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The Jost-Schroer Theorem for Zero-Mass Fields
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Abstract. We extend the Jost-Schroer theorem to zero-mass fields in one time-
dimension and arbitrarily many space-dimensions.

Recently, some work has been devoted to free zero-mass fields [1, 2],
It might be useful to have a simple criterion for a field to be a free zero-
mass field. We shall give such a criterion for the sake of simplicity for
a neutral scalar field, though similar criteria can readily be obtained in
the more general case of fields transforming according to a finite dimen-
sional representation of the Lorentz group.

Theorem (JOST and SCHROER [3]). // φ(x) is a hermitίan scalar local
field, relatively local to a set of fields for which the unique vacuum Ω is
cyclic, and if

then φ (x) is a free zero-mass field.
First, we shall prove this theorem for n space-dimensions with n ^ 2.

The case n—\ will be treated separately.

id2 n d2 \
Proof. We define j(x) = ίj^j- - Σ J^f Φ(x) From the assumed

structure of the 2 point function it follows that j(x) annihilates the
vacuum. We then apply the Johnson-Federbush theorem [4] and conlude
that ?'(a?) = 0.

It remains to be shown that [φ (x), φ (y)] is a c-number. Again because
of the Johnson-Federbush theorem it is sufficient to prove

i.e.

, Φ(y)l -\ΔM(X- y, o)}β = o

= (Ω, [φίxj, φ(x2)] Ω) (Ω, [φ(χ3), φ(x4)] Ω) .
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Moreover, as a consequence of the positive definiteness condition,
integration of

ffi(Pv P2> Pz) ^ Fourier-transform of

1/1/ I sy* rvt __„ _ /γ <γ I
rr I t̂ /j & 2 , ςy ςy , Λ3 Λ/41

\ Δ Δ }

- (β, [̂  ί^), ^fe)] [̂ (̂ 3), φ(x,)] β)J

over ^1 and £>3 with test functions ζ Sf will give a measure in p2. We
have assumed that Ω is the only eigenstate belonging to the eigenvalue 0
of the energy momentum operator. Therefore, it will suffice to prove
that the support of W(pv p2, pz) is concentrated in p2 = 0. From the
spectrum condition we know that

supp W(plt p2, Ps) C {Pi, Pz, Ps I p\ ^ 0, ^20 = ^}

i.e. W(pv p2, p3) = 0 unless p2 lies in or on the forward cone.

n
7Λ % 7 , J/% , 7 \ 1Λ % 7 Λ»Λ — I/* I/* /^ (I/1 iA \
/v (/ fί/Q VQ / j tϋ£ V£ } Λ/ •—• /v f\f . IV V 1 ? * * ? ft) *

i= 1

In the first step, we show that

supp W{pv p2, p3) C fe, p2,p31 P\ = 0, ί>20 ^ 0} ,

i.e. TF (pu ^2 > ^3) ~ ^ unless p̂2 lies on the forward cone.
From j (x) = 0 it follows that

supp W(pv p2, pB) C \pv p2, PsIPi Pz

We now smear W (px, p2, p2) in p2 with a test function ψ ζ Q) that
has (compact) support in

^+ = {P% I P20 > 0, p\ > 0} to obtain ^ ( f t , ^3) .

Then we notice that suppTF^^, £>3) is compact. Consequently,
Wtp(x1 — x2, xB — α;4) is an analytic function of its variables, vanishing
because of locality for (x1 — x2)

2 < 0 or (xz — #4)
2 < 0. Therefore

~ o

This identity is true for all test function ψ ζ ££ — Q) : supp^C F + .
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That implies

C {Pv p2, Pz I P\ = 0, p20 ^ 0, p1'P2 = p2'P3 = 0, 2>? = p\ = 0}

= {Pv P^ Pz I Pz = 0> Pi = pi = 0}

^ {PvPz>Pzl Pl = O,p^>O,p1 = λp2,pd = μp2,

— o o < A < + °°5 — oo < μ < -f oo} .

In the second and final step of this proof we show that indeed

supp W(pv p2, pz) C {pv P2,Pzl P2^0} •

For that, we choose a test function ψ ζ 3): supp^(^/2) is concentrated
around some arbitrary point p2 on the forward cone with pl = 0, Pz> 0>
{p2= 0} $supp^i(^2). In addition, we take an arbitrary test function
/x ζ &>(&) and form

^λvϋPi ' ^s) = fdPiof dp2 J^p^) ψ(p2) W(pv p2, pz) .

ffif^ψiP!, Ps) is a tempered distribution which, because of locality, after
integration over p3 with a test function ζ 6^ gives a C°°-function in pv

Therefore, the restriction to an arbitrary fixed vector q1Φ 0; px = q1

exists [5] and defines a tempered distribution Wf^ψ(p^) in p3.

supp Wf*φ(pz) C {ί>3 / Pz = Q<Ii, P\ = 05 - 00 < ρ < + 00} .

