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Abstract. Assuming the existence of an asymptotically complete Wightmaii
field with non-trivial $-matrix, we construct a local field such that the Haag-Kuelle
scattering theory applied to this field leads to ξ)^ 4= § and §ln Φ §out.

In the framework of local field theory one can define, using the
UAAG-RuELLE [1] scattering theory, incoming and outgoing states and
the corresponding Hubert spaces £jin and §out It is well-known
that the axiom of asymptotic completeness (§in = ίj) is independent
of the other axioms of field theory. In order to have an unitary
$-matrix, it is sufficient to require ί)in = §out. Starting from an
asymptotically complete Wightman field with non-trivial $-matrix we
shall construct a field which does not fulfill this requirement. The con-
struction will show that in our case asymptotic completeness andunitarity
of the S-matrix are destroyed by the fact that the functional of truncated
vacuum expectation values can be decomposed into a sum of two such
(truncated) functionals.

In the following we consider real scalar Wightman fields. We denote
the field operator by A(x), the vacuum state by Ω, the representation
of the inhomogeneous Lorentz group by U (a, A) and the Hubert space
by §

In addition to the usual postulates of field theory we require [2]:
(I) Let a(P] be the spectrum of the energy momentum operator P.

Then σ(P) has the form:

<*(P) = {P\P = 0} w {p\p0 > 0, p2 - m2} w {p\p0 >Q,p2^ 4m2} m > 0 .

(II) Let §! be defined by & - {Φ\Φ ζ §, (P2 - m2) Φ - 0}, and let
DI (α, Λ) be the representation of the inhomogeneous Lorentz group in
£jr Then U^a, A) is an irreducible representation and has spin 0.

(III) Let Pl be the projection on ξ)v Then the following is true:

(A (x)Ω, P! A (y}Ω} = iΛ<+> (m2, x - y) .

With the notation (taken from a paper by HEPP [3])
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and
0}

we define

A (/, ί) = / ^(ί?) /(P) e- °̂ + ω)* dV, ω =|mM-~Ϊpp, / ζ 8(0) . (1)

HAAG and RTJELLE [1] have shown that the strong limits

lim

exist and define incoming and outgoing states. The Hubert space
spanned by Ω and the states Φin is denoted by §in . Asymptotic

out out
completeness of the field A means: §in = §.

If we have two fields A1(x),A2(x) with the vacuum states βj, Ω2

and with the representations t/^α, /I), Uz(a,Λ) of the inhomogeneous
Lorentz group, we can construct a new field B(x) by

B(x) = AI(X) <g> 1 + 1 Θ -42(aO;

Ω^Ω1®Ω2; (2)

(α, /I) Θ Z72(α, /l)]^ is the restriction of U1(a) Λ) ® U2(a,Λ) to the
space ί̂ 8) = 51̂  β £ §(^0 <g> §(^2). (21̂  is the polynomial algebra of B).

This construction was introduced by BOUCHERS [4]. From (2) we
obtain for the truncated vacuum expectation values (T VE V) :

(Ω,B(x1)...B(xn)Ω)τ

 s

= (Ω, , A, (x,) ...A, (xn)Ω^ + (Ω, , A, (x,) . . . A2 (xΛ)ΩJ*.

(2) and (3) are equivalent statements, and we shall use both of them.
We are now prepared for the following

Theorem. Let {A(x),ΩA,UA(a,Λ)} be a local field theory which
satisfies the conditions (I), (II), (III)- Let A be asymptotically complete,
and let SA be the corresponding 8 -matrix. Then the field theory defined by

B(x)=-fi(A(x)®l + l®A(x)y, ΩB = ΩA®ΩA;

Us(a,Λ)=[UA(a,Λ)® UA(a,Λ)]B

has the following properties:
1. The theory (4) satisfies the conditions (I), (II), (III).
2. $)\® = £j<5) if and only if A is a free field.
3 $ff> = S)£l if and only if SA = l .
Proof. 1. The requirements (I), (III) are fulfilled by construction.

Hence we have only to show that (II) is fulfilled.
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We define

£<*> = {φ φζ- §(β), (P* - m2) Φ - 0}

*; 7

The representation of the inhomogeneous Lorentz group in $$f) is

irreducible and has spin 0. We want to show: §^ = ^f\

Let us consider $)(B) as a subspace of £)' = §(A) <8> £)<A) with

ϊ/4 (α, /I) <8> ?7j[ (α, Λ.) as the representation of the inhomogeneous
Lorentz group. λVe define:

£ί - {Φ Φ £ £', (^P2 - m2) Φ - 0} .

