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The Damped Self-Interaction
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Abstract. A self-interaction with damped off-diagonal coefficients is used to
illustrate techniques for dealing directly with Hamiltonians in strange representa-
tions of the CCR.

Introduction

It is clear by now that the existence of many inequivalent represen-
tations of the canonical commutation relations (CCR) is both the hope
and the bane of the Hamiltonian approach to Quantum Field Theory.

Since even the simplest Hamiltonians I for example: Σ ωk (PΪ ~ί~ #1)

+ ak^k + bkPk ~~ λk if the sequences of real numbers {ak} and {bk} are

large enough) do not make sense in the Fock representation one can

hope that everything would be all right in another representation.
However, the problem of finding the "right" representation and carrying
through the analysis of the Hamiltonian in it does not seem, to say the
least, to be easy. The usual approach to these problems is first to cut-off
the Hamiltonian and develop a well-defined theory on Fock space and
then to try to remove the cut-off (using the vacuum expectation values
and/or the algebraic approach of Segal) and thereby recover a limiting
theory and the "right" representation.

In this note we will sketch how the theory of infinite sums of self-
adjoint operators on infinite tensor product spaces developed in [5] and
analytic perturbation theory can be used to analyze directly the operator

00 OO

^-00= Σ (ωk(PΪ + U) - ωk^k) + Σ ^ΛϊmnΪΛΪlϊmϊn
fc = l k,l,m,n = l

There will be no restriction on the on-diagonal dkkkk except that they
be positive, the off-diagonal dklmn must be small. We will find a represen-
tation of the CCR such that A^ is well-defined and self-adjoint (for an
appropriate choice of the renormalizing sequence {τk}). We show that
A^ is bounded below and has point spectrum of unit multiplicity as
lowest point in its spectrum. We determine sufficient conditions on test
functions so that when the field and its conjugate momentum are
smeared with them in this representation they are self-adjoint. Finally,
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we show that if one developes a cut-off theory in this representation then
the physical vacuum (the eigenfunction corresponding to the lowest
spectrum of A^) is the limit in the Hubert space of the cut-off physical
vacuums.

§ 1. Self-adjointness

We begin by writing the formal operator A^ in the form
00 / d

= Σ ωk\Pl + ql + -Zrqί-
(ωk = }/P -f m2, dk — dkkkk > 0, the dklmn are real and the prime means
the sum is only over the off-diagonal Jc,lfm,n).

The following two lemmas give information about the differential

operator B = —~τ-γ + #2 + ex4", c ^ 0. Proofs may be found in § 5.

Lemma 1. B is essentially self-adjoint or ^(R), and it has discrete
spectrum, its eigenvalues have multiplicity one, and the corresponding
eigenfunctions are in £?(R).

Lemma 2. Let λ be the lowest eigenvalue of B, λ2 the next highest eigen-
value. Then λ2 - λx > 3/2 (independent of c) and λ\^2 (3/2)3 (1 + c).

We now define rk to be the lowest eigenvalue of — ~-j-γ -f x2 + —— α;4
ft & dx2 ωk

and let χk{x) be the corresponding normalized eigenfunction. Set
CO

χ = Π (££) χk(x) and let H(χ) be the infinite tensor product Hubert

space generated by the C0-vector χ (VON NEUMANN'S terminology [4]).
If we let qk be the operator which acts by multiplication by x on the
kth component of vectors in H(χ) and pk the operator which acts as

-j-ςj~ on the &th component then {qk, pk}} 1c — 1, 2, . . ., is a represen-

tation of the canonical commutation relations on H(χ). For a short

description of the infinite tensor product spaces of VON NEUMANN and

the infinite tensor product representations of the CCR see [7] or the

Appendices in [5].
We now have a specific Hubert space H(χ)} and representation of the

CCR. Let D be the finite span of the set \ψ; ψ ζH(χ), ψ — Π (x) ψk(x),

ψk(x) ζ £P{R), ψk(%) = %iciχ) f° r k > N, N arbitrary>. Then D is dense

in H(χ) and Σ ωk (PΪ + <& + ~ ^ ? l ~ τk) certainly makes sense on D

since for any given ψ ζ D the sum is actually finite.

