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Abstract. We use cohomology of Lie algebras to analyse the abelian extensions
of the Poincare algebra ̂ . We study particularly the irreducible and truly irreducible
extensions: some irreducibility criteria are proved and applied to obtain a classi-
fication of types of irreducible abelian extensions of ̂ . We give a characterization
of the minimal essential extensions in terms of truly irreducible extensions.

Introduction

The investigation of Lie algebra extensions of the Poincare algebra
has a short history. The only contribution to this analysis is essentially a
paper by GALINDO [1]. The more difficult problem of group extensions
of the Poincarό group had been discussed formerly by MICHEL [2], in
connection with the mixing of internal and space-time symmetry groups.
The group extension problem is very hard, especially from the topolo-
gical point of view, even in the case where only Lie group extensions are
considered. This immediately brings about the consideration of Lie
algebra extensions. In general, one cannot state that the extensions so
obtained have corresponding Lie group extensions. With some connec-
tedness requirements this correspondence can be established [3]. The
study of Lie algebra extensions shows up the intrinsic, rather than topo-
logical difficulties of the problem. Some manifestations of Lie algebras
as fundamental structures in physics suggest also the idea of such an
analysis, independently of the corresponding group problem.

We recall in Section I how the cohomology theory of CHEVALLEY-
EILENBEBG [4] provides for the determination of Lie algebra extensions
with abelian kernels [5].

In Section II an important theorem of HOCHSCHILD-SERBE [6] is
applied to the study of the abelian extensions of the Poincare algebra .̂

The structure of the Lie algebra obtained by extending & is analysed
in Section III. The irreducibility and true irreducibility of the abelian
extensions of ̂  are examined in Section IV. A classification of types of
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irreducible abelian extensions and a characterization of the minimal
essential extensions are given.

Some Conventions

We denote Lie algebras by capital script letters: jtf, 3$, . . . and the
underlying vector spaces by the corresponding capital print-like charac-
ters: A9 B,. . .

If ^ is a Lie algebra, Aφ denotes the ^-module structure induced
by the representation Φ:^-> EndF(^4) on the vector space A. We
symbolise the usual exceptional cases of morphisms φ: 21 -> 93 of a given
algebraic structure as follows:

epimorphism: φ: 21 -» 93,

monomorphism: 9?:2l^> 93,

isomorphism: φ: 21 >-» 93 or 21 ̂  93.

The direct sum of 21 and 93 is denoted by 21 Θ 93 and for a semidirect
sum of two Lie algebras jtf and 3% we use the symbol &i ̂  38, if ^ is
the ideal. 21 X 93 will stand for the (direct) product of 21 and 93, and
AΦ <g> Bφ} for the tensor product (relative to the field F considered)
of the ^-modules Aφ and Bφ.

Let Ln (G, K) be the vector space of the ^-linear maps Gn -> K
Vn>0. We define LQ(G, K) = K and write L^(G, K) = L(G, K}. If
An (G} K) C Ln (G, K) is the subspace of the ^-linear alternating maps,
then Aι(θ, K) = L(G, K). We define A0(θ, K) = K. N+ will stand for
the set of positive integers and N = N+ \j {0}. The symbol D (2) denotes
proper (improper) set or extension inclusion throughout the paper.

Only Lie algebras, modules and vector spaces of finite dimension
over a field F of characteristic 0 are considered. These restrictions are
tacitly understood throughout the paper. Whenever we view F as a
^-module we understand it with trivial action: g / = 0 V ( g ζ ̂  / £ F),
i.e. F is seen as a trivial ^-module.

We define in a ^-module Aφ the invariant vector xbyg x = QVgζ:&.
The invariant vectors of Aφ make up a trivial submodule A%.

We call Poincare algebra 3P the real Lie algebra of the Poincare group.
Therefore, whenever we mention the Poincare algebra, the field F in
consideration is JR.

Let us use the standard symbols §>(fc»^») for the irreducible finite
complex representations of the Lorentz algebra 3? (i.e. the real Lie
algebra of the Lorentz group). The irreducible finite real representations
of 5f are then written:

©Ui, ί*> = ©<*ι, ί ) φ ®(ίι, ω if ̂
16 Commun.math.Phys.,Vol.l3
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I. Cohomology of Lie Algebras and Extensions with Abelian Kernels

I. 1. The Chevalley — Eilenberg Cohomology [4]

Let ^ be a Lie algebra and Vφ the ^-module associated with the
representation Φ:^ -> Endjt(F). We define the vector spaces:

The alternating maps fn are said Fφ-cochains of degree n or simply
(n\ <&, Fφ)-cochains.

On each Cn(&, Vφ) we define the structure of a ^-module [4], [6]:
n = Q:C°(&9Vφ)=Vφ is already a ^-module,

(g fn) fa, ...,?„) = Φ(g) f n f a , ...,gn)

n

~ Σ fn(ffl> ' ' > f f i - l > lff>Vil>9i+l> >ffn) (I l)

We consider the linear maps :

<n(0):0"(#, FΦ) -> 0»-M^, FΦ) V (g ζ 9 9 n

such that

(*n(ί7) /n) toι> j ^n-l) = (fn)gfa> • » ^n-l) = /w(^ 1̂ > • » (7n-l)

V(fn£C«(99VΦ) 9gl9...9gn_lζ0).

If n - 0:*0(fir) /0 = 0 V(jr £ »; /0 ζ 0°(», Fφ)) . (1.3)

Then there exists one and only one linear map δn : C
n (&, Fφ) -> Cn+1 (&9 Vφ)

V n ζ N such that

Wn/»)α = 17 ' /» " ί«-ι (/n)α V (fir £ » Λ 6 Λ^ ) (I 4)
and

(&M(ff) = Φ(g)f* VgζV (1.6)
όn is ref errred to as the coboundary operator and reads explicitly :

(1.6)

where the ^sign indicates the omission of the argument below it. The
coboundary operator satisfies the identities

<5» (9 fn) = g (<*„/„) V (» 6 N; gζ & /„ 6 <7» (^ FΦ)) (1.7)
and

(1.8)
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Once (1.8) is verified we can define the vector spaces :

Z»(9, Vφ) =

9 Vφ) =

and the quotients Hn(99 Vφ) = Zn(&, Vφ)/Bn(&, Vφ) VnζN.
Zn(&, Vφ) is the vector space of the Fφ-cocycles of degree n or

(n\ *&9 Fφ)-cocycles; Bn(^, Fφ) the vector space of the Fφ-coboundaries
of degree n or (n\ &9 Fφ)-coboundaries. The quotient Hn(^, Vφ) is the
cohomology space of degree n of ̂  over Fφ .

