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Abstract. We say that a representation of an algebra of local observables has
short-range correlations if any observable which can be measured outside all
bounded sets is a multiple of the identity, and that a state has finite range corre-
lations if the corresponding cyclic representation does. We characterize states with
short-range correlations by a cluster property. For classical lattice systems and
continuous systems with hard cores, we give a definition of equilibrium state for a
specific interaction, based on a local version of the grand canonical prescription;
an equilibrium state need not be translation invariant. We show that every equi-
librium state has a unique decomposition into equilibrium states with short-range
correlations. We use the properties of equilibrium states to prove some negative
results about the existence of metastable states. We show that the correlation func-
tions for an equilibrium state satisfy the Kirkwood-Salsburg equations; thus, at
low activity, there is only one equilibrium state for a given interaction, temperature,
and chemical potential. Finally, we argue heuristically that equilibrium states are
invariant under time-evolution.

1. Introduction

The aim of equilibrium statistical mechanics is to describe the

equilibrium states of a system, once the interaction between its micro-

scopic components are known. These interactions are usually invariant

under a large group G of transformations (the Euclidean group, say, or

a translation group) and one may thus assume that an equilibrium state ρ

of an infinite system is invariant under G. We say that ρ is (?-ergodic if

there is no decomposition ρ = IT Qι + ~<Γ £2 w^ere Qi an(^ £2 are distinct

states invariant under G. It can be argued that ρ is ergodic if it describes

a pure thermodynamic phase and non-ergodic if it describes a mixture1.

The decomposition of (^-invariant states into (?-ergodic states has

received much attention recently2.

If one thinks now of an equilibrium state ρ corresponding to a

crystal, it appears that the crystal has a symmetry group Hκ smaller

than the group G under which ρ is invariant. This spontaneous symmetry

* Supported in part by NSF research grant GP-7176.
1 For a discussion of this point, see RUELLE [25].
2 See for instance DOPLICHEB, KASTLEB and ROBINSON [5], RUELLE [22],

LANFOBD and RUELLE [17], Sτ0BMEB [27].



Observables at Infinity 195

breakdown can be understood by writing ρ as a superposition

(1.1)

where ρα is a state describing a crystal with fixed orientation and lattice
position, and du is a measure on GjH^. Given an equilibrium state ρ,
one may now ask what the prescription is, to find a physically meaningful
decomposition like (l.l)8. This problem has been considered by a number
of authors4 mostly from a group-theoretical viewpoint, and it was
suggested by HAAG that the decomposition (1.1) should be into ergodic
states for time-evolution5.

In the present paper we adopt the point of view that the decomposi-
tion (1.1) should distinguish states ρα only if they differ "far away" in
space; one could say that we look for a decomposition into states ρα

which differ macroscopically and not just by local fluctuations. We shall
say that such states have short-range correlations and give them a precise
definition in Section 2. In Section 3 we restrict ourselves to classical
systems and establish equations which must be satisfied by any equili-
brium state. If Δ is the set of states satisfying these equations, it turns
out that the states with short-range correlations are just the extremal
points of Δ . The results of Sections 3 are used in Section 4 to derive
several negative statements about the existence of metastable states in
statistical mechanics. In Section 5 we exhibit a case where the invariant
equilibrium states already have short range correlations. In Section 6
we give a heuristic argument to show that, for continuous systems,
equilibrium states are invariant under time evolution.

Note. After the manuscript of the present article was completed (summer 68),
J. LASCOFX pointed out to us that results along the same lines had been obtained
by R. L. DOBRUSHIΪΓ [see Teorija Verojatn. i ee Prim. 13, 201—229 (1968); Funkts.
Analiz i ego Pril. 2, 31—43 (1968); 2, 44—57 (1968); 3, 27—35 (1969)]. We have not
modified our manuscript to take DOBRTJSHIN'S work into account, but we urge the
reader to consult the articles quoted above. It is of particular interest that DOBBUSHIN
could prove the existence of a symmetry breakdown for some non-trivial models
of a lattice gas [Funkts. Analiz i ego Pril. 2, 44—57 (1968)].

2. Observables at Infinity and States with Short Range Correlations

For the purposes of this section, let 21 be a C* algebra and let {21̂ }
be a collection of sub (7*-algebras of 21 labelled by the bounded open

3 This decomposition may in some cases (liquid crystals) be into "almost
periodic" rather than periodic states ρα. Notice that we look for a "natural" decom-
position of ρ, not a finest possible decomposition. For a classical system one can
decompose ρ into pure states ρα where all the positions (and possibly momenta) of
all the particles are fixed; this decomposition is too fine to be of interest to us here.

4 See in particular KASTLEB, and ROBINSON [13], ROBINSON and RUELLE [19],
DOPLICHEB, GALLAVOTTI and RUELLE [4], HAAG, KASTLEB, and MICHEL [11],

5 R. HAAG, private communication.
14 Commun. math. Phys.,Vol. 13
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subsets of Rv (continuous systems) or Zv (lattice systems). These objects
are subject to the restrictions:

QLA 1. U 21̂  is norm-dense in 21.

QLA 2. If A n M = 0, and if .4 £ 2^, £ £ 21M then [A, B] = 0.

For any bounded open A, let §ίA denote the sub (7*-algebra of 21
generated by {9ίM:'M n /L = 0}. If 21̂  is interpreted as the algebra of
observables measurable inside A, then <ΆΛ is to be interpreted as the
algebra of observables measurable outside A. Note that, by QLA 2.,
21,1 and §iA commute.

