On Weak and Monotone σ -Closures of C*-Algebras

Gert Kjaergård Pedersen

Institute of Mathematics, University of Copenhagen

Received July 15, 1968

Abstract. It is proved that the monotone σ -closure of the self-adjoint part of any C^* -algebra \mathcal{A} is the self-adjoint part of a C^* -algebra \mathcal{B} . If \mathcal{A} is of type I it is proved that \mathcal{B} is weakly σ -closed, i.e. \mathcal{B} is a Σ^* -algebra. The physical importance of Σ^* -algebras was explained in [1] and [7].

We recall that the class of bounded real Baire functions $\mathscr{B}^{R}(X)$ on a locally compact Hausdorff space X is defined as the monotone σ -closure of $C_{0}^{R}(X)$. It is immediately verified that $\mathscr{B}^{R}(X)$ is closed under pointwise limits of sequences hence $\mathscr{B}^{R}(X)$ is also the weak (pointwise) σ -closure of $C_{0}^{R}(X)$.

Regarding a C^* -algebra A as the non-commutative analogue of some $C_0(X)$ we may for a convenient representation of A as operators on a Hilbert space H form the monotone σ -closure \mathscr{B}_A^R of A^R in B(H). This class of Baire operators was introduced in [5] by R. V. KADISON in order to give measure-theoretic conditions on a representation between two concrete C^* -algebras to have a normal extension. His result together with those of [6] seem to indicate that \mathscr{B}_A^R is able to take over the rôle played by the Baire functions in commutative theory.

Recently E. B. DAVIES in [1], [2] and [3] has considered instead the weak σ -closure of A and has outlined an interesting theory of Σ^* -algebras i.e. C^* -algebras which are weakly σ -closed. Since for non-commutative C^* -algebras one cannot use lattice arguments it is no more an easy matter to determine whether the weak and monotone σ -closure of A^R coincide. We prove in this paper that such is indeed the case if A is of type I. Unfortunately the proof will not be applicable for other types but since we are able to show in general that \mathscr{P}^R_A is the self-adjoint part of a C^* -algebra we feel rather optimistic that the result is true in general i.e. that $\mathscr{P}^R_A + i \mathscr{P}^R_A$ is a Σ^* -algebra.

We shall use [4] as a standard reference on notations and terminology. In particular for a C^* -algebra A we shall write A'' for the enveloping von Neumann algebra of A in its universal representation. When no confusion may arise we shall drop the subscript and write \mathscr{B}^R for the monotone σ -closure of A^R in A''.

Theorem 1. \mathscr{B}^R is the self-adjoint part of a C*-algebra.

G. K. PEDERSEN:

Proof. By [5, p. 317] \mathscr{B}^R is a uniformly closed Jordan algebra. Therefore $\mathscr{B} = \mathscr{B}^R + i\mathscr{B}^R$ is a uniformly closed subspace clearly selfadjoint and since by polarization any product of elements from \mathscr{B} can be expressed as linear combination of elements of the form $(x+iy)^*(x+iy)$, $x, y \in \mathscr{B}^R$ we see that all we have to prove is that the commutator [x, y] = i(xy - yx) is in \mathscr{B}^R since then

We have

(x

$$egin{aligned} &x+iy)^{st}(x+iy) = x^2+y^2+[x,y] \in \mathscr{B}^R \ . \ &[x,y] = (1+iy)^{st} \, x(1+iy) - x - yxy \ . \end{aligned}$$

Since $x, y \in A^R$ implies $[x, y] \in A^R$ and since the above formula shows that the operators $x \in \mathscr{B}^R$ such that $[x, y] \in \mathscr{B}^R$ for any $y \in A^R$ is a monotone σ -class we have $[x, y] \in \mathscr{B}^R$ for any $x \in \mathscr{B}^R$, $y \in A^R$. But since -[x, y] = [y, x] we can also use the formula to show that the operators $y \in \mathscr{B}^R$ such that $[x, y] \in \mathscr{B}^R$ for any $x \in \mathscr{B}^R$ is a monotone σ -class. Since this class contains A^R by the first statement we have $[x, y] \in \mathscr{B}^R$ for any $x, y \in \mathscr{B}^R$.

Henceforth we shall refer to $\mathscr{B} = \mathscr{B}^R + i\mathscr{B}^R$ as the Baire operators of A.

The next lemma is a somewhat technical result which allow us to identify the Baire operators of a C^* -subalgebra B of A with the monotone σ -closure of B in \mathcal{B}_A .

Lemma 2. If Φ is a *-isomorphism of the C*-algebra B into the C*-algebra A then the extension of Φ from B'' into A'' is a normal isomorphism.

