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Abstract. Our aim in this paper the first one of a series concerned with the
problem of field quantization starting from the symplectic structure underlying
the classical theory, is to build up the variational theory necesary to all further
constructions. The basic notions are the vertical bundle B and the structure I-form Θ
used to define the generalized infinitesimal contact transformation which allows us
to state and solve the variational problem related to field physics. Giving a system
of modulevalued differential forms of different degree on the vertical bundle which
solutions are the stationary cross sections is the main result in the paper. In this
scheme the Euler-Lagrange classical equations are the expressions induced by
such a system of differential forms on any cross section of the vertical bundle.
This gives us a complete linearization of the Euler-Lagrange equations and, starting
from it, a natural globalization of these equations. Finally, the notion of variational
problem invariant by a Lie group is defined in this scheme, Noether's theorem
related to such invariant problem is formulated and an intrinsic version of the
so-called Noether invariants of classical variational calculus is obtained.

Introduction

The study of the symplectic structures that can be associated with
classical fields in a natural way becomes more and more fascinating
every day, on account of the important application done in recent years
of such structures to the problem of field quantization (see, for instance,
[6], [7] and [8]). This study is, on the other hand, important by itself,
since it makes definitely clear the field dynamics as it was done some
years ago with the ordinary analytic dynamics (see, for instance, [1]
and [5]).

The first question to deal with is to decide which symplectic structure
must be associated with a given classical field. I. SEGAL has studied that
problem in detail in the case of a scalar field on Minkowski's space-time
defined by a non-linear hyperbolic differential equation in partial deri-
vatives. Starting from the manifold of solutions of the field equation, he

* This work has been realized in the Seminar of Mathematical Physics,
directed by Professor J. SAKCHO, in the Faculty of Science at the University of
Barcelona (Spain).
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defines on the former a symplectic geometry by means of the propagator
associated with the latter. In that way we meet the theory of propagators
related to a hyperbolic differential equation in partial derivatives. That
question has actually been studied by LICHNEROWICZ using LERAY'S
general theory (see, for instance [4]). As far as we are concerned, we
think that the real problem is in the variational theory; therefore, we
have founded our proceedings in an intrinsic and global analysis of the
variational problems which appear in field physics. The study of
analytic dynamics from that point of view furnishes the leading idea
of the adequate generalization.

Throughout this paper we are exclusively concerned with the varia-
tional problem. The steps and fundamental results are the following ones:

We start from a bundle B, direct product V X F of an ^-dimensional
differentiate manifold V — which is assumed to be homeomorphic to
the n-dimensional euclidean space, to avoid unnecessary complications —
and an m-dimensional differentiable manifold F. In the usual examples V
is Minkowski's space-time F4, while the points of B have the physical
meaning of the possible vibration states of the field at every point of F4.
Usually, F is assumed to be a vector space however, we shall not restrict
ourselves to such a simple hypothesis since then several interesting
situations, such as those offered by analytic dynamics — which is the
case when V is the real line — when the configuration space is a Rie-
mannian manifold, would be excluded. The theory could also be developed
with slight changes, for an arbitrary bundle B. As a matter of fact, we
don't care about this here, since in our opinion such generality is empty
of physical meaning.

In our terminology the configurations of the field on V are defined
by the cross sections of B. If s is one of such configurations and X is a
point of F, we have, for every tangent vector Dx ζ Tχ(V), the tangent
vector (ds}xD ζ TS(X) (B) which gives us, in a first approximation, a
measure of the change endured by the configuration s of the field when
an infinitesimal movement from the point X, in the direction Dx is
undertaken. Then the linear injection (ds)x can be regarded as a first
approximation of the configuration s of the field in the neighbourhood
of the point X. A vectorial bundle structure over B can be defined on
the set B of all those first approximations. That bundle — the vertical
bundle — is the basic tool of our theory.

An If-valued 1-form θ — the structure I-form — where If is an Ag-
module — A% is the algebra of differentiable functions on B — can be
canonically defined on the bundle B. We are constricted to such a module-
valuation as we started from a differentiable manifold F. In the special
case when F is the number space Rm> the ^-module M is A® and, con-
sequently, the 1-form θ turns into m ordinary 1-forms θj, whence the
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problem becomes much simpler. Starting from the structure 1-form θ we
define the fundamental notion of generalized infinitesimal contact trans-
formation (g.i.c.t.). A g.i.c.t. is a vector field D on B such that for every
derivation law V on M we have

where Φ £Hom(M, M), the dot product o is the one induced by the
AB

usual bilinear product Horn (M, M) x M -> M, and LD is the Lie

derivation with respect to V. In the particular case where F = Rm

} the
condition LD θ = Φ o θ is equivalent to the ordinary m conditions
LD θj = Σ ΦH ®ί I*1 other words, the one-parameter group associated

ΐ

to D leaves the Pfaff system [θ^ . . . θm] invariant.
Starting from the notion of g.i.c.t. we can construct the variational

calculus.
The Lagrangian density is defined by an n-ίorm 3? ω on the vertical

bundle B where 3? is a real function on B and ω is a volume element
defined on the base manifold F. The fundamental idea is now to call
stationary a cross section s: F-> B solution of the structure 1-form θ and
such that for every g.i.c.t. we have

Actually, the most important result in this paper is the following:
to each linear connection V on the differentiable manifold F can be
canonically associated a system of module-valued differential forms of
different degree on the vertical bundle whose solutions are the stationary
cross sections of our variational problem. This system induces locally on
the cross sections of -B a set of expressions that are precisely the Euler-
Lagrange equations of the classical variational calculus. In this way we
get an intrinsic characterization of such classical equations and therefore
a natural way of globalizing them.