The ^-module structure of Cn(&9 Fφ) induces a ^-module structure
on Zn(&, Vφ) and Bn((^) Fφ) V n ζN by virtue of identity (1.7). By
passing to the quotient we obtain a ^-module structure on Hn(^, Vφ)
VnζN.

If /< 6 σ*(», Fφ); g1,g,)g3 6 », then:

2, 9*) =

^i* 9*\> 93) - f*(\9*> ^3]. 9ι) ~ h(\9*> 9ιΊ)> 9 2) -

The linear maps /x ζL(G, V) such that ^/x = 0 are referred to as
crossed homomorphisms of & into Vφ and the linear maps <50/0 ζL(G9 V)
as principal crossed homomorphisms.

1.2. Extensions of Lie Algebras with Abelian Kernels

Let J/ and && be Lie algebras. We call a short exact sequence

where δ is a Lie algebra, an extension of & by $0 [7].

The kernel .yf of /? is called the kernel of the extension.
Two extensions

/-^»^ and j/> ̂ >^/J> j /-

are equivalent if there is an homomorphism γ : <§ -> $' such that the
following diagram is commutative :

16*
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Necessarily δ f& δ' and the relation between the two extensions of &
by si is an equivalence relation.

An extension of & by si can be described also as a pair (δ, ρ) where
ρ is an epimorphism <f-» 3& and si = Kerρ. Each such pair determines
a short exact sequence

and every extension of έ% by si is equivalent to one so obtained. In this
paper we shall always use this definition.

The following exceptional cases of extensions are of particular impor-
tance :

1. (δ, ρ) is inessential if there exists a supplementary Lie algebra of
Kerρ in δ.

2. (δ, ρ) is trivial if it is inessential and the supplementary Lie
algebra of Kerρ is an ideal.

3. (δ, ρ) is central if Kerρ is contained in the center of δ.
In the following we shall consider only extensions with abelian kernels,

abreviated as abelian extensions.
A section of (δ, ρ) over & is a linear map σ:«^ > $ such that

(ρ o σ) (b) = b V b ζ 'a.
We can associate uniquely to any abelian extension (<^, ρ) of έ% by si

a representation Φ:^-> EndF(^4). We choose any section σ of (§, ρ)
over 9S and define Φ(b) ζ EndF(J.) V b ζ & as follows: Φ(b)a = [σ (δ), a]
V a ζA ([ , ] is the Lie product of <f). It is easy to verify that Φ
is independent of the choice of σ and that the relation [Φ(δ), Φ(δ')] α
= Φ([δ, &']) α V (6, 6' ζ ̂  α 6 A) holds, using the Jacobi identity. We
call Φ the representation associated with the extension (δ, ρ) of £% by si.
Φ induces canonically on A the ^-module structure Aφ.

Given the ^-module Aφ and the structure of abelian Lie algebra si
on A, there generally exist several extensions«(<f, ρ) of & by si such that
the associated representation is Φ. These extensions are called the
extensions o/ 36 by Φ or extensions of & by Aφ.

We can define a vector space structure Ext (38, Aφ) on the set of
equivalence classes of extensions of £8 by Aφ. The zero element of this
space is the class of inessential extensions.

Let (δ, ρ) be a representative element of the class {( ,̂ ρ)} of equi-
valent extensions of 3S by AΦ9 and σ a section of (δ, ρ) over .̂

Then ρ([σ(6), σ(δ')]) = [&> &Ί = ρ(σ ([̂  &'])) V δ, 6' 6 0 and an ele-
ment /a(δ, δ7) ζ-4φ exists such that

[σ(b), σ(b')] = σ([δ, 6']) + /,(δ, &') V b, V ζ ̂  . (1.9)

/2 ζ ̂ (- ί̂ -̂  ) is ca lled the factor set corresponding to the section σ. The
Jacobi identity requires /a ξZ2(<^ Aφ).
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If we choose another section σ' of (<f , ρ) over 38 we have

σ'(b)-σ(b) = f1(b)£AφVbζ<% (1.10)

σ1^,^).
It follows that

f'2(b, b') = /,(&, b') + («U) (b, b') Vb,b'£<%, (1.11)

if /2 is the factor set corresponding to the section a'. Then f% and /2

belong to the same class of Z2 (3S> Aφ) and the choice of different sections
of ($ , ρ) over ̂  leaves the cohomology class of the factor set unchanged.

Conversely : given a factor set /2 ζ Z2 (&, Aφ) we can determine a
corresponding extension (<£*, ρ) of J* by Aφ. Obviously E ̂  B Θ A and
we can then identify the elements of E with the couples (b} a), where
δ ζ B and α ζ J., on account of the canonical isomorphism!? X A& B φ A.

We define : ρ(b,a) = b and cr (6) = (6, 0) V (a ζ A b ζ B) (this corres-
ponds to the choice of a normalised section). The Lie algebra product
is then defined by the bilinear alternating map ω : E x E -> E such that

(1.12)

as is easily verified.
Then Ext(^,^φ)^^2(^,^φ) (1.13)

and we can infer immediately that an extension of 38 by Aφ is inessential
if and only if H*(&, Aφ) = {0}.

We have the following interpretation of the cohomology spaces
H*(a,Aφ)i = 0,1,2:

HQ (38, Aφ) = Aφ is the vector space of the invariant vectors of Aφ

H1 (38, Aφ) is the vector space of the crossed homomorphisms
f1ζL(B,A) modulo the principal crossed homo-
morphisms

H2 (38, Aφ) is isomorphic to the vector space of equivalence
classes of extensions of 38 by Aφ .

II. The Hochschild-Serre Theorem and the Abelian Extensions oί the
Poincare Algebra

I I.I. Eelative Cohomology and the Hochschild-Serre Theorem

Let & again be a Lie algebra and Fφ the ^-module associated with
the representation Φ : ̂  -> End^ ( F).

