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Abstract. Let $1 be a von Neumann algebra with the vector Ω cyclic and separa-
ting for $1. Let ^βΘ be a group of unitary operators under which both Ω and 21
are invariant. Let 33 (resp. 9Γ) be the fixed point algebra in 21 (resp. in 2Γ). Let Fo

be an orthogonal projection onto the subspace of all vectors invariant under 93G.
Tt is shown that 9ί = (21 \J {Fo})" and that the irreducibility of 91 implies that Fo

is one-dimentional. Other consequences of the Theorem of KOVACS and Sziics are
also derived. In sec. 3. the spectrum properties of the group %}G are studied. It is
proved that the point spectrum of 93G is symmetric and that it is a group provided
91 is irreducible. In this case there exists a homomorphism χ -» χ (resp. χ -> χ)
of the point spectrum of 93C into the group of unitary operators in 21 (resp. in 2Γ)
uniquely (up to the phase) defined by χ Vg = χ(g) Vgχ (resp. the same for χ).
In sec. 4. the application of the foregoing results to the KMS-Algebra is given.

1. Introduction

It has been shown in [1] that the state of thermal equilibrium of an
infinite system is mathematically described by the state ω (over the 0*-
algebra of observables 21̂ ) satisfying the KMS boundary conditions. Let
(π, Jfπ) be a canonical representation defined by ω, and let Ω be the
vector representing the state ω in f̂π. Finally, let 21 = π(Qί^)f/. It has
been exhibited in [1] that there is a peculiar symmetry between 2ί and 2Γ.
In particular, the vector Ω invariant under time and space translations
is cyclic for both, 21 and 2Γ. A similar situation arises when one deals
with internal symmetries in the framework of Algebraic Quantum Field
Theory. The goal of our paper is to study a general situation, when there
is given a von Neumann algebra 21, the group Λ-^VgΛV^1 of auto-
morphisms of 21 and the vector Ω invariant under all Vg and cyclic for
21 and 2Γ. A general discussion of such a situation is given in Section 2.
Our tool, in this section, is the theorem of Kovics and Sziics (see [4] and
[4a, Theorem 1]). It is shown that the irreducibility of 21 w {Vg} implies
that Ω is the unique vector invariant under all Vg. We also show that
(21 \J {Vg})" = (21 \J {FQ})", where Fo is a projection onto the subspace
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of all vectors invariant under { Vg}. In Section 3 we deal with the spectrum
properties of the group 93#. The results of this section are closely related
to those obtained by D. W. ROBINSON [3]. In particular we prove that
the point spectrum of 93# is symmetric and it is a group provided 93^
commutes with another group 93^ such that 93^ w 21 is irreducible. The
Theorem 3.5. is the main result of this section. Finally, in Section 4. we
apply the results of the foregoing sections to the case of the KMS-Algebra.
In particular, for each discrete eigenvalue of the "momentum" p we
construct two unitary operators p ζ 21 and p ζ 2Γ such that

It is shown that for each such p, the vector ψP = pΩ also describes the
state of thermal equilibrium, with the same temperature as Ω.

2. General Discussion

In this section ψe are concerned with some properties of groups of
automorphisms of a von Neumann algebra with a cyclic and separating
vector. The following results are a simple application of the theorem of
Kovics and Szϋcs (see [4] and (4a, Theorem 1]).

2.1. Notation. Let 21 be a von Neumann algebra acting on a Hilbert
space J4f, with commutant 21 and the center 3 Let G be a group and g -> Vg

be a unitary representation of G on ^ such that A{g) = VgAVj1 is in 21
for each A in 21. Let Fo be a projection onto the subspace of all ψ in £#*,
invariant under all Vg. Denoting by 93 # an image of G under the mapping
g -^ Vglet^Kbe a von Neumann algebra generated by 21 and ^g, and lei 35
be a fixed point algebra in 21 i.e. 33 = 21 r\ 93^. We remark that 21' is now
also invariant under θ, with a fixed point algebra 91'. Finally, let ~£ be a
Godement mean over G {see e.g. [4a]). This notation will be fixed throughout
this section.