Theorem 1. Σ ωk \Pl + U + ""̂ ~ ̂  ~ τfc) ^s essentially self-adjoint
OTi D. L~1
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Proof. The theorem follows as a special case of a general theorem on
the essential self-adjointness of diagnonal sums in infinite tensor product
spaces [5]. It can also be proven by observing that D contains a dense
set of analytic vectors; namely, finite combinations of c0-vectors of the
form

Θ{ an eigenf unction of p\-\- g$ + —— q\.

We need t h e following es t imate :

( d2 \

— -jY + x2 + ex* - τ) and /{
Proof. We denote — - j— by 2? and # by q. Then

, /) = ((ω (p* + φ - τ))2/, /) + ([ω (p2 + q* - τ) , ωβg*] +/, /)

+ ωV(? 8 /, /) ̂  ([ω(p2 + 32 - τ), ωcg*]+/, /) + ω«c»(g

- τ) f, /) + ω2c2(?

Since ψqx = -r-qa + q*p and pq3 = -r-g2 + g3p we have:

- Ψj P) f>
^γ((M3-<l3P)t,f))=-V(ff,f)-

Furthermore since q*(q2 — τ) ^ — γ \~^t) we have

Thus

(q*f, f) £ -^ (&l> ί) + ~ (yτ) B I/I2 + ̂  (g2Λ / ) .

The estimate — q2 ^ ~^- g8 + 3 (— I now proves the lemma.

Theorem 2. Suppose that the off-diagonal coefficients satisfy:

< oo.

("ίΓΛe double prime means that no term where k = l = m = norr = s — t = u
appears.) Then

dk λ

is essentially self-adjoint on D.
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N

Proof. Let ψ ζ D. For any finite N, Σ' dk lmn qk qz qm qn is a well-
Jc, I, m, n = 1

defined symmetric operator on D. Let Ck = ωk I pi -f gf -f ~^qi —

and
/SxV = {(&, £, m, 7i) k,l,m, n < N}

TN = {(&, Z, m , w, r, s , ty u) ^, I, m, n , r, s,t,u g ^ }

We observe that $ l V > M x /S îif C TN>M. We now estimate

\SM.N

^ £ " l̂ fcZtnnl l^fίίtίl Kίfcϊl Ϊm

I Γ " Kztnnl |ίrβ*ul 1̂ 1 + <β + " ' + U ψ> ψ)\

I £' 14,..! μ,.«,t ((f + f +' • • + f ) v. v)

10 " W...J K-.I (i + ( f )• + ( f

(we have used Lemma 2 and Lemma 3). For large enough k, {Clψ, ψ) = 0
so sup(Clψ,ψ) < oo. By hypotheses 1. and 2.

and
Γ W I L7 /i . /ω*\*/3 /ωM\4/3\

TM \ \ ak} \ au J I N,

Thus

j Σ
\\SN.

Σ'

Therefore JJ' dk lmn qk qι qm qn is a well-defined symmetric operator
&, Z, m, n — 1

on D since it is the strong limit of £' dklmnqkqιqmqn. Further,
k, I, m, n = 1
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if we set

τ2 = 1 0 Σ " \dklmn\ fc.,
then we have the estimate

\\Σ' dki

4 .. .,

where

nl \drstu

= Σ"

I, m, n, r, s, ί, tt

l',m,n,r,s,t,u

A:, Z, m, n, r, s, t

Now since by hypotheses 2)

Ψ >

ΛIV) {Cξψ, ψ) + T2

nn\ \drstv\ -

w e m u s t h a v e -^ {^j (DllV + D2tV +••• + Ds,v) g Tv T h u s

= T
» = 1

+
We have used the fact that {CvCωψ, ψ) > 0 since the Gh are positive and
they commute. Therefore we have

\\Σ' dklmn<lk<Il<ϊm<lnψ\\ ^ ^ ί '

which proves that

2*' dklmnqJcqιqmqn

k,l,m,n = l

is essentially self-ad joint on D since T^/2 < 1 (see KATO [9]).
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§ 2. The Physical Yacuum
d2

Since — -j-γ + x2 + ex4", c ^ 0, has pure point spectrum and the gap

between the lowest eigenvalue and the next is at least 3/2 (Lemma 2)

the operator ωk I pi + gf + —^ q% — τk\ must have a gap of at least 3ra/2
\ k I

between its zero eigenvalue and the next highest (where m < inf ωk is

just the mass\. Since the zero eigenvalue of ωk I pi + ql + —^~qi — τk\

has multiplicity one, Σ ωk \vl + °l + —— 9Ϊ ~ rk) o n H(χ) n a s a z e r o

eigenvalue of multiplicity one and the next point in its spectrum is > -ψ- .