If ̂  is a subalgebra of 9, fn ζ Cn(&, Vφ) is called orthogonal to ̂

provided that: h fn = 0 V
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The orthogonality of fn to $? implies that of δnfn and as a conse-
quence we can define the vector spaces :

C«(9, X, Vφ) = {/n|/n 6 C*(9, Vφ) A /„ = 0, (/.)A = 0 Vδ ζ 2#>} ,

Z»(9, X, Fφ) = Z«(9, VΦ) r\ Cn(<$, #, VΦ) ,

, JT, VΦ) = δn-iC"-1^, je, Vφ) V » ζN+,

, #, FΦ) = {0} .
The relative cohomology space of degree n of ̂  mod $P is given by :

H«(99 #, Vφ) = Z»(#, JT, Fφ)/5»(#, JT, Fφ) .

The relative cohomology spaces are very important in the case where
Jf is a Levi subalgebra of ^ since the following factorization theorem
can be applied.

Theorem 1 (Hochschild-Serre). Let ^ be a Lie algebra and Vφ a ^-
module. Suppose that $> is an ideal of ^ such that ^/JF is semisimple.
Then:

Hn (99 Vφ) ^ Σ & WP, V) 0 H* (F, Vφf VnζN (II.2)

(@ -module isomorphism).
Proof. [6], pp. 602-603.
If ^{^ is semisimple, there is a subalgebra £f of ̂  such that

by virtue of the canonical epimorphism ^-^>^/JΓ. Hi(^,F) and
^(^j^.F) can then obviously be identified and it is easy to verify
that #>(JF, Vφf & #'(^, « ,̂ Fφ). Therefore we write:

#W(^,FΦ)~ Σ Hί(^,F)®H*(&,^,Vφ) VnζN. (II.3)
ί + j = n

We have that H°(^, F) ™ F and &(&, F) = {0}, since a Lie algebra
^ is semisimple if and only if the condition H1 (&*, Vφ) = {0} is verified
for every ^-module Fφ. Also H2(£f, F) = {0}, because of the fact that
all extensions by a trivial ^-module of a semisimple Lie algebra £f
are trivial.

Remarks. 1. More generally: H*(<9>, Vφ) = Hl(^} Vφ) = {0} for every
semisimple Lie algebra £f and every ^-module Fφ. This is the coho-
mological translation of the two Lemmas of WHITEHEAD [8].

2. Let £P be a semisimple Lie algebra, then H3(^} F) = {0} is not
necessarily true.

We consider the case of the real Lie algebra so3 of the group SO3.
Let {XT} i = i, 2, 3 he the standard basis of s o3 with \xt , Xj\ = ε^ 3%%%. Then :

a) H°(so3,R)^ZQ(so3,R) = C°(so3,R)=R.
b) Zi(βo8, R) = {0}, since (δ^) (xi9 x,) = /^fo, x,]) = 0 V

(/! ζ ̂ J (s 03 , jβ) .̂ , xό ζ {̂ ί}) implies f1 = QV ^ ζZl(so3,R). Therefore
B1(so3,R) = {0} and JPfsOg, Λ) - {0}.
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c) Z*(so3,R) = C*(soB,
cycl.

'= 0 V (/2 ζ (72(so3, R) xi9 xί9xk ζ {#ι}) It is easy to verify the relation:
B*(so3,R) = C*(so3,R). Hence #2(so3,#) = {0}.

d) Z3(so3,#) == (73(803,jR),aso3/3- 0 V/3 ζ(73(so3,β). B*(soB,R)
= <52 C

2 (s o3,R) = {0} and then #3 (s o3,R)^ <73 (s O3 , R) Φ {0} (the
mixed product (x\y\z) is a trilinear alternating form over so3).

e) Cn (so3,R) = {0} V n > 3, hence Hn (so3,R) - {0} too.
By the Hochschild-Serre theorem we have in particular for the

^-modules Jϊί(0, Fφ) (< = 0, 1, 2) :

fl°(#, Fφ) ̂  JP Θ H*(9, ,̂ Fφ) « F| ,

Fφ) ̂  JP Θ fl1^, ^5 Fφ) « fli(^, ^? Fφ) , (II.4)

Fφ) « F ® ^2(^, ̂ , Fφ) « ff»(^, ̂ , Fφ) .

For these exceptional cases the existence of an isomorphism between
the cohomology spaces and the relative cohomology spaces can also be
proved directly [9].

II. 2. The ^Modules H*(0>, Kφ) (i = 0, 1, 2)

Now let 0* be the Poincare algebra with the subalgebras £? (Lorentz
algebra) and & (translation algebra). We shall discuss the cohomology
spaces Hl(0>, Kφ] (ί = 0,1,2) oί ^ with values in the ^-module Kφ.

The abelianLie algebra structure on Kφ is tacitly understood through-
out. Of course Kφ can be considered as a semisimple £?- module asso-
ciated with the restriction Φ\3? of Φ to &.

a) HQ (&, Kφ) : The relevant vector spaces are :

, κφ] = κφ-, B»(0>, κφ) = {0} ,
>, Kφ) = {k\kζKφ; Φ(p) k = OVp£0}= K*, (Π.6)

In the Lie algebra <f (&, tf] the elements of K^ make up the center
ίf(<f). Therefore if H0(^, Kφ) = {0}, we have only extensions (<?,τ)
of ^ by Kφ with «'(<?) = {0} and conversely.

b) Hi(0>,K9):

σ (0>, X, Kφ) =

If /! Φ 0 we have the induced structure of simple ^-module
on the set Im/j = {/j (ί) | ί £ ̂ } g JΓΦ .

Sf , Kφ) = {f, \ /> 6 (71 (̂ , JSP, JΓ,) Φ ft) /j (ίa)



234 U. CATTANEO:

and

<?, Kφ) = ftl/^f) = Φ(t) /„; h(l) = Φ(l) /o = 0

V ( ί € - 7 ; Z € J Z ? ; / o €*?)}. (π 8)
By the theorem of HOCHSCHILD-SEBRE we can choose a representa-

tive element /x ζZl(&, <&, Kφ) in every cohomology class of 7^(3?, Kφ).
Proposition 1. // the semisimple £? -module Kφ has no simple components

*„ {1/2, ι/2}, *»«» H1 (&, K9) = {0}.

e, κφ) = {/,!/, e^8 (P, z); /,&, y = /,(/, 0 = o
V (J, Z,, Z2 ζ &; t ζέΓ); Φ(l) / aft, ίa) = /,(p, ίj, y

+ /2(ίι> P, «) V (ί,, <2 6^"; ? € ̂ )} (Π.9)

On the set Im/2 = {/2 (ίj , ίa) | ίj , ί2 £ ̂ "} g JLΦ we have the induced
structure of simple JS?- module .£ {̂1,0} if /a Φ 0.