We conclude this paper by defining the notion of a variational
problem invariant by a Lie group and giving an adequate formulation
of No ether's theorem related to such invariant problems. As in the
case of the Euler-Lagrange equations, the so-called Noether invariants
in this paper are, in fact, (n— l)-forms on the vertical bundle which induce
on a cross section s of B the classical expressions of such invariants —
working in a good coordinate system of course.

Lately, TBATJTMAN has studied the variational theory of classical
fields from a point of view somewhat analogous to ours.

In our terminology, the author starts from a bundle B= VxF
direct product of F = Rn and F = EN and he defines the variational
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theory on the bundle B of the 1-jets of the cross sections of B. Without
regarding the generality of the initial bundle B, which carries non trivials
global problems, our method differs essentially from that of TRAUTMAN
in the introduction of the structure 1-form θ. This has allowed us to
obtain the results we mentioned before and that will later be used to
build up all the dynamic notions associated with a field (simplectic
geometry, Poisson bracket, Hamilton equations, etc.) according to what
we stated at the beginning of the introduction.

1. Vertical Bundle B and Structure 1-Γorm θ

Let V be a differentiable ^-dimensional manifold homeomorphic to
an euclidean space of dimension n, F a differentiable m- dimensional
manifold and B the direct product of both manifolds. Denote n and π'
the canonical projections of B onto V and F} respectively.

Let T ( V ) , T ( F ) and T(B) be the tangent bundles [3] of the manifolds
V, F and B and call dπ, dn' the homomorphic mappings of T(B) onto
T(V) and T(F) induced by the canonical projections π and π' , respecti-
vely.

Definition 1.1. If T(V)B, T(F}B are the pull-backs [3] of T(V), T(F)
over B, we say that B = Ήom(T(V)Bί T(F)B) is the vertical bundle over B.
We denote π the canonical projection of B onto B.

Notations. From now on, we shall denote :

= (X, Y)
with

XζV YζF;

Dp = dπ(Dp) and D'x = dπ (DP)

where P is an arbitrary point of B and Dp any element of the tangent
space Tp(B) of Sat P.

Lemma 1.1. We can establish a one-to-one correspondance between the
points P of B and the homomorphisms ip that map the tangent space Tx ( V)
of V at X into the tangent space TP(B) of B at P, such that

where TP(F) is the fiber of T(F}B at P.
Proof. Since B is the direct product of manifolds V and F, T(B) is

the Whitney sum [3] of bundles T(V)B and T(F)B\ we can then assign
to every point P a homomorphism ip of T% ( V) into TP (B) in the follo-
wing way:

If P - (P, σp), where σp 6Hom(TP(7), TP(F)), then ip = σP + I,
Ii

where / is the identity on TP(V).
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Moreover, TP(B) = ip(Tz(V)) Θ TP(F).
Let s be a regular cross section of bundle B and let P be a point of

the submanifold s ( V ) of B.
Definition 1.2. The linear mapping of TP(B) onto TP(F) defined as

follows :
dvsp (D) = Dp- (ds)x D'

is called vertical differential of s at P.
It follows immediatly from the definition that the sequence

0 - >TX(V}-TP(B}-TP(F)— > 0

is exact and, if slf s2 are two cross sections of B such that

(ds^x = (ds2)x , then (dvsl)P = (dvs^}P.

This property suggests the following _
Deflnition 1.3. If P is a point of the vertical bundle B, s a regular cross

section of B such that P = (s(X), dsz) and ΘP is the linear mapping of
TP(B)inTP(F):

θp(5) = dvsP(D)

then ΘP is called structure I- form at the point P of the vertical bundle B.
The embedding s of V into B such that

§(X) = (s(X),dsχ)

is called canonical lift of s to J5; we can see that the form θ assigns the
vector field dvs(D) with support in s(V) to every vector field D with
support in the submanifold s ( V ) of B. A Lemma follows immediately
from these definitions :

Lemma 1.2. The structure form verifies the following properties:
a) Θ vanishes on the tangent vector fields to the fibers of B.
b) The map induced by Θ on the submanifold s ( V ) of B vanishes.
Theorem 1.1. Let (xl . . . , xn) be a coordinate system on the manifold

V and let U be an open set in F with local coordinates (z1 . . ., zm):We can
find m n functions γi} (i = 1 . . ., n\ j = 1 . . ., m) on π~1(F X U) such
that:

a) (xi} zj} piό) is a local coordinate system of B in π~l(V X U).
b) The I- form Θ can be written in that coordinate system in the following

way:

for every Dp ζ Tp(B) and P ζ π~l(V X ϋ).
Proof. Let p^ be functions on π~1(F X U) defined by

where P = (P, σp) and of 6Hom(Tp(F), TP(F)\
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By the definition of the vertical bundle B, the functions (xif z3>,
are a local coordinate system of B in π~l(V X U).