Since A satisfies condition (II), we get

cy .__ C\(A) <> o m o•*/ — ) 09 iώ tp *iώ

φf* and ξff^ are subspaces of §[. Let £)^5)-L be the orthogonal comple-

ment of $)ψ) with respect to §{. Then we have:

®ΩA-ΩA®A(i)ΩA\J

Let us now consider the scalar products:

(A (i)ΩA 9ΩA-ΩA9A(ftΩA,\ΠB (gλ ΩA ® ΩA)
\ L; = ι J / (5)

Since B is symmetric in A ® 1 and 1 ® J., we get:

I [A (/) Θ \]ΩA ®ΩA] ΠB(gJ\ &A ®
\ L? -1 J

- ([1 Θ 4(/)]β^ ® β^5 Γ ΠB(gλ ®A ® ΩA) .
\ U=--ι J /

From this we conclude that the scalar products (5) vanish for

arbitrary f,gjζS(E^. Therefore ${B}1- is orthogonal to §<*>. This

implies ξ>{B} = $$\

Hence B satisfies condition (II).

2. If A is a free field, B is also a free field and, of course, asymptoti-
cally complete. It remains to show that asymptotic completeness of B
implies that A is a free field.
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We now suppose that B is asymptotically complete. With the
operators A (/3 , t), B(fj, t) given by (1) we construct the states

i, •••/„) = lim ΠA(fj,t)ΩA.

The linear hull of all such states is called Dffim resp.
= {λΩB}, Dfcft = {λΩA} we define

. With

(resp. D{£ *) is dense in $){*[) (respt $)[£>) . Finally we remark that

the mapping Φ^(/1? . . . fn) -> Φ\^(fiι /n) can ^e extended to an
isometric mapping of £j^ onto ί)̂  . With

^W = (D and ^ (α?) = (D x)

we get :

Urn jB(g)ΩB, Π B(f,,t)ΩB ,

lim ( j A ( g ) Ω A , Π A(fj,t)ΩAί~>~°° \ j = 1

Due to (3), we obtain

(ΩB, B(XI) ...1

and

(j*te)Ωs,

Let Φg> - 2

] = lim (
/ ί-*-oo\

l

gζS(W).

(jA(g)Ω

state in D[^ Then we get:

Σ(JB(a)Ω*>

let Φ\*> be the corresponding

(6)

Since jB(g}ΩB 1 ΩB Θ ̂ ^ and jA(g)ΩA ±.ΩA® $){A\ only terms
with % ̂  2 contribute to the sums. This leads to the following estimate
for the right hand side of (6):
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Since ||φj*>| = |Wll. we have

is dense in §(n\ and B is supposed to be asymptotically complete.
We conclude:

Due to (3), the 2-point functions of A and B are the same. Therefore

This implies jA(g)ΩA = 0. The conclusion holds for arbitrary g £
Since ^4 is local, ^4 is a free field.

3. From 8A = lii follows:

lim (π B(f*,t)ΩB9 ΠB(gk, -t)Ωs)
ί-^°°V=l Λ = 1 /

= lim -^(fjA(fj,t)ΩA> ΠA(gkί -t)ΩA] =0,
ί->oo 1/2 \y.el Λ = 1 /

% + n

This yields

lim Π S(ίi,t)Ωs= lim f[B(t},t}ΩB.
ί->+00 _. |_ ί-»— 00 =1

Hence we have £)̂  = §^ . It remains to show that the assumption

$£> = $«{ implies ̂  = 1.
We now assume $){$ = SβjQ . We want to give a proof by induction.

We define:

For w = 1 we have ψ(A) (/) = 0. Suppose now, it has been proved that

Ψ ( A ) ( f ι > - -in] vanishes for all n< N and arbitrary /,,/,£#((?),
j = 1,2 . . . n. Since the TVEV of B are multiples of the TVEV of A,

/ ! , . . . fn) also vanishes for n< N. This has the consequence:

lim \ Π B ( ί i , f ) - Π B t f i , -t) ΩS, ΠB(gk, -t)Ωs)

lim
Aί ΠA(gk,- t)ΩA)*-ι /

, - . , /.v) , Φf^ (!7ι , - flΊ)) -
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Let Φ^, Φjj^ be the states which we used in the proof of statement 2).
Then we get :

(ψ w ( h , . . . i N ) ,

Due to the induction assumption, only terms with n ̂  N contribute
to the sums.

This leads to the following estimates :

Since ${*> =

On the other hand, we have

IIΦίfΊI = a*-1

Ί > f s ) i8 a vector in ξtffl. We conclude:

B(fί9 1) -

N N

Π B ( f * , t ) ~ Π

lim 0 - ΠA(t*> -

N

Π

'(/i ,•••

This yields

That implies Ψ^(fl9 . . . fN) = 0. Since the induction assumption is
true for n = 1, we get for all % IPW (/1? . . . fn) — 0. The conclusion holds
for arbitrary fj9 fj ζS(G). Hence we obtain SA = 1. This proves the
theorem.

Assume now, there is an asymptotically complete Wightmann field
A (x) which satisfies the conditions (I), (II), (III). Let the ^-matrix be

non -trivial. Then we construct the field B (x) = —— (A (x) ® 1 + 1 ® A (x)").

Due to our theorem we get ${& φ $(B> and $)(*[> φ
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