We consider in y the standard basis {ί0, ί^^, ί3}. The condition
SP, JSΓΦ) reads:

U + Φ(O /2(ia, y + W M^, U = 0 V /ι, r, cr 6 {0, 1, 2, 3}.

Let us define /2^v - f z ( t μ ί tv) and Φσ - Φ(ia). The vectors Φβ/2/|v belong

to a ^-module -SΓφ {ι/2, 1/2} Θ φ{i, 0} ̂  ̂ {8/2,1/2} ® 2^>{i/2,ι/2} The two

simple J^-modules ^^{1/2,1/2} are generated by the vectors t'Q =^BQaμv Φ
a f g v

and t'Q' = φt*f2μQ. Therefore: f2 £Z*(0>, £>, Kφ), provided that t'Q
= O V ρ ^ { 0 , 1,2,3}, that is if the ^-module generated by {Q is
identically zero.

The theorem of HOCHSCHELD-SEBRE states that every cohomology
class of Z2(&, Kφ) contains a representative element /2 £Z2(&, &, Kφ).

Proposition 2. // the semisimple *£ -module Kφ does not contain any
simple component K Q^, then H2(&, Kφ) = {0}.

Corollary. All extensions ($, τ) of & by Kφ are inessential, provided
that the semisimple ^-module Kφ does not contain simple components
K®(W}

1 1. 5. Essential and Inessential Extensions

We are going to discuss the extensions of &* with an abelian kernel 3C .
Given a representation Φ : ̂  -> EndB ( K) which defines the structure of
a ^-module Kφ on K and given a representative element of an equivalence
class of Z2 (̂ , Kφ), we have a representative element of the corresponding
class of equivalent extensions of 0* by Kφ .
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There is an extension with factor set /2 £Z2(^, Jδf, Kφ), constructed
according to (1.12), in every equivalence class, (#, τ)φ>/a will denote the
extension ($, r) of 0* by Kφ considered with the factor set
f2ζZ*(0>,&,Kφ) throughout the paper.

We consider an extension (S, τ)φ,/2. If /2 =t= 0, a simple J^-module
J? jlί0} ί Kφ is associated with /2.

We call such a simple ^-module the fundamental £? -module K(f2)
of (8* τ)φ,f% The J^-module K(f2) = {0} is associated with /2 = 0.

If K(f2) = {0} the extensions of the class {(<?, τ)φ>/J are inessential.
If #(/2) Φ {0} and &(», -#, #Φ) = ̂ (^ ̂ , #Φ) are satisfied, then

the extensions of the class {(&, τ)φ,/J are essential (i.e. not inessential).
This is clearly the case if JΓ(/a) Φ {0} and O1^, Jδf, Kφ) = {0}, i.e. if Kφ

does not contain simple components -̂ φ (1/2, 1/2}

Proposition 3. The extensions of the class {(<?, τ)φ>/J wiίA ^(/2) Φ {0}
are inessential if and only if there exists a /j ξ (71( ,̂ Jf, Jίφ) α ί̂Z α ^αir
o/ elements ίj , ί2 6 ̂ ", 5^c^ ί̂ αί :

(«ι/ι) fe, W 6^(/2); («ι/ι) A, ί2) Φ 0 . (11.11)

Proo/. The necessity of this condition is obvious. The condition is
also sufficient: if (11.11) is satisfied we have (δ^) (t1} £2) = k ζ K ( f 2 ) and
the application to k of the endomorphisms Φ (I) V I ζ 3? gives the vectors

(*t/ι) (*, 0 V t, f € .Γ. Thus Im^/!) = Z(/,).
Let ^4 be the linear transformation defined by A (δ^) (t, t') = /2(ί, tr)

Vt,t'£3T and Φ(l)\K(f^ the restriction of Φ(Z) to K(f2). Then
^4(Φ (Z) I K (/2)) ̂ l-1 - Φ (Z) I ^Γ (/2) V I ζ & and by SCHTJR'S Lemma
A = A/. If we choose /{ = A/j, then όj/ί = /2 . This proves the proposition.

III. The Structure of

1 1 I.I. A Levi Decomposition of &(&>, tf}

By LEVI'S theorem [7, 8] every Lie algebra 0 has a decomposition
<g = £f ^ g% where £f and ̂  denote a Levi subalgebra and the radical
of 0 respectively. We have the following structure theorem.

Theorem 2. Lei (<f , τ) be an abelian extension of βP. The Lie algebra $
then contains a subalgebra isomorphic to ̂  bye.

Proof. The Lie algebra structure on E ̂  P φ K is defined by a
bilinear alternating map α' : E x E -> E such that :

«'((ft > 0), (ft, 0)) = (α(ft , ft), /a(ft , ft)) V ft , ft e P ,

α'((0, ^), (0, ia)) = (0, 0) V ii, *2 6 Jf , (III.l)

α'((p, 0), (0, fc)) = (0, Φ(p) i)) V(pζP-,kζK),

where α : P X P -> P is the biHnear alternating map which defines the Lie
product oί&.Φ and /2 are respectively the representation and the factor set
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determining the extension (<^Vτ). The Lie algebra δ being isomorphic
to all Lie algebras of the class of equivalent extensions {(< ,̂ τ)}, we can
choose /2 £Z2(<^, ̂ , Kφ] and the corresponding extension (< '̂, τ%,/2 in
{(<?, τ)}. If we identify <T and δ, then α'(ft, 0), (Za, 0)) - (aft, 4)", 0)
V llyl2ζL. We consider the monomorphism y:Z>—>- E such that ^>(?)
= (I, 0) V Z ζ L. ψ is a Lie algebra monomorphism as can easily be veri-
fied. Therefore: & ̂  Imψ and τ|Im^ = ψ~l.

Every extension of the Lorentz algebra (abelian or not) is inessential
because of the simplicity of &. The following theorem is a generalization
of the trivial statement that every inessential extension of the Poincare
algebra .0* is also an extension of £?.

Theorem 3. Let (δ, τ) be an abelian extension of & by 3C. Then there
exists an inessential extension ( $ , τ f ) of 3? such that τ' factors uniquely
through τ. (δ, τ') is an abelian extension of 3? if and only if (δ, τ) is an
inessential abelian extension of £P where $ ?& & Φ («^~ θ 3C).