Theorem 3. // the off-diagonal coefficients satisfy

ΣJ \dklmn\ \^rs

Ύ
then A^ is essentially self-adjoint on DcH{%) and has an isolated point

spectrum < —j— of unit multiplicity as lowest point in its spectrum.

Proof. We use a standard theorem of analytic perturbation theory
(KATO [3], p. 214) which states. Suppose a symmetric operator V is
dominated by a self-adjoint operator Ho in the sense of KATO (| |F^||
^ a\\u\\ + b \\Hou\\, 0 ^ b < 1). Let Γ be a closed curve in the resolvent
set of Ho which surrounds a finite number, n, of point spectra of Ho. If
sup (α \\R{ζ, Ho)\\ -f b \\H0R{ζ, HQ)\\) < 1 then Γ is in the resolvent set

of Ho + V and surrounds n point spectra of Ho + V. In our case

^o = Σ ωk [PΪ H" 9.Ϊ + —~ ̂ fc ~ τfcI ? ^ = ^ ^ dkιmn qkqx qm qn and we will

take Γ to be the circle with center the origin of radius —j—. Let a {Ho)

denote the spectrum of Ho. Then

sup la sup - + δ sup — j ^ —— -f 2b

since JSΓ0 has point spectrum at the origin and the rest of its spectrum

is >-^—. From the proof of Theorem 2 we have \\Vψ\\ g J/Tj | |^0^ll

-I- j/^21| y I so the condition to be fulfilled is 3 ^ - ] / ^ + 2 j/ΐ\ < 1. A con-
/ 4 \2

dition which implies this is 2T21^^-J -f 8 ^ < 1 which is just the
hypothesis of this theorem. (Tλ and T2 are defined in the proof of
Theorem 2).
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§ 3. Test Functions for the Field and Conjugate Momentum

In this setup where we have expanded the field into modes test func-
tions are test sequences of real numbers a = {c^k}^ χ The smeared field

oo oo

and conjugate momentum operators are φ (a) = Σ akq_k&n&π{a) = ΣakVk
k=l & = 1

respectively.

Theorem 4. Suppose {αfc}^=i satisfies Σ K l 2 ί1 + ί
k = i ^ \

< oo.

Then φ (a) = Σ ak<ϊk an^ π(a) — Σ akPk a r e essentially self-adjoint on

DCH{χ).
Proof. To show that φ(a) is essentially self-adjoint on D it is suf-

ficient to show

Σ K i \tikXk> Xk)\<°° and Σ al(UXk> Xk) <

(STREIT [7] shows that these conditions are sufficient for φ (a) to be
self-adjoint on some domain in H(χ)\ for a proof that this domain can
be taken to be D see § 1.2 of (5)).

From Lemma 1 we know that χk{x) ξ_ &*(f) so the expressions

(<lkXk> Xk) a n d i<llXk> Xk) m a k e sense. χk(x) satisfies

Λx) = rkXh(x) (3.1)

but if Xic{x) is a solution so is #&(—#). Since each eigenvalue has multi-
plicity one we must have χk{x) = zχic(—%), \z\ = l Since every solution
of (3.1) is a constant times an everywhere real solution, χk{x)= UZ%TC{—%).
Therefore (qkχk{x), %k{x)) = 0. Now

= — (cokqlχk(x), χk(x))

+ A ) 1 / 3 by Lemma 2

which by the hypotheses of the theorem proves that

oo

Σ 4(4Xk, Xk) < °°

The proof for π(a) = Σ akVk is similar.
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§ 4. The Convergence of the Cut-off Physical Vacuums

Let AN be the formal operator

* * ) •

N

Σ
k,l,mfn

If the off-diagonal coefficients are suitably small, then by the same
proofs as in § 1 and § 2 AN can be shown to be essentially self-adjoint
on S? (BN) C L2 (RN) and to have point spectrum of unit multiplicity as
lowest point in its spectrum. Let ψN be the corresponding eigenfunction.
(See JAFFB [2] for a detailed analysis of the cut-off case where the off-
diagonal dhlmn are not required to be small.)