2.2. Lemma. Assume there exists a unit vector Ω which is cyclic and
separating for 2t and such that VgΩ = Ω for all g in G. Then

I. There exist two unique normal G-invariant projection maps Φ and Φ'
from 21 onto 93 and from 21' onto 91' respectively. Φ and Φ' are positive and
faithful. Φ(A) (resp. Φ' (A)) can be defined (equivalently) as

i) the unique element of 21 r\ conv{̂ L ($)}- (resp. 21' r\ conv {.4 ($)}-)
ii) the unique element of 2ί (reap. 21') such that Φ(A)FQ = F0AFQ

(resp.Φ'(A)F0 = F0AF0),
in) the unique operator on Jf satisfying(φ, Φ(A)ψ) = ~# {(φ, A(g)ψ)}

for all φ,ψ ζJ4? (resp. the same for Φf (A)),

II. A normal linear from ω on<Ά (resp. 2Γ) is G-invariant if and only

if ω = (α>|93) o Φ (resp. ω = (ω|9T) o Φ').
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///. With A in 21 {resp. 21') the foϊloiving are equivalent

(p) F0A = AF0 ,

(pp) A ζ 93 (resp. 4 ξ 91')

I F .
Proof. I, i)—iϋ) are an immediate consequence of [4a, Theorem 1].

To prove III suppose F0A = ̂ 4i^0 where 4̂ is in 21. Then AFQ = F0AF0

and we find that, by ii), A = Φ(^4) ζ 95. The case of 4̂ ζ 2Γ is handled in
exactly the same way. Implication (pp) -> (p) is obvious. Finally we will
prove IV. It is clear that JP0 ^ [93 Ω] so it is sufficient to check that 93 Ω
is dense in F0J4f. Given ψ ζ F0J^ we can choose a sequence An £ 21 such
that AnΩ -> ψ. But then

V - Foψ = l i m ^ o ^ Ω = l i m Φ ^ J β

and the proof is complete.
As a corollary of the foregoing lemma we have
2.3. Corollary. Let G be as in Lemma 2.2. Then
i)

and 93 is abelian (resp. finite, semi-finite, properly infinite, purely infinite)
if and only if 9lr is abelian (resp. finite, semi-finite, properly infinite,
purely infinite). Moreover, if 93 is abelian then 9 3 ^ 93-Fo = 9 t ' . F 0 ^ 91'.

ii) If Gx is another group satisfying assumptions of Lemma 2.2 then
one has an equivalence of

(P)

(ppp) F01 ^ Fo

In particular, if for all A, B ξ 2ί and φ, ψ ζF01 ffl

Jέ {(φ, [ Vs A Vj\ B]y,)} = 0, gζG,

and 8 C 93, then all (p) — (ppp) are satisfied.
Proof. The first statement follows by [4a, Corollary 2]. Now, by

[7, Chapter III, § 2, Prop. 3], if 93 is abelian etc. so does 91'. On the other
hand, if 93 is abelian, then 93i^0, 9^JP 0

 a n ( i 9?' a r e abelian and therefore
93.FO = (91 Λ 9T).F0 - 9T-F0. Implications (̂ ) -> (^^) and (^) -> (^p)
are an immediate consequence of Lemma 2.2, IV. On the other hand, if
A is in 932 then F01AΩ and if (ppp) holds then also F0AΩ = AΩ or
Φ(A)Ω = ^4ί3. Thus J. = Φ(^4) £93. Implication (ppp) -> ( ^ ) is ob-
tained in a much the same way. Finally, if 93 ̂  8 and G1 satisfies the
last assumption of the Corollary, then it follows from [4 a, Lemma 2]
that &ί C 3> and so % C 8 C 9T. Q.E.D.
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Our next task is to show that the cyclicity of Ω for 2Γ can in a sence
replace the asymptotic abelianness. This can be also seen in the next
section, where the spectrum properties are studied. The theorem given
below should be compared with [5, Theorem 6]. (A similar statement,
stated in a less general form has been proved by H. ARAKI and H. MIYATA
[8])

2.4. Theorem. With notation and assumptions of Lemma 2.2. the
following are equivalent.

i) The state ω(Λ) = (Ω, AΩ) is an extremal G-invariant state over 21,
ii) 9t' = {λl},

ϋi) Fo is one-dimentional,
iv) 23 = {A/},
v) Φ(A) = (Ω, AΩ) for all A in 31,

vi) ω is weakly clustering
Jί {ω(A(g)B)} = ω{A) ω(B) for all A, B £31,

vϋ) ω satisfies the "stability" condition:
a) J?{ω(B*A(g) B)} = ω(B*B)ω(A) for all A, B £21,
b) Jί{ωicA{g)B)} = ω{CB)ω(A) for all A, B, G $21.
Proof. For implications i) <=> ii) «-iϋ)-» iv) see for example [9],

Theorem 4. Suppose now that Fo = [Ω]. Then, by Lemma 2.2, IV, we
have AΩ = λΩ for A in 23 and A in 2T. Hence 23 = {λl} and 9T = {λl}.
It is evident that iv) implies v) and if v) holds then

Jί {ω(CA (g)B)} = Jί {(β, CA (g) BΩ)} = (Ω, CΦ(A) BΩ)

= (Ω,AΩ)(Ω}CBΩ).

