Functions /L(ί,g) and fB(t,g) are not U-invariant.
U-invariant functions fG(t, g) are coboundaries.

Let u = I e L, then for the homomorphisms /L(ί, g) one has

Since t here is fixed, one can always take such a basis of P that t will be
its element. Then there are three corresponding basic elements of L
(say Iί9 /2, /3) that commute with t. If in (16) we check /12,3-invariance of
/L(^ g) we come to

But the Lorentz algebra has no such element that commutes with any of
its three different basic elements. So the consequence of Eq. (17) is that
all L-invariant maps /L(ί, g) are zero ones.

Consider now/β(ί, g) while u = I e L as before. It follows immediately
from Eq. (7) that

M!U],g) = 0. (18)
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This means that all fB(t, g) must be zero according to the structure of the
P-subalgebra.

Let us take u = leL again and see what we have now for /G(ί, g)
from Eq. (7).

/o([ϊ,ί],g) = [g,ί?(ί)]. (19)

Making use of P-subalgebra structure and solving the commutator in the
left hand side of the relation (19) one obtains the coboundary condition
for all the L- in variant maps /G(ί, g).

/G(ί',g) = [g,ρ'(ί')]. (20)

So there remains only one candidate for the deforming function. This is
the /Γ(ί, g) homomorphism.

Proposition 4. The L- invariant maps fτ(t,g) can be devided into two
parts. The first one called the non-diagonal fίd(t, g) is a coboundary, while
the second called diagonal /j(ί, g) is totally invariant and cocyclic.

As far as functions fτ(t, g) are concerned Eq. (7) gives us the following
for u = I e L

U,fτ(t> £)] - fτ(U, *], £) = [f, βfe)] - (21)

Here the Poincare algebra conventional commutation relations are
necessary.

L^μv> ^yJ Sμγ^v ' όvy^μ >

L'μv 'yσJ Sμγ^vσ Svσ^μγ ' Svγ^μσ oμσ^vγ >

In this basis the matrix forms of the functions fτ and ρ are

ρg; = c g ; ; «<

There may be different maps ρ (g) in Eq. (21) when various elements /
are taken. This is demonstrated in formula (23). One has then the follow-
ing relation for the coefficients d*(g) and /cα/*(g; /)

~ η

μv).
Choosing different values of μ, v, η and y one obtains two groups of
relations. For the diagonal part of the matrix d(f the condition is

,v = 0,l,2,3. (25)
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The second group of relations contains only non-diagonal elements

4(g) = -4(g),
d?(g) = 4fe); U = ι,2,3. ( ;

There is no connection between diagonal and non-diagonal parts so
they are independent and may be studied separately.

Considering first the non-diagonal part of the original map ffd(t9 g)
it is easy to verify that the L- in variant function is the coboundary. We
shall simply present the explicit form of the map ρ(g) necessary to write
the coboundary condition for the function fϊά(ty> g) = d° (g) ίσ

(27)
βfe) = W ' fe'T1- lσy σ < y = 0, 1, 2, 3 . (28)

Thus only the diagonal functions fj,(t, g) are of interest to us, for one
can't find the necessary function ρ(g) to form the relation similar to (27)
for them. According to Eq. (7) they are trivially T- in variant and their
^4-invariance leads to the following restrictions

/?(*,[*, g]) = 0; aeA. (29)

So on all the elements g e A1 the [/-invariant homomorphisms /£(£, g)
must be zero.

It is necessary now to check whether they are the cocycles. That
means that the following relation must hold for the maps fj,(t, g)

Σ {Dl,/(/2,73)]-/(D'lJ2],73)}=0, (30)
P(l,2,3)

where the summation is over the cyclic permutation of indices. Imposing
condition (29) we see that this requirement is fulfilled. So the function
/*(ί, g) = h(g) - 1 (see condition (25)) with the properties (29) represents
the element of H2(T@G, U) and thus is the only possible deforming
function that can change the structure of the direct sum P0A But only
if the H3(U, U) group has zero dimension all the members of
H2(T@G, U)v will give rize to deformations.

Proposition 5. There are no obstructions to the infinitesimal defor-
mation with the function f£(t, g) = h(g) t, where h(g) = 0 when g e A1.

According to the general rule it is necessary to show that
dimff3(E7, U) = 0. In our case there are non-zero elements of H3(U, U).
For example the function fL(tΛ9 tβ,g) = g"μgβΊμvk(g), where k(g) is a
numerical factor depending on the element ge G, belongs to H3(U, U).
But one must remember that particularly in the case of infinitesimal
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deformations not every element of H3(U, U) gives the obstruction to
deformation. The only thing one must check is

Σ f(f(Ji>J2\h)e&(T®G9U). (31)
P(l,2,3)

If the condition (31) is fulfilled for the element of H2(U, U) this homo-
morphism will give rise to deformation no matter what dimension of
if3 (17, U) is. Using the explicit form of the function /<£(£, g) = h(g) -1 it is
quite easy to verify that the left hand side of the relation (31) simply
equals zero. So there are no obstructions to this deformation.

This concludes the proof of the theorem.

III. Some Properties of the Deformation

First we would like to point out that the restrictions on the possible
internal symmetry algebra attached to the Poincare algebra are not
severe. In the radical of such an algebra A there must be the elements
that do not belong to A1. The situation is uninteresting when the central
elements of A are considered. Because if Z(A) is not the subspace of A1

then A = BφZ(A) and /j(ί, g) describes the deformations of P@Z(A)
which is the case of Abelian internal symmetry.

The second important property of this deformation is that the
Poincare subalgebra as well as the internal symmetry one remains
unchanged. So the results of O'Raifeartaigh [1] can be used here to
indicate that there are no self-adjoint mass operators describing descrete
mass-spectrum in the deformed algebra. The situation is realized here in
the following way. If there is any Kazimir operator containing the usual
mass, the deformed commutation relations are such that this operator
must also contain elements of G that do not form an invariant of the sub-
algebra A. There is no physical mass-spectrum and no possibility to
classify particles using the internal symmetry subalgebra. Even the
invariant operators of the internal symmetry in the initial algebra P 0 A
do not help to form the mass-spectrum [6] for the internal symmetry
algebra is also stable in our case.

So the applications of the generalised symmetry obtained are doubt-
ful. It remains to be solved whether there are any nontrivial deformations
of the higher order which can change the structure of P and A sub-
algebras and thus give physically interesting results.

To illustrate the situation we give a very simple example. Let A be the
3-dimensional solvable algebra A = G = {g}.
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It is possible to deform P0G with the deforming function fτ(ta,gk)
= h(gk) - ία where /c = 1, 2. We shall write down only those commutation
relations that change

where c is the deformation parameter. All the other commutation
relations are identical with those of PφG algebra.

It is easy to find the corresponding contraction procedure to obtain
P0G algebra from the deformed one. The necessary limit transforma-
tion is

g 1=limεg 1; g2 = limεg2; g3 = limε2g3; ε-»0.

One can also see that Doebner, Melsheimer's criterium [7] of con-
traction into the direct sum is fulfilled.
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