AN is a well-defined operator on H (χ) also (it only operates on the
first N components) and is essentially self-adjoint on D. Although the
lowest point in its spectrum is point spectrum, it has infinite multiplicity

oo oo

since any vector of the form ipN® Π (££) fk where Σ 11 — (/AS> Xk) I < °°
k = N+1 N+l

is an eigenvector in H(χ) corresponding to the lowest eigenvalue. Let us

choose for the cut-off physical vacuum the vector ΘN~ ψχ0 II
jfc

We then can state
Theorem 5. Suppose that the off-diagonal coefficients satisfy

Σ" \dklmn\ \drstu\

χk

ωu\Φ\\

X7 ii
and let θ be the unique physical vacuum given by Theorem 3. Then ΘN

Proof. Let

< 1

θ.

•λ dklmnqkqιqmqn.

The operators A^ and 1?^ are all essentially self-ad joint onD and the
lowest point in the spectrum of BN is a point spectrum with unit multi-
plicity and corresponding eigenvector ΘN. For ψ ζ D we have the estimate
(from the proof of Theorem 2)

where
N

Σ
k = 1

+γn\\ψ\\

N i)
N

24 Commun.math.Phys.,Vol.ll
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Further, by the hypothesis on the off-diagonal coefficients Tf < 1,
Tξ < 1 for all N and Tf -> 0, Tξ -> 0 as N -> oo. Let

then

CkΨ
ί y r α. v)
I*-1 * ' /
/ °° ]/τ\ Σ +γn\

so,

Σ

Therefore

sup -

Σ

- — sup -^

< sup-

as N -> oo. Thus -Z?lY converges strongly relatively uniformly to A TO in
the terminology of Sz. NAGY ([6], p. 370). From [6] we therefore get

3m"
4

• 0 as N -> oo.

andwhere EN(s,t) and E(s,t) are the spectral projectors of

respectively. Now, E11 — oo, -^- j has a one-dimensional range, namely θ,

and as soon as ί — oo — ml — El— OO, χ < ~ °°' X m

also have a one-dimensional range which must be ΘN. Since

oo, — m I — £71 — oo, — m Ijl —> 0 as N—> oo

we have Ό a s 2V •

§ 5. The Anharmonic Oscillator

In this section we prove the two lemmas about the operator
d2

B — — T T + x2 -{- ex* which were stated in § 1. We always assume c Ξ> 0.

Lemma 1. B is essentially self-adjoint on ^(R), it has discrete spec-
trum, its eigenvalues have multiplicity one and the corresponding eigenfunc-
tions are in
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Proof. B is essentially self-adjoint on any dense domain contained
in £f'(R) (JAFFE [2]) and since x2 -f c# 4 -> oo as a; -> ± 0 0 , B has discrete
spectrum (TITCHMASSH [8]). J A F F E [2] has also shown that the eigen-
functions are in SP(R). The eigenvalues of B have unit multiplicity
essentially because B has the limit point case at both i oo. Suppose an
eigenvalue had multiplicity two that is, both solutions of B φ = μ φ are
in L2(R). Then by a well-known theorem of Weyl both solutions of
Bφ = λφ for any complex λ are in L2(R). In particular, there are two
L2(R) functions such that Bφ = iφ. These functions are in the domain
of {B\c^(R))* which implies that the range of B + i on C™ (R) is not
dense which contradicts the essential self-adjointness of B. Thus the
lemma is proven.

d2

Let {λn (c)}£L x and {μn (c)}^°= x denote the eigenvalues of — -j^ -f- x2

d2

+ ex* and -τ-$ + ex* respectively. Each sequence is listed in increasing

order. I t is convenient to prove Lemma 2 by a sequence of lemmas.
13 c

Lemma 3. ^(e) <ί -^ + y , λ2(c) ^ 3.

Proof. Let k(a,x) - (-^-)~1/4e-α*2/2, then IIA(α, x)\\L* = 1 and λΛc)

^ (Bh{a, x), h(a, x)) = -^-a + -̂  h χ ~ r If we choose α = y w e find

13 c
Ax(c) ^ -JY +~o~ Since x2 + cα;4 ̂  α;2, λ2(c) is larger than the second

d2

eigenvalue of — -τ-y + α;2, thus A2(c) ̂  3.