Now let π be a *-representation of 21 on a Hubert space $)π, and
define

where denotes weak-operator closure. Since π(2lA) may be
interpreted as the algebra of observables (in a generalized sense)
measurable outside A, 33π may be interpreted as the algebra of ob-
servables measurable outside any given bounded open set; we will
therefore refer to 93π as the algebra of observables at infinity. We will say
that the representation π has short range correlations if the corresponding
algebra 93π contains only the scalars, and that a state ρ on 21 has short
range correlations if the corresponding cyclic representation does.

2. 1. Proposition. For any *-representation π of 21, the algebra 93π is

contained in the center of π(2l).

Since 93π is evidently contained in π(Sl), it suffices by QLA 1. to
show that, for any B £ 93π and any A £ 3ίA for some bounded open A,

[B,A] = 0. But since B £ 23π, B £ π(?ίA); since §ίA commutes with 31 ,̂
the proposition is proved.

It follows at once from this proposition that any factor representation
of 21 has short range correlations.

One is most interested in the case in which 21 is one of the (7*-algebras
used to describe statistical mechanics. Consider first a one-dimensional
classical lattice gas. For such a system, the requirement that a trans-
lation-invariant state (i.e., an invariant measure on the space of con-
figurations) have short range correlations is analogous to the requirement
that the dynamical system defined by the translation mappings and the
invariant measure be a ^"-system (see SINAI [26] or JACOB [12], Section
10.9). Indeed, ρ defines a -δΓ-system if and only if:

Π U
mΛc(—oo,—

or if and only if
n u
m /lC(ίw»



Observables at Infinity 197

on the other hand, ρ has finite range correlations if and only if

Thus, if ρ has short range correlations, it defines a ./Γ-system, and it
seems a plausible conjecture that the converse is also true. In any case,
states of classical statistical mechanics having short range correlations
may be thought of roughly as multi-dimensional generalizations of
^"-systems. The following proposition shows, however, that the inter-
pretation is quite different in quantum statistical mechanics : for quan-
tum spin systems, the states with short range correlations are precisely
the factor states.

2.2. Proposition. Let 21 be the quasi-local algebra describing a quantum

spin system6. Then for any * -representation π of 21, 33π coincides with the

center of π(2l).

By Proposition 2.1, all we have to show is that any B in the center

of π(2ί) belongs to π^) for each bounded A. Thus, let Bx be a net of
elements of 21 such that π(Boc) converges strongly to B. We can suppose
that each Bx belongs to some 2l^α, where MΛ "^>Λ. Now 21̂  is a finite
matrix algebra; let (ei:ί) be a set of matrix units for it. Since B commutes

= st.-lim

But Σ eiiB«eii belongs to 2ljfα and commutes with 21 ;̂ hence, belongs

to 2lj<fα C 2(4, so B ζ π (Six) and the proposition is proved.

A similar argument shows that, if 2ί is the quasi-local algebra
describing a boson lattice gas or a continuous boson system, 93π coin-
cides with the center of π(2l) provided that the restriction of π to each
21,1 is quasi-equivalent to the Fock representation this will be the case
for representations of physical interest (see RIJELLE [21], DELL'ANTONIO,
DOPLICHEB, and RUELLE [3]).

The following proposition shows that, as the terminology suggests,
states with short range correlations are characterized by cluster proper-
ties. It contains as special cases known results about ^"-systems (SiNAi
[26]) and uniformly hyperfinite 0* algebras (POWERS [18], Theorem 2.5)

6 By the quasi-local algebra describing a quantum spin system we mean a
system {21, 2U} constructed as follows: Let § be a finite-dimensional Hubert space,
$x a copy of § for every x in Zv, and $)Λ= ® θ« f°r every finite Λ CZV. Let 21A

be the algebra of bounded operators on § .̂ If ΛζM, the natural isomorphism
$M = §Λ ® $MIΛ identifies *&Λ with a subalgebra of 3iM. Then 21 is the norm
closure of the union of the 2l/ι's (i.e., the inductive limit of the2U's). See LANFOED
and ROBIKSON [15].
14*



198 0. E. LANFOBD and D. KΌΈLLE:

the method of proof is a straightforward adaptation of that used in the
latter reference.

2.3. Proposition. Let {21, 3iA} be as above, and let ρ be a state on 21.
Then the following are equivalent:

1. ρ has short range correlations.
2. For every A 6 21, there is a bounded open set Λ such that

\Q(AB}-Q(A)Q(B)\^ \\B\\
whenever B ζ 21̂  .

Assume that 1. holds but that 2. does not. Then there exists A £ 21,
an increasing net Mu of bounded open sets whose union is the whole
space, and operators Bx £21^; \\BΛ\\ ^ 1, such that

limρ(ABκ)-ρ(A)ρ(B)φQ.
Oί

By passing to a subnet, we can assume that πρ (B^) converges in the weak

operator topology; since the limit is in Π π (21 )̂ it must, by 1., be of

the form 61. Then

lim ρ(ABa) - ρ(A)ρ(Ba)=]ίm[(Ωβ, πe(A) πβ(Bκ)ΩQ} -(Ωβ, πx(A)Ωβ)
α α

x (Ωβ, πρ(ίgβρ)]

= b(Ωβ, 3t,(A)ΩJ - b(Ωβ, πQ(A)Ωβ) = 0 ,

contradicting our earlier assumption and proving that 1. implies 2.
Now suppose that 2. holds, and let B ζ 93 .̂ Then

\(Ωβ, πβ(A)BΩβ) - (Ωβ, πe(A)Ωβ) (Ωβ, BΩβ)\ ^ \\B\\

for all A ζ 21. Replacing A by λA multiplies the left-hand side by \λ\
and leaves the right-hand side unchanged, so the left-hand side must be
zero. Letting b = (ΩQ, BΩρ), and using Proposition 2.1, we get therefore:

for all Alt A2 ζ 21, and hence
B=bl.