On the other hand, if we apply θp to the derivations

a a a
dxj ' dzj ' ~dp^ '

we have :

since Lemma 1.1. gives dsx = ap -}- I, where άsx is the homomorphism
of TX(V) into TP(B) associated to the point P.

and, finally:

which completes the proof.
Definition 1.4. A local coordinate system of B in a neighbourhood U of B

is called canonical if it verifies the conditions of theorem 1.1.

2. Module — Valued Tensor Calculus

Let M be the set of differentiable mappings / of B in T (F)B such that

P — / > ? > ,
where DV

P ζ TP(F).
Lemma 2.1. The set M is a Ag-module, where AB is the algebra of

functions of class C°° defined on the manifold B.
Proof. We give the following definitions of sum and product by a

function g of AB :

a)

b)
The rest is a straight-forward matter.
In a similar way, we can build the ^-module If* of differentiable

mappings /* of B into the cotangent bundle T* (F)B such that

P-^-+ ωv

P

Since most of the definitions and properties of the ^-module M
that we give hereafter are also verified by M*, we shall prove our state-
ments only for M and we shall understand that they remain valid for
M * too. _

Let {D} be the .^-module of vector fields of B and {ω} its dual. We
can now define M- valued tensors on B in the following way :
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Every p + g-linear mapping Tq

p of {D}p x {ω}q in M is called a p-
covariant, g-contravariant M-valued tensor.
We introduce those new tensors because the structure form θ is a 1-co-
variant M-valued tensor.

For this reason we shall give hereafter the most important results of
this module-valued tensor calculus; the reader may check the proofs in
KOSZUL'S lectures [2].

Let K be a commutative field, A a commutative and associative
algebra and M an A -module. Let {D} be the A -module of derivations of
A into A over K and let {ω} be its dual.

Definition 2.1. An M-valued tensor T* (p-covariant, q-contravariant) on
A is a p -f q-linear mapping of {D}p X {ω}q in M.

As in the ordinary case, the set of all tensors {Tfy with fixed indices
p, q is an A -module with respect to the natural laws of addition of tensors
and multiplication by a scalar.

Definition 2.2. Let MI} M2 M^ be three A-modules with a bilinear
product MI x If 2 -> MS that we shall denote (e, e'} -> ee'. If Tq is an MΓ

valued tensor and T* an M^valued tensor, we say that the M-valued tensor
Tp ® Ts

r is the tensor product of both, with Tq ® Ts

r defined as follows:

T% ® 2? (A AT D[ . . . Z>;, ωl. . . ωQ, ω[ . . . ωj)
= ^(A . . . D9, a)ι... ωq) T*(D[ . . . Z>;, ωj . . . ω',) .

Three very Important Examples

a) Let M! = A M2 = M3 = M and let A x M -> M be the product
defined by the module structure. Then the tensor product of an ordinary
tensor and an M-valued tensor is an M-valued tensor.

b) Let Ml = M, Jf 2 - Jf * (dual of M), M3 = A and let M x Jf * -> 4
be the mapping (e, ω)-> ω(e). The tensor product of an If-valued
tensor and an M*-valued tensor is an ordinary tensor.

c) Let MI = Horn (M, M), M2 = Jf3 - Jf and let Horn (Λf, if)
•α. A

χM->M by the map (r,e)->τ(e). Then the tensor product of an
Horn (Jf, Jf)-valued tensor and an M-valued tensor is an M-valued

Λ.

tensor.

These three examples of tensor products will be often employed
throughout the paper.

The Lie derivation on module-valued tensors may be introduced in a
natural way when we have previously defined a derivation law in that
module.

Definition 2.3. A derivation law in an A-module M is a mapping V
of the A-module {D} in the homomorphisms Horn (M, M) of M:

K.

D-^DV £ Horn (Jf, Λf)
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such that
a) (Dι+D2)r = Dr + Dζ
b) (aD^Y = a D?
c) JDf(αe) = (DjαJe + α-Dfe

where a £ A, e ζ If, J^, D2 ζ {£} .
For instance, if we consider .̂ as an ^-module, then P defined by

D7 a = Dα is a derivation law that we shall call canonical derivation
in ^4.

