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Abstract. Using the Kubo-Martin-Schwinger boundary condition for equili-
brium states of quantum statistical mechanics of fermion gas, we prove that
for T 4= 0 a one-particle evolution (corresponding essentially to bilinear hamil-
tonians) generally defines a unique equilibrium state, which is quasi-free. Con-
versely any quasi-free state is the equilibrium state for a single one-particle
evolution if it has no Fock part in its product decomposition. Limiting cases
where T -> 0 and T ->• oo are studied. In the case where T -> 0 one shows that
the state generally converges to a Fock state linked to the evolution.

Introduction

Quasi-free states have been recently studied in an extensive way
[1, 2] as possible states for statistical systems of fermions. It is our goal
to study the possible dynamics associated with such states.

Our main tool in that study will be the so-called Kubo-Martin-
Schwinger boundary condition, in a form given for instance in [3]. This
condition has been used in order to derive general properties of equilibrium
states under general evolutions. In this paper, we shall restrict ourselves
to more specific evolutions, namely the quasi-free evolutions, which are
defined in the first section. Nevertheless, some important results of this
paper are extended to more sophisticated evolutions.

The second section is devoted to ' 'complexification'J of such evolutions
in this way, we are able to define more general automorphisms of a dense
subalgebra of the Clifford algebra, which are not *-automorphisms.

We can then prove the main theorem which states that, for a given
non-zero temperature, the Kubo-Martin-Schwinger boundary condition
establishes a unique correspondence between quasi-free evolutions and
quasi-free states which are not of the Fock type. This restriction is quite
clear since these states certainly do not satisfy the second condition of
Kubo-Martin-Schwinger [3].

* Attache de Eecherche au C.N.E.S.
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This theorem by no means spoils the possibility of more sophisticated
models, as the Bardeen-Cooper-Schrieffer model, since we describe
actually infinite systems.

The last section is devoted to the study of limiting cases where T -> 0
and T -> oo. In the case where T -> 0, we show that, for a given quasi-free
evolution, the corresponding quasi-free state converges to a Fock state
which is linked to this evolution.

I. Notations and Definitions

Let 2ft? be a real Hubert space (the one-particle space) with the
symmetric positive definite form s. 51 will be the (7* -algebra built over 3?
(Clifford algebra), generated by the hermitian elements B(ψ), ψ ζ J ί f ,
which satisfy the canonical anticommutation relations :

B(ψ) B(φ) + B(φ) B(φ) = 2s(ψ, φ) ,

A quasi-free state over 2ί is a state the truncated functions of which
are zero except :

ω(B(ψ) B(φϊf = ω(B(ψ) B(φ)} .

As is well known, it appears as a Slater determinant (or a Pfaffian) :

( 2?z \ n

Π B(<Pi)\ = Σ X* Π ω(B(Ψίk) B(φh)) (1.1)
i = l / «!<*,<»•«» k = l

χσ being the parity of the permutation a :

/I 2 ...... 2» - 1 2n\
° ~ \iι h ...... in i« / '

A quasi-free state ω defines an operator A on $F according to [1]

ω(B(φ) B(V)) = β(φ, V) + is(Aφ, ψ) (1.2)
satisfying both

A+=-A and ||̂ || ^ 1 (1.3)

where A+ is the adjoint of A with respect to s.
Conversely an operator satisfying (1.3) defines a unique quasi-free

state α>^.
An orthogonal operator T (i.e. T+T = TT+= 1) of 3tf defines a

-^-automorphism of 21 according to

ocτB(ψ) = B(Tψ). (1.4)

These automorphisms are called ' One-particle automorphisms".
Definition1. A quasi-free evolution is a homorphic mapping t -> oct of

the additive group of the real line into the group of one-particle automor-
phisms t -> oct X (X ζ 21) which are strongly continuous.

1 t -> &t is not necessarily the time translation since for instance in the grand
canonical formalism it contains already the chemical potential (see [3]).
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According to formula (1.4), we get a homorphic mapping t -> Tt of the
additive group of the line into the orthogonal group of ffl such that
t -> Ttψ(ψ ζ Jti?) is strongly continuous, since || B(ψ)\\ = \\ψ\\.