Proof. We use the notation of the proof of Theorem 2. By this theorem
there exists a monomorphism ψι <£?>-*• δ. Imy has a supplementary Lie
algebra in δ which is an ideal. This is easy to verify: we see that α'
induces the structure of a Lie algebra on the subspace R~T'®K,RζE
and T' & T by τ, making it an ideal of δ. 01 contains the abelian ideal Jf,
but we have in δ no Lie algebra structure on T' ^ T if /2 ψ 0, since
α'(ft, 0), (ίa, 0)) - (0, / a ft, ίa)) V ̂ , ίa ζ T. We consider τ": & -» J2?.
Then τ' = %" o τ is an epimorphism τ': δ -̂ > J2f and (<f, τ') is an
inessential extension of =£P. The Lie algebra £% is abelian if and only if
α'(ft» 0), (ίa, 0)) = (0, 0) V t1} ίa e T and ̂  ̂  ̂ " φ JΓ.

From the proof of Theorem 3 we infer that every abelian extension
(δ, τ) of & by JΓ is such that δ = Imψ -b 3% where the abelian ideal JΓ
belongs to Ά, E & T θ K,

[(^^(^^-(^h^t^Vt^t^T and fι£Z*(0>,&,Kφ).

Therefore <ί = jgf" 9 ̂  where '̂ ̂  oδP by r. This is a Levi decom-
position of δ since the ideal 0t is solvable, with Dl3t = \β, &] g tf
and D2^ - [D1 ,̂ D1^] - {0}.

Corollary. // (δ, r) is an abelian extension of &, then $ = £?'•$&,
where £?' ^ <£ by τ, is a Levi decomposition of δ. The radical 8% is
such that Ώ^m = {0}.

^ is the biggest nilpotent ideal of δ:

1. If Kφ does not contain any simple trivial ^f-module K ^ 0^ φ {0},

then & is the nil-radical of δ, since \δ, 0£] = St. Hence St is the inter-
section of the kernels of all the finite irreducible representations of δ.
In this case each simple ^-module is also a simple Jδf-module and con-
versely. ̂  is of course the biggest nilpotent ideal of δ.



Irreducible Lie Algebra Extensions of the Poincare Algebra. I 237

2. If Kφ contains a simple ££-module K^^ =t={0}, we consider

the descending central series {C*&} of ideals of &. C1^ = \β, 3f\ £ Jf,
\β,C"-1^] ςΦ*

where Φ*(^") JΓ = {Φ**(*ι) Φ* (fa) . . . Φ%) t^, f a , . . ., ί,
}• { } means the natural abelian Lie algebra

spanned by { }. There exists n ζN+ such that Φn(^~) = {0}, since &~ is
the nil-radic al of &. Therefore Cn+1& = {0} and St is the biggest nil-
potent ideal of $.

Clearly, if ( ,̂ r) is an extension of the Poincare algebra by Kφ, $
contains a subalgebra isomorphic to & in the following cases :

1. ((ί, τ) is an inessential extension of @P by Kφ ,
2. the semisimple J^-module Kφ has a simple component -K^ {1/2,1/2} •

1 1 1. 2. Extensions of & by Simple & -modules Kφ

The structure Kφ of simple ^-module is induced on the vector space
K by the irreducible representation Φ:0>-> EndΛ(^). The simple £P-
module Kφ has also a simple f̂ -module structure K^^^ . This follows

from the fact that 3~ is the nil-radical of ̂ . It follows from the Corollary
to Proposition 2 that among the extensions by the simple ^-modules
Kφ = K^tjt}> only those by K^{i}o} can ^e essential. Therefore:

Ext (̂  K^M) = {0} V ft , /J Φ {1, 0} . (III.2)

Or, equivalently, the only essential extensions of & by a finite irreducible
representation, are those by an abelian Lie algebra of dimension 6. As
a consequence of SCHUR'S Lemma we have

dimExt (<?», J Γ i . 0 } ) = dimfl" (̂ ,

Definition 1. TΛe essential extensions of & by a simple & -module
{1,0} are refe?"red to as minimal essential extensions.

Let ((^j, TJ) be a minimal essential extension. ^ = Sf' ̂  -& £%^ with
ί ̂  Jδfby r1? is a Lie algebra of dimension 16 whose radical satisfies:

o1^ = jr, B Λ! = C*ΛI = {0} (jfφ = ̂ {1)0} = z(/a)) .
Let us introduce in^ the basis {Z^}μ>^j, #ρ}ρ€J, {*στ}σ,τ€j, /={0,1,2,3},

such that :

{l'μv} generates a subalgebra &Ί & 52 by τl9

{tr

ρ} generates a vector subspace T' isomorphic to T by TI}

{kστ} generates the abelian subalgebra Jf ,

and with: [ t ' σ , t'τ] = /2(ίσ, tτ) = Jcστ.

These subspaces and Lie algebras are linked in <fj by: &dτ>&{
& ad2τoδP, ad^cδfί ̂  ad^o^, and ad^/^ = {0} (see also [1]).
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If Kφ is a semisimple ^-module, i.e. if the representation Φ is com-
pletely reducible, only the extensions by Kφ with simple components
j? {Ij0} can give essential extensions. Then we have: δ ^ δ^ •£ W ', with

Kφ = K'φ φ ^Γ(/2)? provided that (< ,̂ τ)φ,/2is an essential extension of 0*
by Kφ semisimple.

Let Φ be the trivial representation of & in K, i.e. Φ = 0. There
exists one and only one equivalence class {(<^>τ)0j/2} of extensions
of 0* by KQ (the class of the central extensions of & by JΓ) since
/2 = 0 V /a ζZ2(^, -S?, #o) Moreover any central extension of ̂  by JT
is obviously trivial. This is an exceptional case of a result of MICHEL
[2] and GALINDO [1].

IV. The Irreducible and Truly Irreducible Abelian Extensions of &

I V.I. Irreducibility and True Irreducibilίty of Abelian Extensions

An abelian extension (<f , ρ) of & can contain an extension (#', ρ')
in a sense to be specified later on.

Definition 2. [4] Let (δ, ρ) be an abelian extension of &. We call (δ, ρ)
irreducible if there is no proper subalgebra (ί'C^ such that ρ' ($')

When an abelian extension (δ, ρ) is irreducible (reducible), all
extensions of the equivalence class {(δ, ρ)} are irreducible (reducible).
(8, Q)^(δ'9 ρ') means that (δ, ρ) is reducible and <f3£',ρ\<F' = ρ'.
(δ, ρ) = (δ1, ρ') means δ = ff , ρ = ρ'.It is clear that if (δ, ρ) 2 (δr , ρ )
and (V, ρ') 2 (#" , ρ")> th^n (δ, ρ) 2 (^/;, ρ/;) We say that (δ, ρ) con-
tains (δ'9 ρ'} if (<T, ρ) 2 (<r, ρ;).