The Lie derivation is introduced as follows :
Definition 2.4. Let V be a derivation law in the A-module M and {Tq}

the A-module of p-covariant, q-contravariant M-valued tensors on A. We
shall say that the map L of {D} in Horn ({T9}, {T9}) is a Lie derivation in

(LDT>V) (Dl. . ., Df, ωι..., ω,) = ZFT* (Dί. . . Df, ω x . . ., ωβ)

i

- Σ ^J (A •> ^PJ cu!. . ., Lj^cDi . . ., ωβ) .
ΐ

The tensor Z^ ̂  is called the Lie derivative of T* with respect to D.
The Lie derivation verifies the following properties:

LD(T + T') = LDT + LΰT'

LD (a T) = (Da) T + aLD T

where D,D'ζ{D}, T,T't{T*p}, λ£K.
We shall now see the relationship between the Lie derivation and the

tensor product :
Let Ml9 M2, M3 be three .4 -modules with a bilinear product

M1χM2-^MS) and let F1? F2, P3 be three derivation laws given in
M1 , Jf2? 1Γ3 respectively. We say that the bilinear product is compatible
with the derivation laws when

where D 6 {D} , e £ ΛΓi, e'
For instance, if we define the canonical derivation law in A, the

derivation law (Dv ω)e = D(ω(e}} - ω(D? e] in M*, and the derivation
law (Dvr)e - D7(τ(e)} - τ (Dv e) (where τ 6 Horn (M, M)) in Horn (MM)

A. -A.

then the three bilinear products A X M -+ M , M X M* -> A and
Horn (M , M) xM -+ M are compatible with the respective laws.

.4
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Let now Tq be an M r valued tensor and Ts

r an M 2- valued tensor and
assume that the bilinear product Ml X M 2 -> If3 is compatible with the
derivation laws Vl} P2 > F3 . Then for every D ζ {D} we have

LD(TI ® T ) = LDT<®T +T*9 LDT°

We shall now deal with the differential forms following the same
method.

Definition 2.5. A M-valued p-form ωp on A is a p-covariant skew-
symmetric, M -valued tensor.

The set {co^} of all p-forms is a submodule of the A -module {T^} of
p -co variant tensors.

Definition 2.6. Let MI} M2) M% be three A-modules with a bilinear
product Ml X M 2 -> M% . Let ω^ be a MΓv alued form and ωq a M2-
valued form. The M^- valued form ω^ A ωq given by:

(ωPΛ ωq)(Dl. . .,Dp + q)

= (p + q){Σ (siβn of %) ωP (Dh ' - Dΰ ω* (D^ » > Dώ >
where sjk is the permutation (1 . . . , p + g) -> (^ . . . , ̂ , k^ . . . , ^Q), ^5
called the extenor product of forms ω^ , ωQ .

It follows immediately from the definition of Lie derivative of a
tensor that the Lie derivative LD ω of a form ω is also a form and that,
if lίj , M 2 , M3 are three modules with derivation laws compatible with a
bilinear product, ω^ a _Mrvalued form and ωa a M 2- valued from, then

LD(ωί>/\ ωQ) = LD ω^ Λ ωq + ωv Λ LD ωq .

We can introduce the inner product and the exterior differentiation on
module- valued forms in the same way as in the ordinary case.

For every D ζ {D}, the homomorphism iD: {ω^} -> {ω^-j} given by

(iD. ω,) (A . . ., IVO = Pω, (D, ̂  . . .. D^) (p > 0) iD. ωQ=0

is called inner product iD. on the ^.-module {ω^}.
The inner product verifies the following properties :

LD iD'. + iD'. LD = i[D, D'} .

ί(aD) . = ai D.

where a ζ A and D , D' ζ {D}.

Let three modules Jf1? M2, Jf3 be given, with derivation laws
compatible with a bilinear product if ω^ is an M 1- valued from and ωq

an Iί2-valued form; then we have:

iD. (ωv Λ ωq) = ^X>. ωp J\ ωq + (- l)α ̂  Λ iX). α>β .
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The ^-linear map of {ω^} in {<Up+1} given by

dωίί(D1. . ., A»+ι)

^ J^l 51 (- 1)' + 1 AΓ (ωp(A . . . , A - - . , A+ι))

where the symbol Λ on a term denotes the omission of that term, is
called exterior differentiation on the A -module {ω^}.

Let three modules Ml , M 2 , Jf 3 be given, with derivation laws com-
patible with a bilinear product; if ωp is a Jfrvalued form and ωq a
Jf 2- valued form, then we have :

d(ω,ϊ) Λ ωα) = dcOp Λ ωα + (- l)p co^ f\ dωa .

Inner product, exterior differentiation on Lie derivation are connected
by an important formula :

LD = iD.d + diD.

It is wellknown that the exterior differentiation on the algebra of
ordinary differential forms on a manifold verifies d2 = 0. However, in
the case of module -valued forms this is not true in general. Thus, if e is
an element of M, we have :

d*e(D,Df) = Dv(de(D')) - ΐ>'v (de(D)) - de ([D, D']}

= ΊF D've - D'vΌvz - [D, D'f e Φ 0 .

If we write K(D, D') = Dv ΐ>'v - Ό'v Ί)v - [D, D']7 it is easy to
check that K (D , D'} is an ^4-endomorphism of M and, moreover:

K(D + D', D") - K(D, D"} + K(D', D")

Then K is an Horn (M , Jf)-valued 2-form on A.
A.

Definition 2.7. The 2-form K is called curvature form of the derivation
law V .