Lemma 4. ^ ^ ( l ) =g λκ(c) ̂  (CV3 + 3 ^ - ) ^ ( 1 ) + d for all δ > 0.

Proof. Suppose φ(x) satisfies — φ"(x) -f- cx^φ(x) = τ^(ίc).

Let α; = c~1/6 ?/ and define ψ(y) — φ{c~1^ y). Then — ψ" (y) -j- ι/4 ^(^/)

^-^•ψiy) so μn(c) = c1 / 3 /ΛΛ(1) Vn. Since x2 + ex* ̂  cx\ λn{c) ^ ^n(c)

= c1/3 ̂ n ( l ) . Furthermore, .τ2 + ex* ̂  ίc + ^ - j α;4 + δ for all (3 > 0 so

i/3

Lemma 5. μ1{l) < -j^*, μ 2(l) ^ 3 j/2 — 1.

Proo/. For all a > 0, ^ (1) ^ ( ( ~ T ^ " ~ ^ ^4) ̂ ^α> ̂ ' ^ α > ^ )

α 3 3 13
-g- + ^ - α " 2 . Choosing α ^ y w e get ̂ ( 1 ) ̂  -T-Λ". NOW α:4 ̂  |/4ό α;2 — δ

24*
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for all δ > 0. Thus μn(l) is larger than the nth eigenvalue of

which is (40)1/4 (2n - 1) - δ. In particular, μ2{\) ^ 3(4(3)1/4 - δ, δ > 0.

If we choose δ = 1, we get μ 2 W ^ 3 j/2 — 1.

Finally we have

Lemma 2. A2(c) — λ1(c) > 3/2 (independent of c) and

λ\<2 (4)3 (1 + c) .

Proof. For c ^ 1 the fact that λ2 (c) — ̂  (c) > 3/2 follows immediately

from Lemma 3. For o l we observe that λ1(c) ^ ίc1/3 + , ~ ~ a / 3 I μw (1)

+ ό, V(5 > 0 (Lemma 4). Taking the minimum over all δ > 0 we find

λ1{c) £ CV3 μi{l) + 2 ( ^ ~ ) m £ cV3 ^ ( l ) + M- (using Lemma 5).

Since A2(c) ^ <μ/» μ2{\), λ2(c) - ^ ( c ) ^ cV» (,M 2 (1) - Λ ( l ) ) _ J ^ > 1 .

1 / 2 \ 3

If c ^ 1, then λλ(c) g 1 -j^", so ( y ^i) < 1. If c > 1, then from the

proof of Lemma 4 we have for all δ < 0

1 /2 \3 /2 \3

Choosing δ = -r and expanding I i r Ax (c) | we find ( i r ΛL (C) j ^ 2 c -f- 2.

§ 6. Remarks

The point of this example is t h e following: F o r diagonal Hamil tonians

it is easy to pick an infinite tensor product representat ion of t h e CCR so

t h a t t h e H a m i l t o n i a n is self-adjoint (a theorem in [5] gives an explicit

domain of self-adjointness) and questions about t h e spectrum reduce

t o questions about t h e spectrum of t h e component operators in t h e sum
/ d2 \

(in this case — ~i~τ Λ- # 2 + ex*). For a "diagonally d o m i n a t e d " Hamil-

tonian t h e diagonal p a r t m a y be used t o determine t h e " r i g h t " represen-

t a t i o n a n d t h e n t h e whole operator proved self-adjoint by t h e m e t h o d

of K A T O . F u r t h e r analysis of t h e H a m i l t o n i a n can t h e n be carried out

treat ing t h e whole operator as a per turbat ion of t h e diagonal p a r t . Of

course " r e a l " Hamil tonians are n o t diagonally dominated (the off-

diagonal dklmn are too big). Nevertheless, damping t h e off-diagonal

coefficients for large k, I, m, n gives in some sense a bet ter approxima-

t ion t o t h e " r e a l " Hami l tonian t h a n cutt ing t h e m off completely. I t would

be interesting t o carry through an analysis similar t o J A F Γ E [2] or CAN-

N O N [1] and prove t h e existence of t h e v a c u u m expectat ion values.
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