An abelian extension (δ, ρ) can contain several extensions
Thus we get sequences of abelian extensions :

Every sequence ends with a lower irreducible extension ($(n\ ρ(w>) which
is uniquely determined by the following theorem :

Theorem 4. Every abelian extension (δ, ρ) of £% contains one and only
one irreducible extension (<of, ρ').

Proof. It is obvious that there exists one irreducible extension
(δ1 , ρf) which is contained in (ff, ρ). We suppose that there exists another
irreducible extension (δ" , ρ") φ (<f ;, ρ;) contained in (δ, ρ) and we
consider the Lie subalgebra £' r\ £" of δ. Let ρ' n ρ" = ρ \δ' r\δ" , then
(ρ; n ρ")(£' r\ £"} = ρ'\g'r\ <$"(£' Γ\ δ") = & and (#' r\ δ" ', ρ' π ρ")
is an abelian extension of & such that (<f ' r\ δ", ρf n ρ") C (< '̂, ρ')
Hence the extension (δ* ', ρ') is not irreducible in contradiction with the
assumption.
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We can now say that an abelian extension ($, ρ) reduces to ($'', ρ')
if (<f, ρ) contains the irreducible extension (δ*', ρf).

Let J3/*C^ be a proper ideal of $(β,$ί}. The abelian extension
(δ, ρ) of 3$ by Λ/ induces an extension («f/j/*, ρβ) of ^ by ^/j^*.
ρq denotes the epimorphism $\stf* -» ̂  obtained by passing to the quo-
tient and the extension (^/j^*, ρβ) is of course abelian.

It is easy to see that if (^/j/*, ρq), with ja/* C £& proper ideal of δ,
is reducible, then also (<f, ρ) is reducible.

Theorem 5. (Imducϊbilίty criterion) [4]. TΛe abelian extension (δ, ρ)
of $ by ja/ i$ irreducible if and only if the induced extensions ($/<$/*, ρff)
o/ ̂  by ja^/«β/* are essential for every proper ideal <$#* Cjtf of (ί.

Proof. Necessity: Let (< ,̂ ρ) be irreducible and eβ/*C<£/ be a proper
ideal of <f. Then (<f/j/*, ρβ) is an abelian extension of ^ by jaf/ja/*.
We prove that this extension is essential. If (^"/j/*, ρα) is inessential,
(f/j/* = &' •$ J//J/* and ρα|«^" is an isomorphism Si' ^ 8$. Hence δ
is such that we have the structure of a Lie algebra on a subspace
E'CE, with E'=B"ΦA* and B" ^ B by ρ. Thus (δ, ρ) is
reducible in contradiction with the assumption.

Sufficiency: Let (δ, ρ) be such that the induced extensions (^/^*, ρα)
are essential for every proper ideal ja/* C && of < .̂ If (<f, ρ) is reducible,
then there exists a subalgebra <£" C δ such that ρ| δ' ($") = &. We consider
the subalgebra j/' = jaf n ί̂ ', which is also an ideal of .̂ Hence δ\&f'
— &' -$ £tf\£#' with 36' τ*d g% by ρα, and (<f/j/', ρβ) is an inessential exten-
sion of ̂  by J//J3/'. It follows that necessarily (δ> ρ) is an irreducible
extension of 3S by «a/.

Definition 3. J5τ/ α ίruZt/ irreducible extension we mean an abelian exten-
sion of & by <$/ such that no proper ideal J3/* C £& of £(88, jtf) exists.

It follows immediately from this definition that only an irreducible
abelian extension can be truly irreducible. The minimal essential exten-
sions of & are truly irreducible as well as the truly trivial extension
(̂ , /), with I = identity map.

The following theorem is a direct consequence of the Chevalley-
Eilenberg's construction of abelian extensions by a representation.

Theorem 6. An extension (δ, r) of 0* by Kφ is truly irreducible if and
only if Kφ is a simple &-module or Kφ = {0}.

The considerations of Section III.2 can now be stated as follows:
Corollary. An abelian extension (δ, τ) of & is truly irreducible if and

only if it is minimal essential or truly trivial.
This corollary gives a characterization of the minimal essential

extensions of 0* in terms of truly irreducible extensions.
Another useful concept is the following:
Definition 4. We say that the abelian extensions (δ, ρ) of ̂  by ̂  and

(δ', ρ') of £§ by $0* are of the same type if δ & δ'.
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This definition induces an equivalence relation on the set Exta £%
of the abelian extensions of ̂ . The extensions of the same equivalence
class of Ext (« ,̂ Aφ) are all of the same type, but we also have extensions
of the same type belonging to different classes of Ext (̂ , Aφ) or belon-
ging to two different spaces Ext (̂ , A^) i = 1,2.

Let us concentrate again on the extensions ((ί, τ) of & by Kφ. We
consider the extension (£, τ)φ,/a in the equivalence class {(<f, τ)}.

We say that K(f2) is maximal in Kφ if K(f%) φ Kφ and no &-
submodule K'φ of Kφ exists such that K(f2) ζ. K'φ C Kφ. Then:

Theorem 7. The extension ($ , τ)φj/a of 0* by Kφ is irreducible if and
only if K(f^) = Kφ or K(f2) maximal in Kφ.

Proof. The condition is necessary: If K(f2) is not maximal in Kφ

there exists a ^-module K'φ such that JΓ(/a) Q K'ΦCKΦ or JΓ(/a) = Kφ.
In the first case the extension (<f/Jf ', τq) is inessential and not truly tri-
vial. Therefore ($, τ)φ,/2 is reducible. The irreducibility of (<f, τ)φ)/2

requires HΓ(/2) = Kφ or K(f^ maximal in Kφ.
Sufficiency of the condition: If K(f2) = Kφ, then we have a minimal

essential extension (<^, r)φ)/2 or the truly trivial extension (̂ , /), both
irreducible. If K(f^ is maximal in Kφ then (^/^f,τa) is essential for
every proper ideal Jf ' C tf of ,̂ since K(f2) Q K'φ is excluded.