In the special case of M = A and V being the canonical derivation
law, we have :

K(D, D'} a - DD'a - D'Da - [D, D'] a - 0

The following results (which proofs are in [2], ch-1) become of main
importance in applications :

LDLD>ω - LD>LDω = L[DtDΊ ω + K(D> D')ω

LDdω — dLDω = (iD. K) Λ ω

3 Commun. math. Phys., Vol. 13
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Λ denotes here the exterior product induced by the bilinear product
ΈLom(M,M)xM-*M.

Finally, assume that A is an algebra such that the A -module {D} of
its derivations is free of k dimension if that is the case, and if Ml9 M2, M3

are three A -modules with a bilinear product M ̂  X M2 —> M3, D is an
1-contra variant Mrvalued tensor, and ω^ is an Mz- valued £>-form, then
we define the contraction of D and ω^ in the following way:

Let (jD^ , . . ., Dk) be an arbitrary basis of the ^.-module {D}, and let
(ωv . . ., ωk) be the dual basis. We define the contraction of D an ωv to
be the Jf3-valued (p — l)-form iD. ω^ such that

(iD. ω,) (D{, . . ., !>;_!) = Σ £(<»<) ω,(D{,D{,. . .,D'p_J
ΐ = l

for any D[, ...,D'p_l ζ {D}.

It is easy to check that the (p — l)-form thus defined does not depend on
the choice of the basis (D1? . . ., Dk) of {D}.

As we said at the beginning of this section, we are now interested in
applying the tensor calculus thus far developed to the special case of
A being A$ and M being the Ag-module of differentiable maps of B
in T(F)B. If this is the case, we can define a derivation law on M starting
from a linear connection V on F in the following way:

Let / be any element of M and ω a 1-form in F\ we may assign to
both /, ω a function g in Ag in the following way:

P-^-> D°P

Definition 2.8. Let an element f in M and a derivation D in {DJ be
given, we define the derivative of f with respect to D, at the point P, as the
element Dpj £ TP(F) such that:

ojγ(dπ' (Dpf)) = Dpg- (D"v ω)γ Dυ

where ω is any 1-form in F, D'γ the projection of the derivation DP in B
on F and V is the given linnear connection.

The element D/ of M that assigns to every point P in B the element
Dpf in TP(F) is called derivative of / with respect to D.

From now on, whenever we speak about a derivation law in the Ag-
module M, we are referring to this special type of derivation law defined
by a linear connection V on F. Furthermore, we shall assume that the
symmetry condition D%D2

 = -̂ 2 A *s verified by the linear connection.
We end this study on M -valued tensors on B with a last question:

How to coordinate the vector space {TQ} of M-valued, ^-covariant,
q- contra variant tensors.
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Lemma 2.2. M is a m- dimensional locally free Ag-module.
Proof: Let U be any open set in B with canonical coordinates

(xi9 z3 , pίό). Let gl . . . , gm be m functions in M σ such that

__ Zjfp

at every point P in U.
It is easy to check that the g s are a basis of MΌ and, thus, every

element / in Mπ can be written as :

where the // s belong to A^ .
We shall write from now on :

instead of / — Σfj ffj
i

If h is a function in M *, we shall write

h = Σ hj dZj .
j

From the former Lemma it follows immediately that every M -valued
£)-covariant, g- contra variant tensor can be written as

TV = y (τq} —•ίp Z; (-ίph dz,

where the (Tq}jS are ordinary tensors on B such that

Γ£(A ...ίΰp9ω1...9ωg) = Σ t(^). (A - - , A» ®ι - - ωβ)] -A.

for any (Z^ . . . , D^, ω^ . . . , ωα).
For instante, the structure from θ can be written as

as we proved in theorem 1.1.
Finally, we will calculate the derivative of an arbitrary function /

in M with respect to a derivation D on B with the derivation law given
by Definition 2.8:

By definition 2.8. we have

dzk (D A
\ vZj

if
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where Γfy are the components of the connection in the open set induced

by U in F.
So,

Notation. In order to avoid any confusion between the ordinary tensor
and contracted products and the corresponding generalized products we
have introduced in this paper, we shall denote the latter ones by the notation (o).

3. Generalized Infinitesimal Contact Transformations

We shall say that a vector field D on B is a generalized infinitesimal
contact transformation (g.i.c.t.) when for every derivation law V on M

we have
= Φoθ

where Φ £Hom (M, M), the dot product o is the one induced by the
Λ~B

usual bilinear product Hom(Jί, M) X M -> M and LD is taken
AB

with respect to V .
It is easy to prove that a vector field D on B is a g.i.c.t. if the former

condition is verified for a derivation law V \ i.e. if one law verifies the
condition, all of them do.

Theorem 3.1. Given a vector field D on the manifold B, there is one and
only one g.i.c.t. D such that dπ(D] = D.

Proof. It suffices to prove that the system of equations Lp θ = Φ o θ
and dπ(D) = D, with unknowns D, Φ has a unique solution in π~l(U),
where U is the open set in B where the vector field D is defined.