2.4. Corollary. Let {2t, 21̂ } be as above and let τ be a represen-
tation of the translation group in the automorphism group of *Ά such that

Let ρbea state of 21 which is invariant under τ and which has short range
correlations. Let Aly . . . , An ζ 21. Then
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We can assume that Aί , . . . , An £ 2l/t for some Λ. Then translation
invariance and Proposition 2.3 gives

where xl = x{ — x1}2 ^ i ^ %. The corollary now follows by induction
on n.

Because the algebra 93πρ is abelian, it gives a decomposition of the
state ρ. Heuristically, one expects this decomposition to be the coarsest
possible decomposition into states with short range correlations. We will
not study this decomposition in general. Instead, we will concentrate
on the study of the decomposition of equilibrium states of classical
statistical mechanics, using special methods to be developed in the next
section.

3. Equilibrium Equations for Classical Systems

We shall consider, in this and the following section, only classical
lattice gases in Appendix B we show how our results may be extended
to classical hard core continuous systems.

For a lattice gas, 21 == ^(K) is the algebra of continuous complex
functions on the compact set7

'K = {0,1}* = &(&). (3.1)

An element X:ZV-+{0,1} of {0,1}Z" is here identified with the set
{X ξ Zv : X(x) = 1} £ ^(Z*); K is compact as product of the sets {0,1}
(which are compact with the discrete topology). If Λ is a finite subset
of Z", 2lyi is the algebra of "cylindrical functions" A such that for
some φζ<ίf(0>(Λ)),

A (X) = φ(X r\ A) for all X 6 K.

If x £ Z", rx is the automorphism of 21 defined by

x) for all X

where X — x is the set X translated by — x.
A state ρ on 21 is the same thing as a probability measure on K.

If Λ is a finite subset of Zv, we shall define, for every X ζΛ, a measure

(3.2)
XCΛ

We shall say that ρ is a Z'-invariant state, or simply an invariant state if

ρ(τxA) = ρ(A) for all x £ Z", A € 21 .
7 We denote by 0*(E) the set of all subsets of E.
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An interaction Φ of the lattice gas is a real function on the finite
subsets of Zv satisfying

2. translation invariance: Φ(X + x) = Φ(X),

+ oό. (3.3)

The interactions form a Banach space ̂  with respect to the norm
(3.3). Let &Q consist of the finite range interactions, i.e. of the inter-
actions Φ such that Φ(X) Φ 0 for only a finite number of sets X 3 0;
the space ̂ 0 is dense in 8%. For finite X, Λ C %v we let

UΦ(X)= Σ
YCX

PΛ(Φ) = N(Λ)-ι log 2; exp[- Z7Φ(Z)] (3.5)
XCΛ

(where N(Λ) is the number of elements in Λ); then one can show that
the following limit exists for all Φ £ 3% :

P(Φ)L lim PΛ(Φ) ' (3.6)
Λ— >oo

when yl tends to infinity in an appropriate sense (see Appendix A). The
function P is convex and continuous on θ&.

The definition of an invariant equilibrium state corresponding to the
interaction Φ is a somewhat delicate question which has been considered
in detail in the literature8. A description of the problem is given in
Appendix A, which contains also the proof of Theorem 3.2 below. Here
it is convenient to accept provisionally the following somewhat untrans-
parent definition.

3.1. Definition. // ψ ξ 38, let Aψζtybe defined by

= Σ

An invariant state ρ on 21 is an invariant equilibrium state for the inter-
action Φ if the linear functional Ψ -* — ρ(AΨ) is tangent to the graph of
P( )at(Φ,P(Φ)),i.e.if

P(Φ + Ψ)^ P(Φ) - ρ(AΨ) for all ψ £ 31 . (3.8)

3.2. Theorem. For finite Λ CZ», let fΛ ζ <β(0>(A) x 0>(ZV\Λ)} be defined
by

fA(X, 7) = expΓ- Σ Φ(8)] (3-9)

8 See GALLAVOTTI and MIRACLE [7], RTJELLE [24], I^ANFORD and EOBINSOK [16]
for a review see RUELLE [25].
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An invariant state ρ is an invariant equilibrium state if and only if, for all Λ
and X,

QΛ (X, dT) = fΛ (X, Y) ρA (0, d T) (3.10)

where the notation (3.2) has been used.
This theorem is proved in Appendix A. The Eqs. (3.10) can be

understood as follows. Instead of an infinite system, consider a system
enclosed in the finite region M C %v The equilibrium state of the latter
system is described by a measure μ on &(M) such that9, if XζM,

μ({X}) = { Σ exp[- Uφ(7)]\~'1 exp[- UΦ(X)] . (3.11)
(YCM }

Now, if Λ C M and XζΛ, Y r\ Λ = 0, we have

( S ) ] μ ( { Y } ) . (3.12)
J

If we formally let M -> oo in (3.12) we obtain (3.10).
It is known (see Appendix A) that for each Φ £ $ there is at least one

invariant equilibrium state and therefore an invariant state satisfying
(3.10).