But this means that it is sufficient to prove vi) -> v). However, the latter
is obvious if we notice that

Jί {ω(A (g)B)} - (Ω, Φ(A) BΩ)

and Ω is.separating for 21.

3. Properties of the Spectrum

It is of some interest that some group properties of the spectrum,
typical for asymptotically abelian systems (see e.g. [10], Theorem 3a)
appear also in the situation discussed in the preceding section. Our
method of exhibiting these properties makes it possible to adapt the
considerations of this section to the study of the spectrum of internal
symmetries in the Algebraic Quantum Field Theory (see [11, l la]).

3.1. Definition. Let G -> 23^ be a unitary representation of the group G
on a Hubert space Jf. Let Q be the group of all (bounded) characters of
the group G. With χ in ύ we say that χ is in a point spectrum of 23# if
there is 0 =f= ψ ζ 3tf such that

Vgψ = χ(g)ψ for all g £G . (*)
10 Commun.math.Phys., Vol. 13
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Let σ(93G) be the set of all such characters. Let for each χ ζ 6, F(χ) be
a projection onto the (closed) subspace of all ψ in Jή? satisfying (*). It is
clear that χ ( σ(93<?) if and only if F(χ) =j= 0, and by

(ψ,F(χ)ψ) = Jί {χ(g)-i (φ, F- ψ)} ^ Jt {χ(g) (φ, V^y)}

if and only if the righ-hand side is non-zero for some φ, ψ ζ 3ff.
3.2. Theorem. Let 21 and {Vg} be as in 2.1. Assume that Fo has central

carrier I in 31 (or equivalently, is cyclic for 21), and 93 # commutes with some
other $}Gi such that 93 Gi 2l95gl = 21 and 93^ r\ 21 = {λl}. Then σ(¥>G) is a
subgroup of the character group 0 of G.

Proof. We first observe that, due to the irreducibility of 93^ \j 2t7,
F(χ) is cyclic for 93^ w 21' for each χ in σ(93G). On the other hsinάF(χ)J^
is an invariant subspace for 93^, and therefore must be cyclic for 21'
(we also have 93^2l/93*i = 21'). Now, let χ, χ ^a(^G). For an arbitrary
φ, ψ (: Je, A ζ 21, B ζ 21' 'we then have

^{χ{g)'KF{χ') φ,A(g) B* Foψ)} = Jt {χigYKF{χ') φ, B*VSAFoψ)}

= (BF(χ')φ9F(χ)AFoψ).
On the other hand

l
= (F(χ')φ,AF(χ-iχ')B*Foψ)

so we have
(BF(χ')φ9F(χ)AFoψ) = (F(χ')φ, AF(χ~^χf) B*Foψ)

for all A ζ 2ί, ^ ζ 2C and 99, ̂  in f̂7. However, by the hypothesis,
is cyclic for 21' and Fo is cyclic for 21, so we conclude that the left-hand
side is non-zero for some A, B, φ, ψ and therefore F(χ~1χ) Φ 0 or
X~λX ί (̂53c/) I* follows that with χ ζ σ(93G) also χ-1 is in σ(93G) and if
χ and ^' are in σ(^3G) then ^ χ' does also. Q.E.D.

By putting χ' = 1 in the last equality we see that F(χ~1) 4= 0 once # 0

is cyclic for 21 and 2Γ. So we have
Corollary. With assumptions of Lemma 2.2. the point spectrum of 93#

is symmetric

σ(93β) = σ(93 β )- 1 .

In some cases it occurs that there is an involution J on Jf transforming
21 onto 2Γ. This also implies, as was already pointed out by M. WINNINK
[2, IV.5, lemma], the symmetry of the point spectrum of 93^. Let us
note that the following theorem is generally true

3.3. Theorem. Let 93^ be a group of unitary operators acting on a
Hiΐbert space Jf. Assume there exists an involution J commuting with 93^.
Then the point spectrum of 93^ is symmetric and JF(χ)J = F(χ~1).
Moreover, if 93# is abelian, n-parameter and strongly continuous then
JF(Δ)J = F{-Δ) for each Borel set Δ C Rn.
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We drope an easy proof of this theorem.
Under assumptions similar to those of Theorem 3.2. we can deduce

also the symmetry and additivity of the continuous spectrum.
3.4. Theorem. Let 23 # and 23Qi satisfy assumptions of Lemma 2.2.