Definition. The state ω is an equilibrium state for the evolution oct if it
satisfies the Kubo-Martin-Schwinger (K.M.S.) conditions [3, 4] with
respect to this evolution: for every X and Y £21, t->ω(XoctY) can be
extended to an analytic function of t in the strip 0 < Imί < β continuous
on the boundary and such that :

ω(XoctY)t = {β=ω(YX) (1.5)
and

ω(Z*Z) = 0=φZ = 0. (1.6)

It is interesting to remark that an equilibrium state is an invariant
state. Indeed we have the following result:

Let t -> oct an evolution over an arbitrary C* -algebra 21 and let ω be a
state satisfying the K.M.S. conditions.

Then ω o oct = ω for every t £ R.
The proof can be found for instance in [9].

II. Complexification of Quasi-Free Evolutions

It is proved in [3] and in [4] that, given a time evolution t -> oct of
the C* -algebra 21, one can define an automorphism α^ of 21 which is not
a * -automorphism. This automorphism is of central importance in the
algebraic formulation of the K.M.S. boundary condition.

In this paper, we shall consider only quasi-free evolutions and, in this
section, we want to derive more specific results pertinent to this case.
Actually, one can use the results and proofs in [4] adapted to quasi-free
evolutions, but we prefer to give a slighty different approach, which
uses explicitly the analiticity properties of t -> octB(ψ) for a dense set of ψ;
let be more precise :

Proposition 1. Let t -> oct be a quasi- free evolution', there exists a dense

subspace 3? of 3? for which

can be extended to an entire function z £ C -> ocz B (ψ) the extension is of
course unique.

Proof. Let 3? 0 be the set of vectors φ such that

φ=T(f)φ = ff(t)Ttφdt (2.1)

for some φ £ Jti? and for / a real function the Fourier transform of which
x"x

/ belongs to 2. For the sake of brevity, we shall call @R this subset of ̂ ,
i.e. the set of real functions the Fourier transform of which belongs to

,̂ and &n the corresponding subset in 3f. ffl is the linear closure of $F§ .
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The right hand side in (2.1) is to be understood as a Bochner integral
just as

B(φ)=fB(Ttφ)f(t)dt (2.2)

where the integration has been intertwined with the continuous real
linear application φ -> B(φ).

Let ez be the function w -> exp(— izw). The application

(2.3)

realizes the extension. Actually, one can easily see that

fB(Ttφ)Mt)dt = Σ z"an (2-4)
n = 0

where
an=(-l)«(nlΓi/B(Ttψ)fW(t)dt (2.5)

and f or z = u real

/ B(Ttφ) M,(ί) dt = f B(Ttφ) l(t -U)dt = B(Tuφ) = ocuB(φ) .

We need now to prove that 3? is dense in ffl this can be achieved
by proving that ̂ 0 is a total set in 3? . Let χ ζ 3? such that

«Gf,0) = 0 V(KJf0

φ in ̂ o is of the form (2.1), so that by the continuity of s:

f f ( t ) s ( χ , T t φ ) d t = Q

for all / ζ £f and hence s(χ, Ttφ) = 0 (continuity of £-> s(#, Ttφ)) for
all ί ξ ^?; then the regularity of s implies that χ = 0. Q.E.D.

Moreover, it is clear that the linear subspace (resp. algebra 2ί) gene-
rated by B(φ), φ ζ^Ql is dense in the linear space (resp. algebra 21)
generated by B(φ), φ 6 2tf.

In the sequel we shall need the notation :

$) = {φ ζ tf; Ttφ = φ, Vί 6^} - (2.6)

§ at least contains the null vector and is contained in «^0. We shall
consider the case where 2 is purely imaginary z = i /? in that case we
introduce the notations, for a / £ .̂

Let us remark that fβ and /^ belong to
We give now an important lemma :

Lemma 1. // Σ ^ίί) ψjc = 0, /, ζ 0Λ,
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Indeed, for any γ ζ ffl and u real, one has:

or more explicitly

actually the left hand side is the restriction to u real of an entire function
(cf. proposition 1), so that the function is zero everywhere. Specially

n ^^^^
Σ f s(ψ, Ttψk) f*eiβ(t) dt = 0 (2.8)

if now we remark that
XX XX
Mn , jVn

and rewrite (2.8) as

( n X X \ i n X X \

ψ> Σ τ(flβ) ψkI + <* (v, Σ τ(tlβ) ψkI = o
*-l / \ *-l /

the result follows.
This lemma justifies the following definition:

Definition. £7̂  and Vβ are linear operators defined in ̂  as follows:

( n xx \ n ^
V T 7 / ^ \ n n l V7 Φ/^ 0\ r^ /9 Q\^ JL ^y^j 9̂̂ . I = /, ± \jjS) ψk ? l '̂ *'/

A = l / fe=l

= Σ ? } ψjc (2.10)
Λ = l

One has, using notations of the proposition 1 :

ociβB(ψ) = B(Uβψ) + iB(Vβψ) ψζje. (2.11)

We gather in three propositions the properties of Uβ and Vβ which
will be important in the sequel.

Proposition 2.
(£71) Uβ is symmetric.
(U 2) Uβ Ξ> 1 and consequently (a + Uβ) is injective for every

a > — 1.

(U 3) Uβ3F = $ and (1 -j- Uβ) $ = $

(1 + Uβ)'1 (1 - Uβ) is defined on 2
(£74) 0 ^ ( 1 + Uβ)-i(- l+Uβ)^ 1.

(£75) UβTt- TtUβ = Qon^.
Proposition 3.

(Fl) Vβ is antisymmetric.
22 Commun. math. Phys.,Vol. 13
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(72) VβTt- TtVβ = Oon^.
(F3) Ker Vβ = ξ>.

Proposition 4.

(Ϊ7F1) Z7jj+ Fj2= 1 on 3& .

(UV2) UβVβ- Vβϋβ = 0on^.
(t7F3) Ker Vβ = Keΐ(Uβ - 1).
Proofs. First let us remark that both

(2.12)

(2.13)

The proofs of U I and F 1 are essentially the same so that we

restrict to U 1 . Let us consider the following elements of ffl :

~

ψ=
* = 1

such that
n m /x s*^

«(^ Uβip) = Σ Σ ί *(T*φ*, Tsψi) /* (0 ̂
k = 1 ? = 1

using the orthogonality of Tt and the real character of /, we get after a
change of variables

using the obvious relation / gu? = fβ g .

Let us now prove U 2. For any φ ξ $P , one has:

τ«ψi)* t*MΛv>^Q (2.14)
1 7 = 1

this relation is true for any finite family of vectors φk £ ffl and any
finite family of functions fk ζ &n so we can choose

(2.15)

so that

fk(w) fj(w) = 2sh2 ~J gk (w) gό(w) = gk(w) g"β(w) - g^(w)gj (w)

we introduce this result into (2.14) and we get:

s(
where
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Hence U 2.
We prove now U 3 it suffices to prove that the general element of

•> Ψ = Σ τQ)φ^h ζ@R, φk 6^,isof the form E^ftor (1 + Uβ)φ2.

This is achieved if one chooses

ψt= ΣτQ)φk with gk(w)=^~ik(w)^^R, (2.16)

Ψ2 = Σ T £) ψk with At(w) = 2<}hLw] /*(«) 6 ̂  (2.17)
fc = l V r /

In order to prove £74 one has to consider the relation (2.14), but
instead of the choice (2.15) we take successively

(w) (2.18)

and the proof goes along the same line of reasoning as for U 2. Property
U 5 is obvious, just as V 2, UV 1 and UV 2. Let us now come to F 3.
Consider ψ = T(f) ψ ζ 2tf such that Vβψ = 0. For every <p ζ = f̂ ,

= 0 or

(2.20)

By linearity, we extend (2.20) to every / £ ̂ . Moreover t-> s(φ, ψt)
is bounded and continuous so it is the Fourier transform of a distribution
which, due to (2.20), has its support reduced to {0}. So that s(φ, ψt) is
at most a polynomial in t and since it is bounded it is a constant :

s(Ttψ, φ) = 8(ψ, φ) V
therefore

Ttψ = $ and $

Conversely let -̂  $ Jf such that Ttψ — ψ. One has seen that ψ
let φ ζ:^0 i.e. φ = T(f)φ,f ζ£&R. We can write:

X

+ is (ψ, Vβφ) = s (ψ, φ) f feiβ (t) dt

= *(ψ,φ)(f*tβ)(θ)
= * ( ψ , φ ) f f ( t ) d t .