3.3. Definition. A state ρ on 31 is an equilibrium state for the interaction
Φ if it satisfies the equations (3.10). We denote by Aφ or A the set of equilib-
rium states for Φ.

By Theorem 3.2, an invariant equilibrium state is an equilibrium
state, and in particular A is not empty Δ is convex and compact for the
weak topology10.

3.4. Theorem. A state ρ ζ A has short range correlations if and only
if it is an extremal point of A .

The non-extremality of ρ in A is equivalent to the existence of
h 6 L°° (ρ), 0 ̂  h ̂  1, A not a multiple of 1, such that hρ satisfies (3.10),

A(Z, 7) ρA(X, d Y) = fA(Σ, Y) A(0, Y) ρΛ(0, d Y) . (3.13)

Since ρ satisfies (3.10), (3.13) is equivalent to

ρΛ(Σ,dT)[h(Σ, D-A(0, Γ)] = o
i.e. to h(X, Y) = h(0, Y) ρ-almost everywhere. This means that

hζπρ (§ti) and therefore h £ ̂ ρ . But the existence of h £ ̂ πρ , 0 ̂  h ̂  1 ,
h not a multiple of 1, is equivalent to ρ not having short range correla-
tions, proving the theorem.

The following result shows that every equilibrium state has a unique
decomposition into equilibrium states with short range correlations.

9 This is the "grand canonical" prescription of GIBBS, with the factor 1/kT
and the chemical potential term absorbed in the definition of the interaction Φ.

10 The weak topology of the dual of &(K), also called the vague topology.
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3.5. Proposition. The, set Δφ is a simplex in the sense of Choquet; hence,

every ρ d Δφ is the resultant of a unique measure mQ on Δφ carried by the

extremal points of Δφ:

ρ(A) = fσ(A)dmρ(σ) (3.14)

for all A ζ 21.

Let 93Φ be the vector space of measures on K which satisfy (3.10).
If μ £23Φ, then \μ\ 633Φ; therefore, 33Φ is a lattice11 with respect to
the usual order relation for measures. Since Δφ is a basis of the cone of
positive elements of 93Φ, Δφ is a simplex in the sense of Choquet12. The
fact that every ρ 6 Δφ has a unique integral representation in terms of
extremal points of Δφ follows then from the metrizability of Aφ

12.

4. Non Existence of Metastable States

It is known that if water is heated above its boiling point at a certain
pressure, it does not necessarily undergo the expected phase transition
to water vapor but may stay in the liquid phase in a so-called metastάble
state. A great variety of such metastable states are known experimentally.

One may think that metastable states are truly unstable but, due to
the finite size of systems, decay only very slowly in time13. Another
possibility is that a metastable state for an infinite systems has an
infinite lifetime and is very similar to a true equilibrium state except
that it does not obey the usual variational principle (maximum entropy
at fixed energy and density or maximum pressure at fixed temperature
and chemical potential). In support of the second alternative comes the
fact that a metastable branch occurs in the Van der Waals theory,
suggesting that metastable states are in general analytic continuations
of stable equilibrium states.

In this section we give a certain number of negative results, tending
to prove that metastable states, as close analogues or analytic continua-
tions of stable equilibrium states, cannot exist.

We consider the case of lattice gases14; then the proof of Theorem 3.2
(see Appendix A) gives in particular.

4.1. Proposition. An invariant state ρ satisfying the Eqs. (3.10) and

metastable in the sense that

S(ρ) - ρ(Aφ)< P(Φ)

cannot exist (the entropy s( ) is defined by (A. 9)).

11 I.e. every finite set of elements of 33φ has a g.l.b. and a l.u.b.
12 See CHOQUET and MEYER [2].
13 Slowly provided that the effect of impurities and other disturbances is

adequately eliminated.
14 An extension to hard core continuous systems is immediate.
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In Fig. 1 we draw a typical pressure versus activity isotherm with
a kink at z0 corresponding to a first order phase transition. We have also
drawn a "metastable branch" (dotted) below the equilibrium curve.
From Proposition 4.1, it follows that there cannot exist an invariant
state ρm satisfying the Eqs. (3.10) and corresponding to the point (zm, Pm).

Fig. 1

4.2. Proposition. Suppose that Φ has finite range and that P is not
analytic with respect to z at z0. It is impossible that a state ρz be defined
for z in a neighborhood of ZQ so that

1. The correlation functions'^ ρz(X) are real analytic in z.

2. ρz is the stable equilibrium state for z ̂  ZQ .

Since Φ has finite range, the Eqs. (3.10) may be written in the form
(A. 6) and therefore expressed in terms of the correlation functions
(the ρΛ({X}) are finite linear combinations of the ρ(Y)). The Eqs. (A. 6),
which are satisfied by ρz for z 5j z0 , remain satisfied for z > z0 by analytic
continuation. Therefore (by Theorem 3.2) ρz corresponds to a tangent to
the graph of P for all z in a neighborhood of z0 and in particular the one-
point correlation function (density) is given by

The analyticity in z of the left-hand side contradicts the assumed
existence of a singularity of the right-hand side at z0, proving the
proposition.