(with the same invariant vector Ω). If 23 # is abelian, n-parameter and
strongly continuous, so that we have

Vx = J exj)(ipx)F(dp), x ζRn

then the spectrum of VG is symmetric

supp F (dp) = — supp F(dp) .

If, moreover, 23^ satisfies one of the equivalent conditions of Theorem
2.4., then the spectrum of 9ΰG is also additive

supp F(dp) + supp F(dp)c supp F (dp)

provided lim \\A (x) — A\ = 0 on a dense C*-algebra 2l0 C2(
x — 0

Proof (it is a small modification of that in [10, Theorem 3b]). With
Pi> V% € supp.F(ίZp) and Jίx, ./^-neighbourhoods of p1 and p% respecti-
vely, there exist Al9 A% ζ 2l0 different from zero and such that

Now, supp^ί* == — suppJ[χ and A*Ω φ 0 since Ω is separating for
21. Hence F(— Jf^) A*Ω — A*Ω and we conclude that the spectrum is
symmetric. To establish additivity we observe that (*) also holds if we
replace A2 by A2(g), g £ O1 being arbitrary. But then

so that we have
Fi^ + N2) A^ig) Ω = A.A.ig) Ω

and it is sufficient to show that AτA2(g) ΩΦ 0 for some g ξ:O1. Suppose,
it is not so. Then A1 VgA2Aξ = 0 for all g in θ1. Thus A1F01A2Aξ = 0
and from Theorem 2.4. we infer that (A*Ω, A*Ω) AXΩ = 0 contrary
to the hypothesis. The proof is complete.

3.5. Theorem. Let Q3# and %3Gi satisfy assumptions of Lemma 2.2
(with the same invariant vector Ω). Assume that 23 is abelian and 23^ w2l
irreducible. Then the point spectrum of 23# is a group and for each χ ζ a (23#)
there exist two unitary operators χ £ 21 and χ (ί 2Γ such that

%F{χ')%*=F(χ χ') tor each χ 'ζσ(95 β )

where χ denotes either %or^χ.
Proof. Let χ ξσ(25G). Then, as in Theorem 3.2., F(χ) is cyclic for

21C 9ΐ and 2l'c23'. Hence 23 is isomorphic with F(χ) ^BF(χ) and 9T is
isomorphic with F(χ) 9ί /i J(^). Now, by the hypothesis and Corollary 2.3.,
10*
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9i' is abelian and therefore there exists ψ' ζF(χ)Jt? separating for
F(χ) 91'. Indeed, since Ω is separating for 91', it follows that 91' is coun-
tably decomposable, and by the isomorphism 9 1 ' ^ F(χ) 91', F(χ) 91'
also does. The statement above follows from [7, Corollary, p. 20]. So,
we find that ψ' is cyclic for F (χ) <2{F (χ) = F (χ) *3$ or, equivalently,
331// is dense ϊnF(χ) 2f. Since, on the other hand, 33 C 31

= ffl it is clear that ^/ is cyclic for 9? (and for 21 also). Similarly, since
F(χ) 9t' = F{χ) 33 (2.3, Corollary), we infer that ψ' is also cyclic for 33'.
Now, in view of the equality [dlψ'] = [9?ί2] we have [9?>'] - [9T42]
(see [7], Corollary, p. 232). That means there is a partial isometry U ζ 9ί
such that ί7* C7 = [9ί'β] and UU* = [9t>']. Observe at this point that
[β] ^ [9l / ί3]=J τ

0 and [>'] g [9ί>'] = i^(^). Let us put ψ=UΩ.
Then ψ ξ [^l7^'] and is cyclic for 91 and 2Γ. Furthermore, by Lemma 2.2,
for each A in 2Γ we have

(ψ, Λψ) = (ψ, Φ'(A) ψ) = (UΩ, Φ'(A) UΩ)

= (Ω9 Φ
f (A) U* UΩ) = (β, Φ' μ ) Ω)

= (Ω,AΩ).