We conclude then that
s(ψί(Uβ-l)φ) = Q

> Vβψ) = 0
22*
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and the proof of F 3 is achieved with the help of F 1. Finally, UV 3 is
proved by using UV 1, F 1 and F 3.

III. States Satisfying the K.M.S. Condition with Respect to a Quasi-Free
Evolution

Definition. Let ociβ be an automorphism of 21 defined by

aiβB(ψ) = B(ϋψ) + iB(Vψ) ψζJf (3.1)

U and V having the, properties of Uβ and Vβ in § 2 a state ω over 21 will
satisfy the K.M.S. condition with respect to α^ if:

ω(XociβY) = ω(YX) X£2l, Γ£§ί . (3.2)

Definition. Let 2la the linear subspace generated by products of the type
B (ψ) B (φ) two states are equivalent with respect to 212 if they coincide on 212 .
We shall call ώ the class of ω ζ 2l*+ with respect to this equivalence relation.

Remark that any class contains a unique quasi-free state so that it
is completely determined by one operator^ defined in (1.2) with pro-
perties (1.3).

Before proving the main theorem, let us give a lemma :
Lemma 2. Given an automorphism α^ of the type (3.1), there exists a

unique class ώ of states such that :

ω(B(φ) ociβB(ψ)) = ω(B(V) B(φ)) (3.3)

for any φ ζ 3f, ψ ζ 3? and ω ζ ώ.
Proof. Suppose such a class exists. Let A be the corresponding

operator on ffl then (3.3) implies relations (use (1.2)):

1 = u + A V on $ (3.4)

A=V - Aϋ on $ (3.5)

the relation (3.5) suggests the solution

A = (U+IΓ1V. (3.6)

We see, using UV 1, that (3.4) is also satisfied by the expression (3.6)
for 4.

To show that (3.6) is an actual solution, we prove relations (1.3). A
is antisymmetric since £7 is symmetric and F antisymmetric. Furthermore

which is bounded by 1 (cf. U 4). So \\A\\ ^ 1.
Finally let us remark the important relations deduced from (3.6)

and F3:
Ker^L = Ker F - § , (3.7)

AU - UA^AV - VA = 0. (3.8)
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As F is antisymmetric, $F split into two orthogonal subspaces :

and for technical reasons we shall prove the main theorem first in the
case where $) — {0}.

Lemma 3. Let ociβ be an automorphism of the type (3.1) such that
fy — {0}; there is a unique state satisfying (3.2) and this state is a quasi-
free state.

Proof. Using the fact, deduced from (3.1), that

and relation (3.2), one can verify that for any Y in the dense subalgebra

21, any X ζ 21 and ω satisfying (3.2) :

ωζΣfap Y - «_iβ 7)) = ω([Z, ( 7 - x_iβ 7)]+) , (3.9)

ω(X(ocitί 7 - at_if 7)) = ω([(Γ + *_tβ 7), Z]_) . (3.10)

Our goal is to show that ω is actually the quasi-free state which, by
the lemma 2, corresponds to the operator A given by (3.6). Our first task
is to show that ω is zero over the odd monomials. Let us specialize to

2n

X=ΠB(ψi) Ψiί3? / β l l xί = ι (3.11)

one can verify, using (3.1), that (3.10) rewrite:

= ω([B((U + 1) ?2n+1) - iB(Vφ2n+1),
2n

ftΛ+1, )̂ (3.12)

2n

ω
/ 2n \

I ΠΛB(ψi) I

If 7i = 0 one explicitly finds that :

Since F has a dense range in «#" (recall that $) = {0}) we can conclude
first that

and secondly by the recursion formula (3.12) that
/2n + 1 \

ω ( Π B(<Pi)\ = Q Ψiί^ (3.14)
\<-ι /

Let us now come back to the value of ω over even products and take

(3.15)

T=B(φtn) ψs
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in the same way as before, we rewrite (3.9)
2ίi-l