Remark. lη^the same direction of excluding the existence of metastable
states, it has been conjectured by FISCHER [6] that, as an analytic
function of z, P must exhibit a singularity at the point z0 of a first order
phase transition; a proof of this fact has been announced for the Ising
model by a group of Russian workers [1],

15 We define ρ(X) = / ρx(X, d Γ); see Section 5.
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5. Application: Derivation of the Kirkwood-Salsburg Equations

In this section we show that one can, from the Eqs. (3.10), derive the
Kirkwood-Salsburg equations for the correlation functions. Since it is
known that under suitable conditions (sufficiently low activity), the
Kirkwood-Salsburg equations have a unique solution16, it follows that
under these conditions the set Δφ of equilibrium states is reduced to a
point.

We assume that Φ is a pair interaction, i.e. Φ(X) — 0 if N(X) > 2;
we may then write

(*' - *) - Σ Σ ψ(y- *)

where z is the activity and φ the pair potential associated with the pair
interaction Φ. We have

We define also 99 (0) = + oo.
The correlation function associated with the state ρ is a function

X |-> ρ (X) of finite subsets of Zv defined by

ρ(X) = fρz(X,dY). (5.3)

If xl ζ X and Σ1 — X\{x.}, we have

, T)ρx(0,dT)

(e-"<«-«0 - 1)]

Therefore

VίY

= zexp - Ψ(* - *ι) ΣΓ- Σ Ψ(*
L *ex,

Γ-
L

Γ— 27
L a^JΓi

ί Σ
a?€2Γι

= zexp Γ-
L

JJ(e~φ(y~Xl) -

Γ- 27 9?(«-
L *€-Γι

= zexp - 9?(«- ι̂) 27

16 See EIJELLE [20].
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Therefore

Σ Π(^φ(y~^- l)ρ(*ιWS) (5.4)
ScZv\XiytS

These relations are the Kirkwood-Salsburg equations; they determine
uniquely the correlation function and therefore the state ρ if

lexp Σ \Ψ(*)\] [exp Σ
L sΦo J L x

~ 1 <

(in particular if z < exp [— D — eD]).
Instead of the Kirkwood-Salsburg equations one could obtain other

equations, due to GALLAVOTTI and MIRACLE 17 and for which it is not
necessary to assume that Φ is a pair interaction we write

(5.6)

where Φ'(Σ) = 0 when N(X) = 1. One finds here that the set Δφ of
equilibrium states is reduced to a point if

ggp — G

where

C=Σ Φ'W> & = Σ \Φ'(Σ)\ = \\Φ'\\ (5.8)

Using the fact that the extremal points of Δ have short range correla-
tions (Theorem 3.4), we see that, when the correlation functions are
uniquely determined by the Kirkwood-Salsburg equations or the
equations of GALLAVOTTI and MIRACLE the (unique) equilibrium state
has short range correlations and therefore, by Proposition 2.3 and
Corollary 2.4, has strong cluster properties.

6. Time-Invariance of Equilibrium States

In this section, we give a heuristic argument indicating that states
of continuous classical-mechanical systems satisfying the analogue of
(3.10) should be invariant under time evolution. We proceed in the
following way : Consider first a finite system in a region M, and the part
of that system contained in a smaller region Λ. Using LIOUVILLE'S
equation for the time- evolution of density distributions in M, we obtain
an integrodiίferential equation giving the time derivative of the density
distributions in Λ in terms of the density distributions in a larger
region Λ'. Since M no longer appears in this equation, we can
take this system of equations as describing the time-evolution of
the part of an infinite system which is contained in the bounded

17 See GALLAVOTTI and MIRACLE [8], GALLAVOTTI, MIRACLE, and ROBINSON [10]
and EUELLE [25] (Theorem 4.2.7.).
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region Λ. We then show using these equations that any state which
satisfies the continuous analogue of (3.10) has zero time derivative.
We emphasize that the argument is only heuristic : For infinite systems
in more than one dimension, no satisfactory theory of time-evolution
exists, and, even for one-dimensional systems for which such a theory
does exist [14], we have not shown that our formal condition for in-
variance under infinitesimal time translations rigorously implies time-
in variance. Since our argument is only formal we will not worry about
differentiability questions and interchanges of order of limits. We will
assume that the finite systems we consider interact by interparticle
forces defined by potentials with finite range E and with conservative
external forces defining the walls of the system.

Before looking at the time-evolution problem, we outline the des-
cription of a state for an infinite continuous system in terms of local
density distributions. Consider first a system in a bounded region M .
The state of the system is specified by giving the density distributions

f$ fe 9 ><ϊn Pi 9 9 Pn) such that the probability of finding precisely n
particles in M, and these particles with positions and velocities defining
a point of E c (M X Rv)n is

-
nl E

fdq1...dqndp1...dpn /&>(&, . . . qn', p1; , . . pn).