Corollary. // K(f^ φ ^Γφ and Φ(t) k - 0 V(ί ζ ̂ " ^ 6 #(/a)) ίΛe e ί̂e^-
θ^on (<^, τ)φ)/2 o/ ̂  δι/ -̂ Φ is reducible.

The theorem has to be understood in the following way : the necessary
and sufficient condition for an irreducible extension ( ,̂ τ)φ)/a of 3P by
Kφ is w_!

^κφ (iv.i)

where Φ*(.y) JSΓ(/8) = {Φ^(^) Φ* fa) . .

V ί ζ N+-, Φ«(^) K(fz) = K(f) and
K(fz) = {0}. { } means the natural vector space spanned by { }.

We consider an extension (<^, τ)φ>/2 of & by Kφ, such that the =£?-
module Kφ contains simple components K^^^ with (̂  + /a) half

integer. This means that the representation Φ|j£P contains spinorial
irreducible subrepresentations. By Theorem 7 we can infer that the
extension ($, τ)φj/o is reducible. In the study of irreducible extensions
of @P we have therefore to consider extensions by Jδf-modules Kφ with
only tensorial simple components.

IV. 2. Examples

a) We consider the extension ( g, τ)φ> /t of & by Kφ = K (/2) θ K^ {3/2ί 1/2}

(«J^f -module decomposition), where /2 Φ 0. The radical ^ of <f is then
also the nil-radical and we can apply the following corollaries to ENGEL'S
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theorem:
Proposition 4. Let $ be a Lie algebra and let j£?, έ% and 3C be Lie

subalgebras of S. Suppose that $ is a nilpotent ideal of $ ana 3f an ideal
of £%. Assume furthermore that 3C carries the structure of a simple j£f-
module K%&&. Then [r, 4] = 0 V (r ζ^; k ξ Jf), and Jf is abelian.

Proof. We consider the representation ad^^ of .̂ There exists a
vector k Φ 0, k ζ £&&&, such that (ad^-r) k = 0 V r ζ& (ENGEL'S theo-
rem). Therefore in δ'Λ = [Z, [r, k]} = [r, [Z, *]] + [[Z, r], 4] V (r ζ^ lζ^)
and [[Z, r], k] = (ad^p, r]) 4 = 0 since p, r] ζ&. Then [r, p, 4]]
= (ad^r) (ad^Z) k = 0 V (r ζ&; I ζ&). By the simplicity of the &-
module KA&& there exists for any k' ζ KQ&& a Z' ξ j£? such that (ad^Z')
k — k'. So we obtain the quoted result.

Proposition 5. Let &, ̂ , JΓ δe Lie subalgebras of the Lie algebra $.
Suppose that & is a nilpotent ideal of $ and ̂  an ideal of &. Assume
furthermore that CriC carries the structure K^g of a semisimple <£-module.
There exists an abelian ideal Jf' Q tf of & with the induced structure
K'^g, of a simple &-module such that [r, k'} = 0 V (r £^; 4' 6 Jf 7)

Proof. We consider ad^^ and we apply ENGEL'S theorem as in the
proof of Proposition 4. The simple ^-module K'^& is constructed by
applying the endomorphisms ad^Z V I ζ 5£ to a vector k ζ K^g>, 4 Φ 0
such that (ad^r) k — 0 V r ζ^?. JΓ' is then an abelian ideal of ̂  and
[r, F l - O V ^ ^ ^ζjT').

We return to our example and we apply the foregoing propositions.
We have the following possibilities:

1. Φ(^) JSΓ(/a) = {0}: The extension ($, τ)φ,/a reduces to a minimal
essential extension (^Ί, τι)φf/a (Exceptional case: Φ(^") Kφ = {0}).

2. φ(^) K(f2) = ̂ {3/2,ι/2} and Φ(^) ̂ {3/2,ι/2} = {0}: The extension

(^, τ)φ)/2 is irreducible. We denote by (^[|̂  r[2])c^,/2 *^s irreducible
extension. Then dim<f[|] — 32. The existence of a pair (4', ί') where
t' ζ y, k' ζ JΓ (/a) such that Φ(ί') 4' Φ 0 already implies this result.

b) Let /2Φ 0 and Kφ = K(f^ θ -ίΓ^{1/2,1/2} (^-niodule decomposition).

We have the same possibilities as in case a). The only difference is that
in case b) 2. we obtain another irreducible extension (δ^9 τ^)φ,/a with
dim<^[!] ̂  20. In this case ^φ {1/2,1/2} ^s generated by the vectors %'}

(see Section II.2).

IV.3. Classification of Types of Irreducible Abelian Extensions
of the Poincare Algebra

We consider an extension (d>9 τ)φ,/2 of 8P by Kφ and the descending
central series {(7*̂ } of nilpotent ideals of the radical ̂  of <f. The sub-
algebras C1^ are nilpotent ideals of δ and therefore, for i ζ 2V+, -̂
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submodules of Kφ too. We have the following possibilities :

1. Cl& = {0}: the extension (<f, τ)φ>/2 is inessential. It is irreducible
(and truly irreducible) if and only if Jf = {0}, i.e. if the extension is the
truly trivial extension (̂ , /) [of type (0)].

2. C1^ φ {0}, C1^ C Jf by passing to the quotient we have the ines-
sential extension ($/Cl&, τq)} since ^/C1^ is abelian. The extension
(< ,̂ τ)φ> /2 is therefore reducible.

Theorem 8. Let & be the radical of $ in the extension ($, τ)φ>/2 of &
by Kφ. Then (<ί, τ)φ)/2 is irreducible if and only if Cl& — C% '.

Proof. The necessity of C1^ = Jf follows from the foregoing consi-
derations. Let Cl@ = 3f. Then <72^ = Φ(P) tf is such that Φ(&~) Kφ

Θ K(f%) = Kφ (^-module decomposition). If K(f2) = {0} the nilpotency
of & requires Jf = {0}, i.e. the irreducibility of the extension. If K(f%)
Φ {0} we remark that :

Kφ = Φ> (Γ) Kφ + *Σ ** (̂ ) K (/a) V ?' ζ N+ . (IV. 2)

(IV. 2) is easily proved by induction on j. Since ̂  is nilpotent, there exists
ra-l

an w ζ^V+ such that Φn(3T) Kφ = {0} and thus KΦ= Σ φί(^) •£(/*)•
i = 0

By Theorem 7 the extension (( ,̂ τ)φ)/2 is irreducible.