ω(XB(Vφ2n)) = Σ (-l)' + 1[*(F?2n, Ψi) - is((l - U)φ2n, φ
i = l

/2n-l \

ω( 77 -Bto) I (3.16)
\ίφ? /

Using the lemma 2, we can see that

}}. (3.17)

Since V has a dense range in ̂  we obtain for a dense set of elements :

( 2n \ 2ft — 1 /2n—l \

ΠB(ψi) = Σ (-l)i+1ω(B(φi)B(φ,n))ω( Π B(φ*)\ (3-18)
ί = l / i-l \ ;φi /

so that the truncated functions of order higher of two are zero (see
Appendix) the continuity of co ensures then that it is true for every
element in & '. Hence ω is quasi-free, and unique since it is determined
by the operator A given by (3.6).

Now, we go on the general case where $) is not reduced to zero, and,
unless stated otherwise, we assume that its dimension is even or infinite.
First we prove a rather obvious lemma.

Lemma 4. Let α^ an automorphism of the type (3.1) and 2t(§) the
Clifford algebra built over $). Then there exists a unique state over
which satisfies (3.2); it is the central state of 2t($).

The proof is immediate if one uses V 3 and UV 3 to see that:

so
ω(ΣY) = ω ( Y X ) ,Z, 7

It is well known that the central state of a Clifford algebra is unique
and quasi-free if the dimension of the one-particle space is even or
infinite. So given an automorphism of the type (3.1), we know that the

restrictions of ω to the sub-C*-algebras 2l(F^f) and 2t(§) are uniquely
determined by the condition (3.2) we gather these results to prove the
following theorem :

Theorem 1. Let t -> at a quasi- free evolution of the algebra 21, such that
the dimension of § is even or infinite. Then there exists a unique state
satisfying the K.M.S. conditions with respect to oct . This state is a product

state (a la POWERS [5]̂  of the state described in lemma 3 on 2l(F^f ) with
the central state of 2l(§); hence it is quasi- free.

Proof. One has previously noticed that
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is a decomposition of 2ft? into mutually orthogonal subspaces. We have
also (cf. UV 3 and U 1)

2tf = ί) Θ (U - 1)JT .

Suppose there exists a state ω satisfying (3.2) with respect to <xiβ.
Let us take

n m
X = 77 S(^), y< £3, and 7 = 77 B(V<), Vi ζ V^f = (Z7 -

ΐ = l ΐ = l

Remark that if m — w is odd formula (3.12) holds and induction
shows that ω(XY) = 0.

Similarly if both m and n are odd :

ω(ociβXY) = ω(7X) - (-1)WΛ ω(-ΓΓ) = 0 .

If now both m and n are even :

(«iβ B(ψJ) Π
i = 2 ? = 1

so that simple algebra shows :

induction on m allows to write :

ω(XT) = ω0(X) ω^Y) (3.19)

where ω0 is the central state of 2l(§) and α^ the state defined by lemma 3

on 2l(F<^f). The formula (3.19) ensures that α> is the product state, in
the sense of POWERS [5], of ω0 and eoj.

In general a quasi-free state ωA is a product state in the sense of
Powers of the form ω ι̂ <g> ω^a ® ω^3 (see [6]), where Ai is the restriction
of A to Jf\ and

2tfι = Ker 4

^3 = JT θ (̂  θ ̂ 2)

co l̂ is of the Fock type. In our case, the Fock type component is elimina-
ted by the second condition of K.M.S. (cf. (1.6)), a condition which we
have not used up to now. As we shall see below this corresponds to the
fact that β is strictly finite. Then the quasi-free state ω is written, by (3.7)
and (3.19):

ω = ωA = ω^a ® ω^3 with A = (1 + Z7)"1 V .

Finally we consider the case where the dimension of § is odd. There
is no unicity of the central state on 21 (§) and only one of these states is
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quasi-free. Then it is possible to prove that the theorem 1 is true, unless
in the case where dim§ = dim^f7 = 2n -f 1. Let us remark that the
situation where the kernel of A is of odd dimensionality is really un-
physical; indeed it is impossible to define on this subspace a complex
structure so that the evolution cannot be considered as a unitary group
of transformations in a complexification of ffl .