(We are using the functional notation for measures, so the formulas we
write will be strictly valid only for measures absolutely continuous with
respect to Lebesgue measure it is not hard to rewrite them in a way that
allows general probability measures). The function f$(ql3 . . . , qn\
Pι» -9 Pn) is symmetric in the variables (qi9 p{) and normalized by

Σ-L f «Za . . . dpnftί(qι, . . ., qn; Pl, . . „ pw) = 1 . (6.1)

If Λ C -3̂ > then the density distributions in A are given by

00 1
t(Jβ(9i9 ..,qn9Pι, ,Pn)= Σjϊ f dqn+1...dqn+ldpn+1...dpn+l

1 = 0 (M\ΛxRV)t

•/fe^ίϊi^ - . ϊn+^A. . .P + i ) . (β-2)

We can abbreviate the notation by letting x denote (n q1 , . . . , qn

Pi9 9 Pn)) letting 2£(M) denote the set of all such configurations of
particles in M9 and letting

/

°° i Γ
dx= Σ-^Γ dq^ . .dqn

n = 0 ' J
dp1. .. dpn .
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Then formulas (6.1) and (6.2) can be rewritten as:

fdxfM(x) = l, (6.1')
ar(Λf)

IA(X}= f dyfM(x,y). (6.2')

Suppose now that we have, for every bounded open M, a non-
negative symmetric function fM on 9£(M) satisfying (6.1), and that this
system of functions satisfies (6.2) for every pair Λ, M of bounded open
sets with ΛζM. The system of functions then determines a state of the
infinite system as defined in [23]. We will refer to fA as the system of
local density distributions defining the state in question.

We return to the consideration of a system contained in the bounded
open set M , with time evolution defined by a Hamiltonian H. We have,
by Liouville's Theorem,

r a g dfM dH dfMι
L 9qt dp, dpi dq, J '

(Here,α;- (n;ql9 . . .,qn',Pι, , Pn) £&(Λ)\ and y = (Z; qn + 1, . . . , qn+l

Pn+ι> - •> Pn+ι) £ &(M\Λf). Integrating over y gives:

Λ M dH*) _ Γ
dί J ί±Ί .̂ dp* dp

&(M\Λ)

We λvill assume that fM is even in each pt separately; this will be the
case, for example, if the momentum distribution is Maxwellian. (This
assumption is not necessary, but it permits considerable simplifications

f) FT rii

it implies that there is no net flow of particles into Λ). Then -~ -- 4-^-

dff df
and -~ -- ~^- are both odd in Pi , so the terms with n-\-l^i^n-\-l

in the above equation give zero when integrated over y. Also, for

1 ^Ji <: n, — 0 does not depend on y and may therefore be

taken outside the integral. Finally, if we let A' denote the set of points
of M which are at a distance less than Έ from Λ, and if we use x' to
denote the variables in Λ'\Λ and y' to denote the variables in M\A'9

then, for 1 <; i ̂  n, - -^ — L^- does not depend on y' so

%(Λ'\Λ) * * &(M\Λ')

iχ, dH(x9x') djΛ,(x9x',t)

X(A'\Λ)
- f
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Thus, we obtain the integro-differential equation:

*U(x,t) £ 9H(x) dfΛ(x,t) f ., , dH(x,x>) dfΛ,(x,x'9t)
9ί == ~~ ^-J —9Ϊ) 9tf / 9ff 9τ> * v '"/

ί=1 * * #(Λ'\Λ)

If, now, M contains all points within a distance E of Λ9 and if the
external forces defining the walls of M do not affect particles inside Λ9

Eq. (6.3) is independent of M and we can let M ->- oo. We will therefore
take the system of Eqs. (6.3), with Λ running over all bounded open sets,
to describe the time evolution of the state of the infinite system defined
by the system of density distributions {fΛ}.

We next show, using these equations, that an equilibrium state has
zero time derivative. As above, for any bounded open set Λ9 let A! be
the set of points at a distance less than E from Λ. Let Λ" = (Λ')'9 let x
denote a variable in &(Λ), x' a variable in 3P(Λ'\Λ)9 and x" a variable
in 3?(Λ"\A'). Let y be a configuration of particles in RV\Λ"9 and let
W(x", y) denote the energy of interaction between the configuration
(x9 x', x"} in Λ" and the configuration y. We have built into our notation
the fact that, because the range of the potentials is R, this interaction
energy depends only on x" and y. All we will use of the definition of
equilibrium state is that an equilibrium state is defined by a system of
local density distributions with fΛ»(x9 x', x") a linear superposition of
functions of the form erβH(χ,χ'tχ")-βW(x",y\ j^ ^^n thus suffice to
prove that, if

X(Λ"\Λ )
and if

%(Λ'\Λ)

then, for 1 ̂  i ̂  n

d/Λ «(#) dH(x) Γ , . dH(x,x') d/Λ> »(#,#')
-̂̂  — / cίx '-% .

OC[i opt J ΌC[ι opt

This formula is proved by a straightforward calculation, which we omit.

Appendix A. Equilibrium States

Before coming to the proof of Theorem 3.2, we mention a certain
number of facts connected with the definition of invariant equilibrium
states.

First, when we write Λ -> oo for finite A £ Zv we mean convergence
in the sense of van Hove, i.e. N(Λ) -> oo and for every finite set

N({x:x + Σ CΛ})IN(Λ) -> 1 .
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If Λ, M are finite subsets of Zv and A £ 21̂  , the finite system
equilibrium state is given, according to (3.11) by

= f Σ βxp[- Uφ(Σ)]\~l Σ A(X)exp[-Uφ(X)] (A.I)
\XCM ) XCM

where we have assumed Λζ.M. Without this assumption, we define
another linear functional μM Λ on 21̂  , obtained by averaging μM Λ over
translations :

μMΛ(A) = N(M)-ι Σ μπ(^A) . (A.2)
x:x + ΛcM

A.I. Theorem18. Let Γφ be the set of all invariant equilibrium states
for Φ. Then:

a) The set

D = {Φ ζ& : Γφ consists of a single point ρφ}

is dense in 8ft.
b) Let Φ ζ£$. Given a sequence Mn -> oo there exists a subsequence M'n

and ρ £ Γφ such that for every finite ΛC%V and A £ 21̂  ,

lim μM'nΛ(A) = Q ( A ) . (A.3)
n— >oo

In particular, if Φ ζ D,

q*(A). (A.4)
M— >oo

c) Let (Φi} Qi) be any sequence such that Φi £ ̂ , ρ^ £ Γφ{, Φt -> Φ and
(ρj has the (weak) limit ρ; then ρ £ Γφ.

d) Let Φ £ &; then Γφ is the closed convex hull of the set of all ρ obtained
in the manner of (c) with sequences such that Φz £ Z>.

