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Abstract. It is shown that, also in the mixed initial and boundary value pro-
blem, Einstein's equations may be replaced by the two subsystems Tιmjjm = 0

and Rκβ= — κ I Taβ — -$- Tg^βj , provided that the initial data verify the con-

sistency conditions Gf = — κTf and that the analogous relations

(Glm + κTlm)N™=0

are imposed on the boundaries of the given domain.

Introduction

Einstein's gravitational equations1

@lm = — κTlm (1)
imply the four relations

Tι™Hm = 0. (2)

Conversely, LICHNEROWICZ [1] (see also [2, 3]) has proved that, in the
initial value problem, Eq. (1) may be replaced by (2) and by the system

(3)

provided that the initial data verify the consistency conditions

Gf = - κ Tf . (4)

The importance of this result lies in the fact that it singles out Eq. (2)
as a subsystem of Eq. (1). Now, since Eq. (2) have a definite physical
meaning by themselves, the above result allows us to study their role
in the determination of the solution of the gravitational problem.

For the same reason, an analogous possibility is also desirable in more
general cases, e.g. in the mixed initial and boundary value problem. In
fact, as we shall prove in a later paper, the analysis of Eq. (2) in a spa-
tially finite domain of space-time (e.g. in a four-dimensional "world-

1 Latin indices run from 1 to 4. Greek indices run from 1 to 3. The metric tensor
is assumed to have the signature + 2. A comma indicates partial derivative;
a double stroke [like in Eq. (2)] indicates covariant derivative.
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tube") plays an important role in the study of the inertial phenomena.
Therefore, the purpose of the present work is to extend LICHNEROWICZ'S
result to the mixed initial and boundary value problem.

In § 1 we shall briefly indicate the hypothesis required, as well as the
exact formulation of the problem.

In § 2 we shall prove the desired result: Eq. (1) may be replaced by
the system (2), (3) also in the mixed initial and boundary value problem,
provided that the initial data verify the consistency conditions (4), and
that the analogous relations

{Glm + κTlm)N™ = 0 (5)

are imposed on the boundaries of the given domain. [In (5), as usual,
Nm denotes the normal to the boundary itself.]

We recall the following definitions [1—4]: the spacetime continuum
F 4 is a twice continuously differentiable manifold on which there is
defined a metric

ds2 = glmdxι dxm

of normal hyperbolic type everywhere with signature (+ H—1 ). A co-
ordinate system is physically acceptable if one of its variables is time
like, and the other three space-like. On then has <744 < 0 and the recipro-
cal quadratic forms

g*β and g β β - ^ -

are positive definite.
A metric is said regular if it is continuously differentiable (Cl9 C3

piecewise).
Since the manifold F 4 admits of an everywhere hyperbolic metric, it

possesses a vector field oriented in time, and therefore a global system
of time lines. In F 4 let the domain Ω verify the properties:

i) Ω is the topological product of a manifold F 3 and the real straight
line R (the mappings of R in F 4 oriented in time, mappings of F 3

everywhere oriented in space)
ii) the spatial sections, mappings of F 3 , are bounded manifolds,

homeomorphic to spatially finite regions of the Euclidean space R3.

In Ω we assume a sufficiently smooth distribution of matter, described
by a non-zero stress tensor Tlm. Then we have the Einstein field
equations

®lm = R>lm ~ ~2 Rΰl™ == "" κ Tim, > (1)
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where Rlm is the Ricci tensor of the normal hyperbolic four-dimensional
space-time metric.

Let B denote a spatial section of Ω (the local equation of B we take
as ίϋ4 = 0). Moreover, let 8 denote the boundary of Ω (the local equation
of 8 we take as f(x1x2xzx*) = 0). We define

Then, as a consequence of the definitions, NmNm > 0 on S. The initial
and boundary value problem for Eq. (1) consists in the determination
of all those solutions of the Einstein equations consistent with the
topological requirements stated above, and assuming definite values on
B and on 8 respectively. These values, however, cannot be arbitrary:
in fact, Eq. (1) and the regularity of the metric imply

Qf + κT+^0 on B, (4)

(Qlm + κTlm)Nm = 0 on 8, (5)

since the left-hand-sides of Eqs. (4) and (5) depend only on the first
normal derivatives of the metric tensor on B and on 8 respectively.

Equation (4) represent four consistency conditions for the Cauchy
data on B. They are known as "the problem of initial conditions" [1—4].
Similarly, Eq. (5) are consistency conditions for the data on 8. In this
case, however, since the latter do not imply the knowledge of both glm

and gιm,ic, Eq. (5) cannot be considered as relations among a-priori
known quantities. Therefore, they may simply be included among the
given boundary conditions: this, of course, restricts the number of inde-
pendent quantities which may be freely prescribed on 8.

We shall now prove that, once the consistency conditions (4) and (5)
have been imposed on the boundaries of the domain Ω, Eq. (1) may be
replaced by the equivalent system

W / ™ ^ o , (2)

Baβ=-x(τaβ-±Tgap) (3)

provided that g4 4 Φ 0 in Ω.
This result provides the stated extension of LICHNEROWICZ'S method

to mixed initial and boundary value problems.