TV. Quasi-Free Evolution Linked to a Quasi-Free State through the K.M.S.
Condition

The theorem we shall prove in this section is something like the
converse theorem of the previous one. More precisely, we shall find,
using earlier results and for every quasi-free state, the unique evolution
for which this state is an equilibrium state: it is a quasi-free evolution.

In order to reach this goal, we shall need a result which is the analogue
of the Stone theorem, in a real space.

Proposition 5. Let Tt,tζR,be a one parameter abelίan group of ortho-
gonal operators over a real Hilbert space Jtf*, such that t -> Tt is strongly
continuous. Then, there exists an antisymmetric operator Z (possibly
unbounded) such that:

(4.1)

We prove first a lemma using the notation (2.1) (see also [10]):

Lemm&b.Letφ=ΣnT(fk)ψk = Vfkζ@R,φk^ ThenΣ T(fί)ψ*
=

where the prime denotes the derivative of fk .

n
Proof. If Σ τ(fk) ψk = °> Men for every φζjf and uζR

fc=l

Σ ί*(ψ> τtψk) [fk(t -u)- /*(*)] dt = 0
& = ι

/^
so that if we let u -> 0 and taking into account that fk £ £f, we get

s I 99,

so the lemma.

Let us define now the operator Z on the elements φ of ffl:

where

z ( Σ rtf*)φ»} = -Σ Γίί/
\k=*I / fc = l
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Furthermore the series

00 fm oo n ^ / _ ;\mfm X^^N.

Σ -^%mψ = Σ Σ JL

Ί+Γ-3m fk(u)Taφkdu (4.3)
w = 0 ' w = 0 k = l^

converges absolutely (standart proof) and on 3?

Ttφ = exp(Zt)φ

the antisymmetry of Z is obvious and ||exp(2fί)|| = 1, so that

Now we can give the main result of this section :
Theorem 2. Let ωA be a quasi- free state such that its decomposition as

product state (see previous section) contains no Fock part. Then there
exists a unique quasi-free evolution for which ωA is an equilibrium state.

Proof. Suppose that there exists a quasi-free evolution for which ωA

is an equilibrium state. We have previously seen that in this case A and Tt

are linked by the relation, deduced from (3.6), (2.9) and (2.10) and true

*-ι

Let us now calculate

(4.5)
n = 0

where we used the proposition 5 to ensure the existence, for our quasi-
free evolution, of the antisymmetric operator Z given by (4.2) and such

that Tt = exp(Zt). The convergence of the series on the dense set <& can
be proved using standard procedures.

Conversely the previous definition of Z on the dense domain (1 + A2) ffl

clearly determines through (4.1) a unique quasi-free evolution for which
ωA is an invariant state and satisfies the K.M.S. conditions.

It is to be remarked that :
i) the formula (4.5) is meaningless over the kernel of \A\ — 1 it is

the reason for which we excluded the Fock part of the quasi-free state.
ϋ) if A is of norm strictly less than 1, the operator Z is bounded; this

is of course an unphysical situation.
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iϋ) on the kernel of A, Z = 0 and the evolution is trivial.
The cases i) and iϋ) are clearly linked to β = oo and β = 0, i.e.

respectively to the systems with temperature zero and to the systems

with temperature infinite (since one defines -p -̂ = β\ .

At this stage we want to present a rather obvious lemma which
extends the generality of our previous results :

Lemma 6. Let ω be a state satisfying the K.M.S. boundary conditions
with respect to some evolution t -+ oct. Then, if β is a * -automorphism of 21,
the state ω o β satisfies the K.M.S. conditions with respect to t -> /3~1αί β.

Hence our results extend to the whole set of evolutions which are
conjugated to a quasi-free evolution within the group of *- automorphisms
and to the whole set of states which are of the form

ω = ω1 o β

where ω1 is quasi-free and β any * -automorphism of 21.

V. Limiting Cases

In this section we want to investigate the cases where β -> 0 or
β -> oo the first one has been previously studied in [7] for more general
cases.

We have proved that, given a finite non-zero temperature and given
a quasi-free evolution, we can define a quasi-free state in a unique way
by the K.M.S. conditions. In the explicit expression for this state, we let
β -> 0 and β -> oo. Then we prove that the state goes to the central state
(β -> 0) in some sense and to a Fock state (β -> oo) uniquely defined by
the evolution. We shall need in the sequel a lemma which essentially
gives the polar decomposition of the operator Z previously defined.