We come now to the proof Theorem 3.2. First, let Φ be a finite range
interaction (Φ £ « 0̂). There is then a finite set QζZv, Q 3 0, such that
X Φ 0 and Φ(X \J Y) Φ 0 imply YζX + Q. In particular, Eq. (3.19)
shows that fΛ(X, Y) depends on 7 only through Ύ r\[Λ + Q"]. Let
Λ' >Λ + Q, (3.12) and (A.2) yield

flMA.({Σ w 7}) = fΛ(X, 7) fiMA>({7}) . (A.5)

Using part (b) of Theorem A.I shows then that, for some state ρ ζΓφ,

ρA,({XvY}) = fΛ(X,Y)(>Λ (Y) (A.6)
where

(A.7)
Therefore (3.10) is satisfied by ρ. Using part (c) of the theorem and the
density of ̂ 0 one concludes that the Eqs. (3.10) are satisfied by ρφ when
Φ £ D. Finally, using part (a) and part (d), one sees that Eqs. (3.10)

18 See GALLAVOTTI and MIRACLE [7] and RUELLE [24] for (a), (b) and (c),
LANFORD and EOBIKSON [16] for (d).
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hold for aU Φ 6 & and ρ ζ Γφ. This proves the first part of Theorem 3.2,
namely that an invariant equilibrium state satisfies (3.10). To finish the
proof, we show that every invariant state satisfying (3.10) is an invariant
equilibrium state. An invariant state ρ is an invariant equilibrium
state if19

P(Φ) = *(ρ)-ρμφ). (A.8)
where

ρA is the measure on &(Λ) defined by (A.7), and

S(QA) = - Σ QΛ({%}) logρ^tΣ}) . (Δ.10)
XCΛ

Moreover, for any invariant state ρ, ρ(Aφ) = lim QΛ(UΦ) \ also,
/l-»oo JN (Λ)

PΛ(Φ) = ̂ P^~j[S(μ)-μ(Uφ)]: μ a probability measure on 0>(Λ)}.

(A.11)

It will therefore suffice to prove the following assertion (which is a bit
stronger than the statement of Theorem 3.2 since the requirement of
translation invariance has been dropped).

// ρ satisfies (3.10), then

liminf ~ [8(ρA) - QΛ(UΦ)} ^ P(Φ] . (A.12)
Λ— >oo J.V \fΛ.)

Proof. By (3.10),

and, therefore, ρΛ may be expressed as a (generalized) convex linear
combination of the probability measures μΛi γ defined by

Introducing :

we get :
= exp [- Uφ (X) - Wφ (X, Γ)]

19 For any invariant state a one has

P(Φ)^ *(<r) -β(Aφ).
Therefore, for all Ψ,

P(Φ + Ψ)^ s ( ρ ) - ρ(Aφ+Ψ) = S(ρ) - ρ(AΦ) - ρ(AΨ) = P(Φ) - ρ(AΨ) ,

so Ψ ι-> — ρ(Aψ) is a tangent plane to the graph of P. See RFELLB [24].
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and therefore :

:>-2 sup \WΦ(Z9T)\.
XCΛ

YCZV\Λ

By the concavity of S,

~-
YCZV\Λ

An elementary calculation, using (3.3), shows that the right-hand side of
this inequality goes to zero as A -> oo , so our assertion is proved.

Appendix B. Hard Core Continuous Systems

We turn now to the case of hard core continuous systems20. The
diameter of the hard core is a fixed number a > 0. We define K to be
the set of subsets X of Rv such that if x, x' ζ X, x =j= x' then \x — x'\ ^ a
where | | is the Euclidean distance. Given a bounded open set ΛζHv

and an integer n ̂  0 we define

0Λn = {X £ K:N(X r\ A) ̂  n} (B.I)

Similarly for a compact F C Rv we let

0Fn = {XζK: N(X r\K)^n}. (B.2)

The sets 0Λn and 0Fn generate a topology for which K is compact. We
let 21 = ^(K)\ for a bounded open set ΛζRv we define 21̂  to be the
subalgebra of 21 constituted by the functions which depend upon X
only through X r\ Λ. The translations of Rv define automorphisms τx of 21
in an obvious manner.