In particular ||^4y|| = \\AΩ\\ for all 4̂ in $1'. Now, a linear operator χ
defined by χ A Ω = A ψ, A ζ 21' is bounded on a dense set 2Γ ί3. Moreover,
with ^4, .B ζ 21' we have

, χBΩ) =

thus χ is unitary, and by

it follows that χ is in 21. With g in G we now have

= χ(g)A(g) Ω

or

If also χ is in σ(33(/) then by

it follows that

The operators χ are constructed in much the same way.
Remark. Using the same method one can prove the following
Theorem. Let 21 and 33^ be as in 2.1. Assume, there is a vector Ω

cyclic for 2ί and invariant under 33G. Assume further that for each
self adjoint A in 21 we have

conv {A {§)}- ΓΛ 21' φ 0 .
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Finally, assume that there is some other group %}Gι commuting with 33#
and such that 21 is invariant under <ΰGi and 21 \J 93^ is irreducible.
Then the point spectrum of 93$ is a group and for each χ ζσ{^ΰG) there
exists a unitary operator χ in 21' such that

χ') for each χ ' ζ

It is easy to see that the proof follows from considerations given
above, provided the mapping Φ is taken from [6, Theorem 3.1.].

4. The Case of the KMS-Algebra

If we consider the state of an infinite system in a thermal equilibrium
with the temperature (βk)*1, then in a natural way we can construct
([1], see also [2] where detailed analysis is given)

1. the Hubert space e2f,

2. the O*-algebra 2 l 0 c £ ( ^ ) ,
3. the vector Ω cyclic for 2l0 a.nd for 2lό,
4. the one-parameter, strongly continuous group of unitary operators

{Vt} such that
a) At = VtA V-1 is in 2ί0 for each A ζ 2ί0 and t ζ R,
b) lim \\At -A\\=0 for each A ζ 2ί0,

c) VtΩ = Ω for all t ζR;
5. the involution J such that JAΩ = TA*Ωioτ each A ζ 21 = (2ίo)

//,
where T = exp(~ jS£Γ/2) and Vt = exp(iHt),

6. The 3-parameter, strongly continuous group of unitary operators
{Ux} such that

a) Ax = ^ ^ t^- 1 is in 2ί0 for each A ζ % and a; ζ β 3 ,
b) lim | |^^ - 1̂̂11 = 0 for each .4 ξ2lθJ

c) ^ β = Ω,
d) Z/̂  commute with Vt.
From the above one can derive the following conclusions [2]
i) the center 3 of 21 is pointwise invariant with respect to time trans-

lations,
ii) for each A in 3 we have JAJ = A*,

in) J2IJ=SI',
iv)JΩ= Ω.
Remark 1. It is easy to see that the existence of a conjugation J

satisfying 5. is a necessary and sufficient condition for the state
ω : A-^ (Ω, AΩ) to satisfy the KMS boundary conditions (see [2]).
These, on the other hand, are a consequence of the fact that the state ω
is obtained as the limit of finite systems (described by the Grand Canoni-
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cal Ensemble). If we denote by ωv the state of the system enclosed in a
volume F, then it is a direct consequence of the properties of a trace
that, ωυ(AB) = ωv(BAiβ) where Aiβ=(2π)~1 jA{ε)eP*dε and Λ(ε)
^ JeiεtA(t)dt has a compact support. It may be interesting that the
converse statement is also true. Namely, one has the

Theorem. Let 21 be an irreducible (7*-algebra acting on a Hubert
space J4f. Let {Vt} be a one-parameter, strongly continuous group of
unitary operators such that for each A in 21, At — VtA Vf1 is in 21 and
lim || A t — A\\ = 0. Let ω be a normal state on 2t such that ω(AB)

— ω{BAiβ) and co(At) = ω(A). Then there exists ρ £ Si(34?) with trace
1, such that

ω(4) = Tr(ρ4)
and

The sketch of the proof runs as follows. By a continuity requirement
we have ω(A) = Tr (ρ A) with ρ > 0 and Tr ρ = 1. By the invariance of ω
under translations A-> At we immediately have Vtρ = ρ F$. Now, since
Ύr{ρAB) = Tr(ρJ5^ί/3) = Tr(4<j8ρJB) for all J5 in 2(3?), we conclude
that ρ̂ 4 = -4ίi8ρ or

hence
eWρA = J . e ^ ρ for all Λ. in « ( / )

and therefore

It follows from the above theorem that the Grand Canonical Ensemble
is a unique state of a finite system satisfying KMS. But it does not
means that all properties of a Gibbs ensemble which still hold in the limit
F -> oo are contained in KMS. It is still possible that the Grand Canonical
Ensemble has some additional properties, which follow from KMS for
finite systems but not for infinite ones (and which possibly hold true in
a thermodynamical limit). Such a possibility has been discussed in
[12, Sec. IV].