The Fourier-transform of WJ^ (p3), i.e. W?1 {x% — a?4), vanishes for
(xs — x4)

2 < 0. Again we choose an arbitrary test function /3 ζ ^(R1)
and form W*ψιft{pB) = / ^ ^ 3 0 /3(^3o) ^ Ϋ W > w h i c n ί s a C°°-function in
jp3. However, since the support of WΨ ΛPz) i s concentrated on the line
p3 = ρqrl5 we run into a contradiction (for n ^ 2 only) unless

Apart from the constraint q1 4= 0, the vector gj is arbitrary. Thus we
obtain

f3(p^

From the continuity of Wfiiψjs(pvp3) in both variables (a conse-
quence of locanty) we infer

ftf»φ.u(Pi>Ps) = ° f o r a 1 1 PvPz>

and recalhng that /x and f3 were arbitrary test functions ζ ^(R1), we
conclude that

i.e.

ffiy>(Pi> Pz) Ξ 0 for all y> ζ ^ with {̂ 2 = 0} $ suppφ(p2)

supp if {pv p2,293) C {Pi,P2 ,Pz I Pi = 0, pf = ί) | = 0} . q.e.d.
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In the second part of this contribution we shall prove the theorem
for one time and one space dimension. This case is of some interest for
field theoretic models. Many of those that are explicitly soluable are
models in one time and one space dimension. It is well known [6] that
in two-dimensional space-time no free scalar field of mass zero exists if
one imposes on it the usual requirements of quantum field theory,
especially the positive definiteness condition. Thus care is needed here.

To begin with, we shall prove the following lemma.
Lemma. // jv(x) is a hermitian local vector field in one time and one

space dimension, relatively local to a set of fields for which the unique
vacuum Ω is cyclic, and if

(Ω, jμ(x) jv(y) Ω) = l -j^ψ AV* - V' 0)

then jv(x) is a free zero-mass vector field with

άivj(x) = 0 , curlj(x) — 0 .

Proof. From the assumed structure of the 2 point function we obtain
at once that

| |div?» Ω\\2 = 0 and \\cuτlj{x) Ω\\2 = 0
i.e.

div / (x) Ω = 0 and curl j (x) Ω = 0 .

The Johnson-Federbush theorem implies that

div j (x) — 0 and curl j (x) = 0 ,

and that gives immediately

We define

The proof of the lemma will be established if we can show that the
commutators [jσι(%), jσz{y)] are c-numbers (c^ = -f or —, i = 1,2). Once
more, because of the Johnson-Federbush theorem it suffices to prove that

= (Ω, [JoW, /α,W] Ω) (Ω, [?σ>3), ? , W ] Ω)

We introduce new coordinates x+ and x~

χ+ = χθ _j_ χl ? χ~ = χ0 _ χl >

In these new coordinates άivj(x) = 0 and curl?'(#) == 0 read

•farj+ (%+, or) = 0 and -j^rj- (^+, x~) = 0 .
15 Commun. math. Ph3rs.,Λτol. 12
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Now we consider

and

(12, [joS%i),jσz{
χ^ \5oSx*ι>ioλχώ'\Ω)

The differential equations imply that these distributions depend only on
x\\ xf and xf, xf, xf, xf rsp., i.e.

(P, Vow, id**)] Ω) = wσiσ2(χf, xf)
and

(Ω, [jaMl),ja2(^)] ϋoMJJoMd] Ω) = WOiΰ^{xl\ X°2\ xf, xf) .

It follows from translation invariance that for all real a°ι, a°z

and

- Wσiσ2a^x{χγ + ασs 4 2 + «σ% 4 2 + »σ% ̂ ΐ + aΰl) -

For σ2 Φ cr2 this means that

(β, [yσ iK),;σ 2(a;2)]β)
is a constant and

(Ω, [?„,(«!),?„,(*,)] [ ^ ( ^ . ^ ( ^ J β )
depends only upon α f1 — α l1 and xψ — xξ2- The locality condition then
requires both

(Ω, [j^x,), jβt(x2)] Ω) and (Ω, [j^xj, ^(.r2)] [^(x3), ^(a:,)] Ω)

to be identical zero. Evidently, we have for a1 φ σ2

(12, [/^(ίϋi),^^)] D ^ W ί ^ ^ ) ] ^

= (β, D'σiK), K ( ^ ) ] β ) (Ω, \jσΛ(x3), jσi(xj] Ω).

The argument that will lead us to the corresponding relation for the

remaining case σ1 = σ2 = cr is more involved. From the foregoing dis-

cussion we know that (12, \jσ{xj, jσ(^2)] Ω) and (Ω, [jσ{xL), jσ(%2)] Uσ(?3)>
oβG _i_ yp

)a{x±ϊ\ Ω) depend only upon the variables x\ — x\ and x\ — x%, —L—^—-
^ ^ _j_ -^(ϊ

— ^—x—-, x% — x% rsp. It follows from locality that the supports of

(12, ϋai^Jai^Ω) a n d ( β ? [jσ{x1),jσ{Xo)'] [Ja(%3),Jσ(%d]Ω) a r e concen-
trated in x\ — xξ = 0 and x\ — x\ = 0 = xg — α f rsp. Thus, by invoking
the temperedness condition, we obtain the following representations:

φ, [jσ(χι), ?„(*,)] Ω)= Σ

μ = 0 μ' = 0
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Here, Lσ, Mσ and M'a are some fixed positive integers, the cλ

σ are

J_ ? ^ _ 3 _ ^ 4 I a r e tempered

distributions whose Fourier transforms coμμ'{pa) are polynomially
bounded complex measures which vanish unless pσ ^ 0. This last
assertion follows from the temperedness, positive definiteness and spec-
trum conditions.