A state ρ on 21 is a measure on K. Given a bounded open set ΛζRv

we write

φdXF(X) = Σ^ fdx! . . . fdxnF({x1} . . .,*„}) (B.3)
Λ n ' Λ Λ

where the integrations are with respect to Lebesgue measure and are
restricted by \xs — x^ ^ a if ί φ j. We write also, as in (3.2) 21,

ρ(A)= $dXfA(X\jY)ρΛ(X,dY). (B.4)
_ Λ

20 See GAI.LAVOTTI and MIRACLE [9].
21 Equation (B.4) is imprecise in two respects. First, there need not exist a

function X ι~> QΛ (X, •) from configurations in A to measures on the set of configura-
tions with no particle in A making (B.4) true. This difficulty can easily be remedied
by replacing "function" by "measure" in the obvious way; however, we shall be
interested only in the case where such a function does exist. Second, even formally,
the equation defines for a given X only a measure on the set of configurations Y
with no particles in A and such that X\J Y ζ K. We remedy this defect by defining
the measure on the set of configurations Y such that X \J Y § K to be zero.
15 Commun.math.Phys.,Vol.l3
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Let Kn be the subspace of K consisting of sets X such that N (X) = n
and let KF be the topological sum of the Kn. Let *̂ be the space of
real continuous functions Φ on KF satisfying

l.φ(0) = 0,
2. translation invariance: Φ(X + x) — Φ(X).
We say that Φ 6 J** is a finite range interaction if there exists Cφ > 0

such that Φ(X) = 0 whenever the Euclidean diameter of X is larger
than Cφ. We let B0C&* be the space of finite range interactions. Let
also *̂* be the subspace of < *̂ constituted by those Φ such that

= sup Σ |Φ(Γ)|< + o o . (B.5)

Finally let 06 be the closure of ̂ 0 in J*** with respect to the norm (B.5).
The elements of 06 are taken as the interactions of hard core continuous
systems.

If X £ KF we retain the definition (3.4) of Uφ. If Λ is bounded open
in Rv, we define PΛ by

PΛ (Φ) = V (Λ)-ι log # dX exp [- C7Φ (X)] (B.6)
Λ

where V(Λ) is the Lebesgue measure of Λ and the notation (B.3) has
been used. We define P by (3.6) where Λ tends to infinity in the sense
of van Hove, i.e. V(A) -> oo and, for all δ > 0, V(Λ}~^ Vδ(Λ) -> 0 where
Vδ(Λ) is the Lebesgue measure of the set of points of Rv with Euclidean
distance to the boundary of Λ less than δ.

We choose a continuous function φ ̂  0 on Rv such that / φ (x) dx = 1

1 n

and 99(0;) = 0 for \x\ >-z-a. We let also φ ({;&, , . . . , #w}) = Σψ(xί) and>
^ i-i

by analogy with (3.7) we define

(B.7)

With this modification we accept Definition 3.1. for an invariant equi-
librium state. Theorem 3.2 is then replaced by the following result.

B.I. Theorem. Let Λ be a bounded open subset of Zv; let X,YζK,
with X CΛ, Y C ZV\Λ, and define

fΛ(X, 7) =
SCΣ\JY ,SΓ\X*Φ

- 0 if X w 7 ί K . (B.8)

An invariant state ρ is an invariant equilibrium state if and only if, for
all Λ and all X cΛ,

QΛ(X, dY) = fA(X,Y) ρA(0, dY) (B.9)

where the notation (B.4) has been used.
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The second part of the proof of Theorem 3.2 may be adapted with
only minor changes in notation to apply to the case at hand. A similar
modification can be carried out on the first part of the proof, using the
following lemma and an analogous lemma for sequences of states on a
fixed Sl^/ satisfying the analogue of (A. 5) for a fixed finite -range inter-
action.

B.2. Lemma. Let Φn be a sequence in £8 converging to Φ, and for each n
let ρn be a state satisfying (B.9) for the interaction Φn. Assume that ρn

converges weakly to ρ. Then ρ satisfies (B.9) with the interaction Φ.
We let Sloo denote the (7* algebra of all (bounded) Borel functions

on K which are uniform limits of sequences of bounded Borel functions
each of which depends on X only through X r\ Λ for some bounded
open Λ. Now (B.9) may be re-expressed in the following way: For any

ρ(A)=$dX f fA(X9Y)A(XvY)ρ(dY)
Λ YΓ\Λ = 0

= fρ(dY)Aφ,Λ(Y)
where

AΦtA(Y)= φdXfA(X,Y)A(XvY) if
A

-0 if 7 n Λ . Φ 0 . (B.ll)

(In the above equations, A (X \j Y) is defined arbitrarily for X \j Y $ K).
The function AΦtA is easily seen to belong to Sl^; moreover,
lim ||^4φwj/ι — AΦtA\\ = 0 if Φn -> Φin theBanach spaced of interactions.

n— >oo
Hence, it will suffice to prove that

lim B

for every B £ Qί^ we already know that this is true for B
Now let

if B is any bounded Borel function on K which depends only on X r\ Λ,
we have :

ρn(B) = fdXρntA(X)B(X). (B.14)
A

It is not hard to verify from the definition of the space of interactions
that there is a constant GA such that

ft(X, Y) < GΛ

for all n, aΆΣζΛ, and all Γ ζZv\Λ. Since

15*



214 O. E... LANFOBD and D. RTJELLΈ :

we get
ρn>Λ(X)<CA (B.15)

for all n, X.
From (B.15), (B.14), and the fact that (B.12) holds for all B in 21 ,̂ it

follows that (B.12) holds for all bounded Borel functions B depending
only on X r\ A and therefore for all B £ 21*,.

From Theorem B.I, it follows that (3.3) is again a reasonable defini-
tion of an equilibrium state with this definition, the set Δ of equilibrium
states is again convex and compact. Theorem 3.4 and Proposition 3.5
remain true, their proofs being left unchanged.
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