Let U' be an open set in π~1(ί7) with local canonical coordinates
(xi , Zj , PΪ j] \ve have then :

Hence, the condition Lp θj = Σ ^jh @h> where the bjh's belong to the
h __

ring of C°° class function defined on U'. On the other hand, if dπ(D] = D,
we have

whenever
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This proves that there exists on V a unique solution (U^, Φπ>) of the
system of equations

Let now D and Φ be the unique vector field and homomorphism that
induce Dυ> and Φ^ on U', for every 17' C π~l(U) of the former type.
Then, (D, Φ) is the unique solution on π"l(U) of our system of equations.

Definition 3.2. D is called canonical lift of D to B.
The canonical lifts of the vector fields on B that dπ projects on the

zero derivation of V are of main importance; these g.i.c.t. are called
vertical.

4. Variational Theory on the Vertical Bundle B

The notion of a field in the sense of a physical system defined by a
given lagrangian can be formalized in the following way :

Let V be a differentiable %- dimensional manifold such as those we
have dealt with in the former sections, and assume, furthermore, that a
non vanishing w-form ω, called volume element, is defined on every
point of V and let F be a m-dimensional differentiable manifold.

Definition 4.1. A real-valued differentiable function £? on the vertical
bundle B is called a F-type field on V. V, B, B, ££ are respectively
called base space, configuration space, state space and lagrangian of the
field.

Starting from this definition we can state a variational problem on
B in the f olio wing way :

The volume element ω of F can be mapped into the algebra of forms
on B by means of the injection (π. π)* (transposed of the projections, π).
Then, it makes sense to consider the %-form £? ω on B and define a
real-valued function & on the set S of regular cross sections s of B as
follows :

s(V)

where s is the canonical lift of s to B.
If D is a differentiable vector field on B, we can introduce the notion

of derivative DS, of the function £ with respect to the field D as the
function on S defined by :

DSS= f
s(V)

where D is the canonical lift of D to B.
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Finally, we give a notion of stationarίedness as follows: For every
section s in S, let (δ£,)s be the linear function on the vector space {D}
of the vector fields with compact support in B defined by :

Definition 4.2. A regular cross section s of B is stationary ivhen

The basic problem is now to characterize the stationary transversal
sections as solutions of some type of differential equations. We shall
see later (and this is our main result) that to each linear connection V
on the differentiable F manifold (with the symmetry condition
D^D2^ = DζD1) can be canonically associated a system of module-
valued differential forms of different degree on the vertical bundle B,
whose solutions are the stationary transversal sections of our variational
problems. This system of differential forms will be called field equations,
in a slightly abusive language, since these equations do not only depend
on the considered field but also on the initial connection.

With this consideration in mind let us now fix once and for all the
connection V and assume that all differentiation operations will be done
with respect to the derivation law that V induces on the J.^-module
M in the sense of the Definition 2.8.

The basic tools used to obtain these equations are a function / and an
(n-l)-ϊoΐm Ω, both defined on B and Jf*-valued. On the analogy of
analytic dynamics — which is the one -dimensional manifold case (time-
line) in our scheme — they will be called virtual work function1 and
momentum (n— I)- form on the field we are dealing with.

Theorem 4.1. One and only one function f and one and only one (n—1)-
form Ω on B, can be found such that:

a) i X o co — Ω

b) iXodO

where X is a 1-contravariant M* -valued tensor on B and products in a)
and b) are taken with respect to bilinear products M* X A% -> M* and
M* X M -> AH defined by the module structure and by duality notion,
respectively.

Proof. Let U be any open set in B with local canonical coordinates,
(xi3 Zj, Pij). The map induced by dθ on U is:

hi
1 Since in analytic dynamicsj is the element in ι¥* that assigns the virtual

work form, (ωτ)P to every point P in B.
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where the functions Γfy are the components of the connection in the
open set induced by U in F.

If Xu = Σ Xj azj is a 1- contra variant Mfj- valued tensor on E7, we
j

have:

iXσ odθ = Σ (»**. dθ* - Σ Γti Wi (**) dzh - (Xk zh) 0,]) .
Jc \ Jij )

On the other hand, if fυ = Σ fy dz}- is an element in M%, we have:
j

i

Raplacing now iXu o dO and f π o θ in b) and putting ΩΌ = iXΌ o ω,
we obtain a local expression in U of the system of tensor equations a)
and b) with unknowns XUf fu and Ω#.

Applying b) to the vector fields -~ — and -= — succesively, we have :

Furthermore, applying b) once more to the vector fields-^— , we obtain
V X?

a solvable system of equations with the rest of the unknowns. It follows
then that the system of equations a) and b) determines fΌ andβ^, since
Xjxi determine Ωy.

If we call / and Ω the function and the (n— l)-form on B such that
the maps induced by them on every open set U of the former type are
f u andβ^, respectively, then / is the only function and Ω the only form
verifying the conditions of the theorem.

Remark. On account of the construction we have followed, the (n— 1)-
momentum form Ω of the field does not depend on the connection V .

5. Fundamental Formula of Variation

The formula we state next is the basic tool we use in proving the
main theorems in this paper.