§2

In order to prove the equivalence between Eq. (I) and the system
(2), (3) we shall extend a procedure indicated by SY^GE (see Ref. [5],
p. 212).
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Let Wij be any symmetric tensor field in space-time with metric
tensor giό. We define the conjugate tensor field by

W*it = Wu - ~ Wgu , W = g*<* Wlm , (6)

definition (6) implies

(W*ti)* = W{,. (6')
We have the following
Lemma 1. Provided g4 4 4- 0, the mixed components W/ may always be

expressed in terms of W*κp and W7* in the linear form

W/ - A*"? W*aβ 4- Bp Wj* (7)

the coefficients being linear and quadratic functions of glm, divided by gί4:.
In particular

S/k = ̂ Γ l9u »ik - 9ik δ,* + gik «5/l (8)

The proof of (7) is given in Ref. [5], and will be omitted here. The
explicit form (8) for the coefficients B/1c is shown in the Appendix.

Lemma 2. Provided g 4 4 φ θ in Ω, the following statements are mathe-
matically equivalent

(*)Wlm = 0 in Ω

wi* = 0 o n B

wlmN^0 on 8.

Proof. Obviously (α) =$ (β). We want to prove that (β) =Φ (α). We
assume (β). Then, by Lemma 1 and the first condition in (β)

Wi= B^Wj*. (9)

Moreover, by the second condition in (β)

W/ II t = W,*, t + Γt,* W,1 - Γtf WV = 0 . (10)

By (9), this may be written in the form

-£/ k Wk\ i + Ejk Wj* = 0 (11)

where the coefficients E$h depend only on the metric tensor and its first
derivatives.

We have in (11) a system of four linear homogeneous differential
equations of the first order for the four components Wf. The coefficients
Bjίk and E^ are by hypothesis continuous in the region considered, as
well as across the hypersurfaces B and S. The last two conditions in (β)
provide the initial data

Wf - 0 on B (12)
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and the boundary conditions [see (9)]

B^WjfNi^O on S. (13)

It remains only to prove that the initial and boundary value problem
(11), (12), (13) admits the unique solution Wf = 0 in Ω. In fact, by (9),
this implies WH — 0, so that the equivalence between (β) and (α) is
proved.

To this purpose, we first reduce the system (11) to a symmetric hy-
perbolic system (see Ref. [8], p. 593; see also [9—11]): we introduce the
symmetric matrix

t / i i = ( 7 ί « _ 2 - ^ - . (14)

The matrix (14) is clearly non singular, since the quadratic form

V Tjn λ ) - la" 2gH9

is positive definite (notice that the 3 x 3 matrix jgrα^ — ^—> is the

inverse of the matrix {gaβ}, which is positive definite (see e.g. Ref. [6],

p. 235)1. Therefore, the system (11) is mathematically equivalent to the

system

U^iB^ Wk\i + Ef Wk*) = 0 . (15)

By (8), (14) we have

V'1 B^ = -^ (gt* gi* - g^ g" - g** gi*) , (16)

so that, for fixed i, the coefficients of the derivatives in (15) are sym-
metric in j and h.

Moreover, when i = 4, the matrix Ujι Gfk is positive definite, since,
by (16), we have

j (17)

Therefore, the system (15) is symmetric and hyperbolic. For such sys-
tems we have a general uniqueness theorem2 which, in the actual case,
reads

"the initial and boundary value problem for Eq. (]5) possesses the
unique solution Wf = 0 provided that Wf = 0 on B, and that the
characteristic quadratic form

U*ιBι

ikNiWfWk

4' (18)
be non negative on $".

2 See Ref. [8], p. 656 —G58. The proof of the uniqueness theorem is given there
only in the particular case 9//9 a;4 = 0 (where f(x1x2x^x*) = 0 is the equation of
the hypersurface JS). The same proof, however, may be trivially extended to the
general case.
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Both the conditions are fulfilled in view of (12) and (13) [with the
quadratic form (18) identically zero on $]. This completes the proof of
Lemma 2.

It is now quite simple to prove the equivalence between Eq. (1) and
the system (2), (3) together with the consistency conditions (4) and (5).

To this purpose we set

Wlm = Qlm + κTlm (19)

and apply Lemma 2 to the symmetric tensor field (19). This completes
the proof of LICHNEROWICZ'S result also in the case of mixed initial and
boundary value problems.

The author wishes to thank Prof. M. CARRASST, Prof. G. LUZZATTO and
Dr. R. BORGHESANI for many helpful discussions.

Appendix

Proof of (8) § 2

We recall the following relations (see Kef. [5], Lemma 1, p. 213)

We have [see (6')]

= -±r W? W*xβ + 2 IF/] . (A, 2)

,* = W*,* ~γW* df = (gix W*aβ + g^ W*iβ) δ/

TF*44) = Cf«l> W\

where the 0/*'' are defined by the above relation. By (A, 1), (A, 2), this
may be written in the form

W,* = A,**<> W*aβ

+ -^ {(? i4 &,' + 9lx V - 9xi <V) Wx* + {2g« V - p " δ/) W/}

= Af<> W\β + -^ W* δ* + g** 0/ - g" δβ WJ ,

which coincides with (8), § 2.
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