Remark 2. In what follows the situation characterized by 1. — 6. we
denote as the "KMS-Algebra". These conditions are in particular satis-
fied in a representation for a finite system. In this case 3F is an algebra
of Hilbert-Schmidt operators acting on a Fock space 3fF (F). The question
arises how one can distinguish between the KMS-Algebra of finite system
and that of infinite one. It is easy to see that the case of finite system is
ruled out by a requirement of irreducibility of 21 w {Vt}.

Remark 3. In [3] the properties of the spectrum of time and space
translations has been investigated. In particular, the "energy" spectrum
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turnes out to be symmetric (with respect to the origin). What is an inter-
pretation of this fact ? It is not too difficult to check that for finite systems
the spectrum of the "Hamilton] an" H is identical with the set of all
differences of eigenvalues of a "real" Hamiltonian in a Fock space
</fF(V). One has to keep it in mind when dealing with infinite systems.

We will now show how the results of sec. 2 and sec. 3 can be applied
to the case of the KMS-Algebra.

I. It is easy to see that the mapping Φ of Lemma 2.2. is uniquely
given by

Φ(A) BΩ^=JTB*F0A*Ω where A, B £21
and

Φ'(A) BΩ= TJB*F0A*Ω where A, B ζW.

Moreover if F0J = JF0 (particularly if %5G commutes with time trans-
lations) then

Φ'{JAJ)^JΦ{A)J forall A ζ_ 21.

II. With notation of Corollary 2.3, let G be a group of time trans-
lations and G1 — a group of space translations. Then, if Fo (resp. EΌ)
denotes a projection onto the subspace of all vectors invariant under
time (resp. space) translations, we have

E0^F0 and 31 \J {Vt} C (21 u {Ux})"
provided

Q forall 4,Bζ3l, φ,ψζEoyf.

This fact has been established by D. W. ROBINSON [3].
III. The spectrum of {Vt} and {Ux} is symmetric, moreover for any

Borel set Δ we have

JF(Δ) J = F{- Δ) and JE{Δ)J^E{-Δ)

so that the point spectrum is also symmetric.
The above statement is a direct consequence of Theorem 3.3. It was

exhibited in [3] and mentioned in [2, III. 1.].
IV. Assume that 21 w {Ux} is irreducible. Then

a) the spectrum of {Vf} and {̂ 7̂ } is additive (see 3.4);
b) the point spectrum of {t^} is a group and for each p in a(Ux)

there exist two unitary operators: φ ζ 21 and p ξ 2Γ such that
(see 3.5)

Uxp = e^xp Ux ,

pE(q)p* = E(p + q) if also qζσ(Ua)9

where p denotes either p or p
c) for each p ζ σ (Ux) we have E (p) < FQ.
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To obtain the last relation, observe that by the definition of p and
since E(p) = pEQp* is one-dimentional, we have

1 = | |β | | = \\Jί>*Ω\\ = \\TφΩ\\ = e x p [ - ε(p) βl2]\\$Ω\\ = e-WW*

what is possible only if ε (p) = 0.
It is easy to see that c. implies that p and ^ commute with time trans-

lations and therefore

If one applies the above to time translations, then one obtains:
V. If 21 \J {Vt} is irreducible then Ω is the only eigenstate of {Vt}.
The above result is a generalization of [2, p. 46, Lemma 2].
VI. Under assumptions of IV. let p ζσ(Ux). Then the operator

JQ — pJp* is an involution, and if ψ^ — pΩ then for each A in 21 we
have

TAψP = TApΩ - Jp*A*Ω = Jp*A*p*ψp

so that we have some kind of a degeneracy: the vector ιpv and the invo-
lution J\ have the same property as Ω and J.

VII. The question arises are the operators p in the center of 21. It
is easy to see that the answer is " y e s " if 21 is t-asymptotically abelian i.e.

Jί{{φ, [VtAVt-\B]ψ)} = 0 for all A, B ζ<Ά and φ,ψζFQ^.

If it is so, then by 3.5 (applied to time translations) and by the considera-
tions analogous to those in VI. it follows that zero is the only eigenvalue
of the 'Ήamϋtonian" H. This may be also expected from the interpreta-
tion of the spectrum of H (see Remark 3 of this section). The last state-
ment is a further generalization of F.
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