Theorem 5.1. Let s be a regular cross section and D a vector field on the
bundle J5, s and D the canonical lifts of s and D to B, and let f and Ω be
the virtual work function and the momentum form of the field. Then, ons(V)
we have:

LD(^ω) = θ(D) o(dΩ + f o ω ) -d(θ(D)oΩ- iD.&ω)

where the tensor products are taken with respect to the bilinear products
M x M * -* AS and AgxM*-+ M*.

Proof. First we give the proof for the case dn(D] = 0.
Then D is a vertical g.i.c.t. and we have
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Applying b) of Theorem 4.1., we have:

(iX odθ)D + d^(D] = (/ o 0) U (1)

Moreover, since D is a g.i.c.t.

Lΰθ = ίDodθ + d(0 (D)} = Φoθ (!')

and taking the inner product of (Γ) and X, we have:

iX o (iD o dθ) + iX o d(θ (D)) = iX o(Φoθ) (2)

Adding up (1) and (2), it follows from

ίX o(iD odθ) = - iD. (iX odθ) ,
that __

(d&) D= -ίXod(0 (D)} + (/ o 0) D + iX o (Φ o 0)

and multiplying by the volume element, we have

Z0(J?ω) = - 0'Xo<Z(0(5))] ω+ ( / o 0 ) £ ω + ( ; X o ( Φ o 0 ) ) ω . (3)

We will now obtain another expression for the term [ίX oeZ(0(D))]co
proceeding as follows :

First take the exterior product by ω on both sides of ίDodθ
+ d(θ (D)) = Φ o θ we have that d(0 (D)) Λ ω = Φ o 0 Λ ω, since
iD o dθ Λ ω = 0 as we shall see later. Taking ίX o on both sides again
we have, by a) in Theorem 4.1., that

[iXod(θ(D))]ω - d(θ(D}) ^ Ω = ίX o (Φ o θ ̂  ω) .

Applying now the exterior differential and inner product formulae for
a product, and substituting in (3) we have :

) = Θ(D) o(dΩ + f o ω ) - d(0(D) oβ) + Φoθ Λ ω (4)

If we specialize (4) to s ( V) the last term vanishes by the definition of the
canonical lift s of s to B. This proves the case dπ(D) = 0.

Before proving the general case, let us check the identity
iD o dθ Λ ω = 0. It suffices to prove it for an arbitrary neighbourhood U
with canonical local coordinates (x{) 2; , pis). From the symmetry Γfo = Γfh

Λve have :

iD odθ Λ ω = Σ{\^' ̂  - Σ Γ&(*B Ojdz,, - Dzh 0,)1 Λ
k (I hi J

= Σ\Σ ΓbΦti dzh ~ Dzhdz,) Λ ω] ̂ ~= 0 .
it Ihj J dzk

Let us turn now to the general case. We have :

The vector field D can be written as a sum D = Dx + J92 of two vector
fields D1? D2 such that dπ(D1) = 0 and such that D2 induces a vector
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field on s ( V ) . Then, if Dv D2 are the canonical lifts of D1} D2 to B, we
have I) = D1 -f D2, where Dj is a vertical g.i.c.t. and J52 induces a
vector field on s ( V ) . In these conditions we have

ω + ι ω + Bί ω

Applying the result (4) to DI} we have :

(Dί&)ω = Θ(DJ o(dΩ + foω)- d(θ(DL) o β) + φχ o θ Λ β

Furthermore,

φ2J^)ω + ^Lβ2ω = Lΰ2(^ω) = iD2. d(& ω) + d (iD2. & ω)

So, finally, we have:

Lΰ(&ω) = θφj o (dΩ + f o ω) - d(θ(D1) - iDz. & ω) + Φ1 o θ Λ Ω

+ iDz.d(&ω) (5)

Dl is vertical, soiZ>3. <& ω — iD . <£? ω. Moreover, formula (5) induces on
S(V):

Lή(&ω) - Θ(D1) o (dΩ + / o ω) - d((9(A.) - ̂  «^ω) ,

since Φ1 o θ Λ β is zero by the definition of s, and iD^ d(£Pω) vanishes
too, since D2 is tangent to s ( V ) . This completes the proof.

6. Field Equations and Noether Invariants on the Vertical Bundle B

Let a field of the type defined by a differentiable manifold F with a
Lagrangian j£f be given on a differentiable manifold V with volume
element ω. The system of differential froms {θ, dΩ + / ° co} on the
vertical bundle jB, where θ is the structure 1-form on B and /, Ω are the
virtual work function and the momentum (n— l)-form of the field, are
called field equations.

The stationary sections in the sense of Definition 4.2. can now be
characterized as follows :

Theorem 6.1. The stationary cross sections s on the bundle B are the
projections by π of the cross sections s on B — regarded as a bundle on V —
which are solutions of the field equations {θ, dΩ + / o ω}. __

Proof. Let θ be a stationary section and s its canonical lift to B. We
prove that s ( V ) — which is a solution of θ by definition — is a solution
of dΩ + f o ω too.