Next, we make use of the Lorentz covariance which yields

Σ cλ

o δ^(xa

x - xξ) = α 2 Σ
λ=0 λ = 0

Mσ Ma

/« = 0 μ' = 0

= «4 Z Σ (α{xf - 4}) <"' (α ί ^ ί ^ -

})

for all positive α. These conditions imply that

c* (5(λ) ( ^ - x%) = α2

for all positive α, 0 ^ A ̂  Lσ and

for all positive α, 0 ^ μ ^ .Mσ, 0 g μ' ^ if^, i.e.

cj = 0 for λ φ 1
and

f dpψ{-p)ώμμ'(p) ^-jr+w I dpψ{~ ocp)ώμμ'(p)

for all test functions ψ ζ £? and for all positive α, 0 ^ μ < Mai

0 < μ ^ If ό This homogeneity leads us to the relation

(2 — μ — μ') / c#£> ψ(— ί?) &μμ' {p) = f dp ψ {—p) pώμμ> (p) .

In the case: μ -f μr Ξ> 2, with the particular choice

ψ(p) = rpμΛ-μ' — ̂  Φ(p)

where Φ (p) is an arbitrary test function £ ̂ , this relation becomes

f dp(~p)μ + μ/~~1 Φ (—p) ώμμ'(p) = 0 .

Now we exploit the fact that the ώμ η' (p) are complex measures with
contributions only from the points p ^ 0 and conclude that

ώμμ' (p) = cμμ' δ(p) for μ + μ' ^ 2 .
15*
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Here the cμμ> are complex constants. It follows from the homogeneity that

cμμ> = 0 unless μ + μr = 2 .

In the cases μ -j- μ = 1 and μ = μ = 0 we conclude that the
ώμμ' (p)'s are constant and linearly increasing rsp., i.e.

and

However, (Ω, [jσ(
χi)> jo{χ*ϊ\ Uσ(xa)i ja{χ±i\ Ώ) ̂ s antisymmetric under the

interchange of x± and x2, or of x3 and #4. Thus, c ^ ' = 0 unless μ = μ' = I,
and we are left with

(β, ίjAxt), ?„(*,)] β) = 4 <S« (4 - 4)

Φ» \JΛ<h)> io(xύ\ tiofr*), U&ύΊ Ω) = ̂  <3« (*f - *I) ό « (.τf - ef) .

From the hermiticity and the positive definiteness condition, it follow that
c1 is purely imaginary and that cj1 is real and non-positive. From the assu-

G c11

med uniqueness of the vacuum we infer that -j=- = (c*)a and we end up with

In one time and one space dimension we can no longer impose the
positive definiteness condition upon the hermitian local scalar field φ (x)
because

Afo(x-y,O)=γz
with

is not a positive measure [6]. We rather impose the positive definiteness
condition upon the derivatives of φ (x). In order to prove the Jost-Schroer
theorem also in this case we only need to make sure that the commutator
[φ (x), φ (y)] is a c-number. As we saw it is only at this point that our general
argument fails to be conclusive for two dimensional space-time.

We observe that the vector field dvφ(x) satisfies the assumptions of

the lemma from which then we conclude that for all test functions

/, g ζ £ = {hjh £S?,fdx h(x) = 0} [φ{f)9 φ{g)] is a c-number. We denote
o o

by Q) the set of all test functions ζ £f with compact support.
o

Now we take test functions / ζ 3) and g £ £f. From the locality it
follows that [φ(f), φ(g)] = [φ(f)> φ(§)] is a c-number, where
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with χf ζ Q>, f dx χf(x) = 1 and s u p p ^ space-like to supp/. We apply

this argument once more and infer that [φ(f), φ(g)] is a c-number for

all test functions /, g ζ S . Finally, by appealing to continuity we find

that [φ(f)> φ{g)] is a c-number for all test functions /, g £ £f. q.e.d.

It is quite remarkable that once a hermitian scalar local field has the

2 point function

(Ω, φ(x) φ(y) Ω) = 4-4+, {x - y, m)

all higher order Wightman functions are fixed for m > 0, n ^ 1 and

m — 0, n ^ 2. (For m = 0, ?ι = 1 all higher order truncated Wightman

functions are trivial in the sense that they do not depend on their

arguments. The assertions concerning the case m = 0 are consequences

of our theorem and lemma.) In general, that need not be so. There are

counter examples in the class of Wick polynomials where not even the

2 and 3 point functions fix all the remaining Wightman functions.
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