3. Cl& = JίT Φ {0} : this brings about C2& = Φ (&~) tf C ̂ Γ Then we
have:

a) O2^ = {0} : in this case ^Γφ = K (/2) which gives a minimal essen-
tial extension [of type (1)].

We can now give another proof of the statement of the Corollary to
Theorem 6 that only the minimal essential and truly trivial extensions
of 3P are truly irreducible. Let'(^, τ) be a truly irreducible abelian exten-
sion of & and consider (δ> τ)φ> /a. If C1^ = {0}, then tf = {0} and (δ, τ)
is truly trivial. If C1^ φ {0}, we have to require Cl& = JΓ. Let
(72^ Φ {0}, then <72^ is a proper ideal contained in Jf, in contradiction
with the assumption. Therefore we must have C*& = {0} and (<f , τ)
is minimal essential.

b) <72^φ{0}: From the J^-module decomposition Kφ = K(fJ
Θ Φ(^) JΓΦ we infer C2& r\ JΓ(/a) = {0}. We consider the induced
extension (£/C2&,τq) of ̂  by JΓ/(72^. (<ί/C*@,τq) is irreducible and
minimal essential. We consider now <73 .̂ If (73^ = {0} we obtain
($, τ)φ,/2 = («f[|3, τ[|])φ,/2, where the index ί characterises the different
types of irreducible abelian extensions (2, [i]) with (73^ = {0}:

1. the extension (<f φ, τ^)φf /t with Φ(&~) K(fz) = ̂ {3/2ji/2} is of

(2, [1]);
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2. the extension (<£ψ, τψ)φ, fz with Φ (3T) K(fz) = K^{1,2 1/2} is of type
(2, [2]);

3. the extension (&i$, τψ)φ,/2 such that Φ(F) K(fz) =

φ ^{1/2,1/2} is of type (2> β])-
Let O3^ φ {0}. A straightforward consequence of Cl& = Jf is

<73^ Λ Jf(/2) = {0}. We consider the induced extension («f/C3^, τβ).
The irreducibility of («ί/<73^, τβ) implies that it is of type (2, [i]).

The above particular remarks can be stated more generally. We
consider the set <£>n, with n ζN, of all abelian extensions (<ί, τ) of 3P with
the radical^ of ̂  satisfying Cn+l& = {0} and £7># 4= {0} V (j ^ n\j ζN).
(<?, τ)φ,fz is an irreducible extension of & by jδΓφ belonging to @w with
n ζN, only if :

and (IV.3)
Jf (/2) n σ^Λ = {0} V (j Φ 1 / £N+) .

The following proposition is a straightforward consequence of the
nilpotency of ̂  :

Proposition 6. Let ($, r) be an extension of & by Kφ and let K* be a
simple ^-submodule of Kφ. Then:

Φ*(3T) K* r\ K* = {0} . (IV.4)

Corollary. We consider the, extension (β \ τ)φ>/2 of 0* by Kφ. Then:

Φ*(F)K(fz) π ^(/2) = {0} .

Let In be an index set of the types of irreducible abelian extensions
of & belonging to @Λ. We say that the irreducible abelian extension
(<4ί]> τ[n]) of & belonging to ©„ is of type (n, [>']) if iζ In.

Theorem 9. We consider the extension (<f, τ)φ,/a of & by Kφ. If n ζN+,
(<?, τ)Φ,/a is irreducible of type (n, [i]) if and only if:

Φ*(r) K(M = {0}; Φ'(Γ) K(f^ Φ {0} V (j <n-,j £N)
and (IV.5)

If n = 0 the necessary and sufficient condition for the irreducibility is
tf = {0}.

Proof. The necessity of the requirements (IV.5) or Jf = {0} follows
from the definition of @n and Theorem 7. 3C = {0} is obviously also
sufficient if n = 0. The conditions (IV. 5) imply Cl& = Jf , hence the
irreducibility of (β, τ)φ> fz by Theorem 8, as well as (cf , τ)φ> ft ζ <&n , n ζ N+.

Let 5 be the set of all types of irreducible abelian extensions of ̂ .
We can then consider families of types $n = {(n, [i]) \i ζln} n ζN, such
that 5 = U 5w In particular we have the family 5o °̂  tne truly trivial

17 Commun.math.Phys.,Vol.l3
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extension (̂ , /) and the family ξfi of the minimal essential extensions,
both containing only one element, ^a contains 3 elements as can easily
be proved.

It is possible to construct from an extension of type (1) a representa-
tive element of the classes of type (n, [i]) V (n £N+-, ί ζ In) by induction.
It is sufficient to consider condition (IV.4) and to recall that, by Theorem

9, Kφ ^Σ ΦW K{Jύ where φft) Φ(tj = Φ(fa) Φfe) Vt^

The minimal essential extensions, or extensions of type (1), play an
important role in the set of all abelian extensions of the Poincare algebra
8P. They are the starting point for constructing any irreducible essential
abelian extension of .̂ They are also the only extensions of 0* by Kφ

(besides the truly trivial extension) with the property that JΓ contains
no proper subalgebra which is an ideal of $.
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Appendix

Abelian Extensions of £PC

Let 0*c be the complexification of 0* and consider Lie algebras over C.
The finite irreducible representations of £?c are no longer §>&>**}, but
the well known ®0ι.' ) such that $>fa M = ©0ι,* ) e S>(^»^> if ̂  > ?2;
$){*,# = ξ)(ί,J).

For the abelian extensions of 0*c we have results analogous to the
abelian extensions of 0*. Any theorem for the abelian extensions of 0*
can be easily translated into a corresponding theorem for extensions
of^c.

In particular: ©ίM^ ©(M) $ ©(M) and as a consequence there
exist two types (1, [1]) and (1, [2]) of minimal essential extensions.
If (<f[l\τφ)φ,fΛ and (^[f],τ^)φf/jl are respectively of type (1, [1]) and
(1, [2]), then dim ίf[f] = dim<f φ = 13. The two corresponding fundamen-
tal J^f- modules are respectively HΓφα.o) and ^Γφ(o.i) The (2 0*9 ^Γφ)-cocycle
condition (11.10) transforms into the conditions:

The family ̂  now contains 3 elements, since besides the types (!,[!])
and (1, [2]) we also have (1, [3]) corresponding to the minimal essential
extensions of &. If (g^9 τψ)Φ,fz is of type (1, [3]), then dim^t?ϊ - 16
and the fundamental £?- module is
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