Indeed, let U be an open set in B with local canonical coordinates

(%i, Zi> Pa) such that U r\ s ( V ) φ 0. If A = ds ί-̂ -), then (dΩ + / o ω)

(£>! . . ., Dn) = Σ Ψi dZj, where the φ s are differentiable functions on
i

the submanifold Un s ( V ) . Let now 0 be a differentiable ^-dimensional
chain in π. π(U), and D any vector field on B with compact support K,
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such that π-1(K)r\8(V)Cs(G) and π~l(K] r\ s(dC) = 0, we denote
dC the boundary of C. Applying the fundamental variation formula, we

have :
- / LD(&ω)= f

8(0} S(C) j

Using the fact that D is arbitrary, the φ'j s vanish at the inner points of
s ( C ) , hence dΩ -f / o ω vanishes at the inner points of s(C), U being

arbitrary, we get the intended result (dΩ + / ° co)s (F) — 0.
Conversely, let £ be a cross section on jδ — regarded as a bundle on F —

and assume that s is a solution of the field equations, that is the canonical
lift of s to B is a solution of the n-form dΩ -f / o ω let D be any vector
field on B with compact support K, and 0 a differentiable ^-dimensional
chain in F with the same conditions we stated before. Applying the
fundamental variation formula once more, we have:

/ o ω) - 0
s(F) s(C)

and using now the fact that D is arbitrary, we obtain (<5£)s = 0, so 5 is
stationary.

If U is an open set in B with local canonical coordinates (xi9 z^ pij))

a simple local calculus shows that the field equations turn into

Θ >
Cz> 9 hk

where

Qs = dzj - Σ Pa

> , ~ i k Λ dzh + f,Sdx1/\...t\ dxn dz

This leads immediately to the following.

Corollary (Euler-Lagrange Equations). A necessary and sufficient
condition for a cross section z, — z3 (x^ to be stationary is:

__ dzj . d<& _ y, d ( dg1\ * y^ %/ 9j^ __ A
•Piy a/v. ' a« ~~ ̂  "aΓIΓ' I 3_ I ^~^L ~2~~ "aΠ ^ '

Proof. It suffices to write that the restriction to the canonical lift of
z$ --= z3 (x^ of the second differential form of the field equations vanishes,
and to take into account the symmetry property jΓ$ = Γfa of the
coefficients of the connection.
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We finish this section formulating in this new scheme the notion of
an invariant variational problem by a Lie group, and stating E. Noether 's
theorem for thes invariant problems.

Let G be a Lie group acting on B by means of fibre preserving auto-
morphisms of B, i.e. fibres are turned into fibres. Every element a of the
Lie algebra AG of G defines a vector field Da on B in a well-known way.
If Da is the canonical lift of Da to B, we have a linear mapping of AG

into the space of the vector fields on jB.

Definition 6.1. A field with lagrangian & is said to be invariant by a
Lie group G acting on the bundle B in the former way when, for every
element a in its Lie algebra AG, an (n-l)-form ωa exists such that LJJ (<& co)

= dωa .
Given an invariant (in our sense) field, let τG be the mapping of the

Lie algebra AG to the algebra of differential forms on B defined as follows :

τG:a£AG-^θ(Da)oΩ- iDa.^ω- ωa

Applying the fundamental formula of variation, it follows immediately
that:

Theorem 6.2. (E. Noether). For every stationary cross section s on the
bundle B and every element a in the Lie algebra AG we have:

Or, for every n-dimensional differentiate chain C in V, we have:

The values taken by the mapping TG are (in our terminology) the
so-called Noether invariants in classical variation calculus.

Remark. Since the (n— l)-form Ω does not depend on the connection V
the Noether invariants do not depend on it either.

References

1. JOST, K. : Poisson brackets (An unpedagogical lecture). Rev. Mod. Phys. 36,
572 (1964).

2 KOSZUL, J. L.: Lectures on fibre bundles and differential geometry. Bombay:
Institute of Fundamental Research 1960.

3- LANG, S.: Introduction to differentiable manifolds. New York: Wiley 1962.
4 LICHNEROWICZ, A.: Propagateurs et Commutateurs en Relativite General.

Paris, Publications mathematiques de Γlnstitut des Hautes Etudes Scienti-
fiques. No. 10, 1961.

5. MACKEY, G. W. : Mathematical foundations of quantum mechanics. New York:
Benjamin 1963.



44 P. L. GARCIA et al.: Symplectic Approach to the Theory of Quantized Fields

6. SEGAL, I. E.: Differential operators in the manifold of solutions of a non-linear
differential equation. J. Math. 54, 71 (1965).

7. — Quantization of non-linear systems. J. Math. Phys. 1, 6, 468 (1960).
8. — La Variete des Solutions d'une Equation Ήyperbolique, Nonlinear d'Ordre 2.

Seminaire sur les equations aux derivees partielles III. College de France
1964/65.

9. TRATJTMAN, A.: TSΓoether equations and conservation laws. — Commun. Math.
Phys. 6, 248 (1967).

P. L. GARCIA, A. PEREZ-RENDON
Bepartamento de Algebra y Fundamento
Facultad de Ciencias
Universidad de Barcelona
Barcelona, Espana