Lemma 7. Let Z be the operator defined by (4.2). Then

Z = IΩ on (U-l)^ (5.1)
where

(5.2)

(6-3)

n(w) = h(w)\w\ (5.4)

ift(w) = fk(w) ε(w) ε (w) = sign of w . (5.5)

Moreover i) Ω ^ 0 and it is defined on (U —

ii) I is a complexification of (U — 1)30? i.e.

1+ = - I and P = - / on (ϋ - 1) 3& .
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The proof is obvious.
Let us come to the first result:
Theorem 3. Let t -> oct a quasi-free evolution and Aβ the operator built

from oct as in section III. Then:

lim Aβ = I on (U
—

in the sense of strong convergence of operators on ffl\ I is the complexification
linked to oct) given by (5.3).

Proof. Let us for sake of simplicity restrict ourselves to (U —
for φ = T(f) φ, f ζ @Rί φζtf, one has:

\\(Anβ ~ I)ψ\\* = f*(φ, ψu) I/I 2 (th ̂  - ε)2 (u) du

since Ith 1 — ~ — ) ~~ ε(w)) ^ 1> we can exchange twice the limit n ->

with integrations. On the other hand we have pointwise:

2
so the result.

Quite similar techniques can be used to show the next theorem:
Theorem 4. With the same notations of the theorem 3, we have:

lim Aβ = 0

in the sense of strong convergence of operators on 3>(?.
It is interesting to note that the convergence of Aβ (actually only the

weak convergence is needed) implies the weak convergence of ωAβ. Indeed

one has, firstly on 212:

\ωAί(B(φ) B(y)} - ωAz(B(φ) B(ψ)}\ == ^((A^ - A2)φ, ψ)\ .

Moreover the proof goes by induction using formula (3.25):

2ft-3

Σ( 2ft \ / Zn

ΠB(ψi}\ - ω^2 Π
i-l / \< = 1

(
2n — l
Π B(Vi

ίφt
B(Vi)

Σ \
ί-l

2ft-l

-ωA(π B(φί)\
\ ? Φ ΐ /

Σ
/2»-l \

4.1 Π B(<P}}\
\ i Φi /
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So that f or any X ζ 21:

f Al -> A 2 (weak convergence).

So by the theorems 3 and 4 one has :

lim ωA — ω0 (the central state) (5.6)

lim ωA = CUT (Fock state) (5.7)
β-> 00 β

in the weak convergence sense.

These results are intuitively already known for finite volume from
the well known formula (see for instance [8]) :

Conclusion

The theorems we have proved and which establish for a fermion
system a correspondence between quasi-free states and quasi-free
evolutions, deliver a host of rather simple models of fermion gas. The
majority of these models are deprived of any physical sense, mainly due
to their lack of any invariance. Indeed it will in general be impossible
to define the simplest thermodynamical quantities as density, density of
energy or entropy.

We have already shown that the state defined by a quasi-free evolu-
tion retains the whole invariance of the evolution and conversely. So
we postpone to a next paper the study of the case where some invariance
is present, specifically the translation invariance.

Appendix

In this appendix, we give another writing of quasi-free states over
the Clifford algebra.

Lemma. Let ω be an even state such that

2n 2n-l 2n—l

= -

then ω is a quasi- free state.
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The proof goes by induction suppose that for (n — 2):

the sum being extended to all permutations of 1,2,. . ., 2τ& — 1 except i,
such that ^ < i2 . . . < in_1 and ik < jk, and χ0 being the parity of the
permutation (1,2,. . ., i — 1, i + 1,. . ., 2n — 1) -> (ilt jl}. . ., in-ι>jn-ι)
Then, according to the hypothesis of the lemma:

(
2n~l

f j ^ ( φ ύ ) — Σ Σ
ϊ= 1 σ

• ω(B(Ψί) B(φ,J) ω(B(φίκ_ι)
but the permutation

has the same parity of the permutation

So let

σ8:(ί, 1,2,. . .,ί- l , ί+l, . .,

One has

*8 = Jfθ>

so that
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