Proof. The extension (again denoted Φ) defined in [4, 12.1.5. Proposition] maps B'' onto the weak closure of $\Phi(B)$. However, if H is the universal Hilbert space of B then Φ^{-1} is a representation of $\Phi(B)$ on H hence by [4, 2.10.2. Proposition] there is a representation ψ of A on a Hilbert space K containing H as a subspace such that if p is the projection of K onto H then $p \psi(x) = \Phi^{-1}(x)$ for all $x \in \Phi(B)$. Since ψ has a normal extension as well, we see that the map $x \to p \psi(\Phi(x))$ is a normal automorphism of B'' which is the identity on B. It follows that $\Phi^{-1}(x) = p \psi(x)$ for all $x \in B''$.

Lemma 3. If a subset L of \mathscr{B}^R consists of commuting elements then the weak σ -closure of L is contained in \mathscr{B}^R .

Proof. Since \mathscr{B}^R is a uniformly closed Jordan algebra we may assume that L is a uniformly closed algebra over the reals. Then L + iL is a commutative C^* -algebra hence $L = C_0^R(X)$ for some locally compact space X. It is then known that the weak σ -closure of L coincides with the monotone σ -closure.

By [1, Theorem 3.2.] the map from A'' to the weak closure of A in its reduced atomic representation is isomorphic on the weak σ -closure of A. In particular the elements of \mathscr{B} are determined completely by their

C^* -Algebras

values under the irreducible representations of A, hence the following definition makes sense: For any two operators x, y in \mathscr{B} we call y the pointwise normalized of x if for all $\pi \in \hat{A}$

$$\pi(y) = \|\pi(x)\|^{-1} \, \pi(x) \quad ext{for} \quad \pi(x) \neq 0 \;, \quad \pi(y) = 0 \quad ext{for} \quad \pi(x) = 0 \;.$$

Lemma 4. If A is a separable C*-algebra with continuous trace then for any $x \in \mathcal{B}^R$ the pointwise normalized of x is also in \mathcal{B}^R .

Proof. By [6, Proposition 5.3] the functions f_n on \hat{A} defined by $f_n(\pi) = \left(\|\pi(x)\| + \frac{1}{n}\right)^{-1}$ are bounded Baire functions hence by [6, Proposition 4.6] the elements $f_n \cdot x$ belong to \mathscr{B}^R . $\{f_n \cdot x\}$ is a commuting sequence converging weakly to the pointwise normalized of x hence this element is in \mathscr{B}^R by Lemma 3.

For the sake of completeness we insert a proof of the following result from [5, p. 323]:

Lemma 5. If $y \in A''^+$, $x \in \mathscr{B}^+$ and $xyx \in \mathscr{B}^+$ then $[x] y [x] \in \mathscr{B}^+$. *Proof.* We define the real Baire functions f_n by

$$f_n(t) = 0$$
 for $t \le \frac{1}{n}$, $f_n(t) = \frac{1}{t}$ for $t > \frac{1}{n}$

and have projections $p_n = f_n(x) \ x \in \mathscr{B}^+$ with $p_n
eq p = [x]$. For $m \ge n$ this gives

$$p_n y p_m + p_m y p_n = p_n (p_m y p_m) + (p_m y p_m) p_n \in \mathscr{B}^R$$

 $\Rightarrow (p_n y p + p) p_m (p + p y p_m) = p_n y p_m y p_n + p_n y p_m + p_m y p_n$
 $+ p_m \in \mathscr{B}^R$
 $\Rightarrow (p_n y p + p) (p + p y p_n) \in \mathscr{B}^R \land p_n y p y p_n \in \mathscr{B}^R$
 $\Rightarrow p_n y p + p y p_n \in \mathscr{B}^R \Rightarrow (p_n y p + p y p_n)^2 \in \mathscr{B}^R \Rightarrow p y p_n y p \in \mathscr{B}^R$
 $\Rightarrow p y p y p \in \mathscr{B}$

Lemma 6. Let A be a separable C^* -algebra with continuous trace and homogeneous of degree $d \leq \times_0$. There exist a set of pairwise orthogonal projections $\{p_n\} \subset \mathcal{B}$, card $\{p_n\} = d$, dim $\pi(p_n) = 1$ for all $\pi \in \hat{A}$ and $\Sigma p_n = 1$.

Proof. If $\{\pi_m\}$ is a sequence dense in \hat{A} then by [4, 4.5.3. Proposition] there exists for each m an element $x_m \in A^+$ and an open neighbourhood \mathcal{O}_m of π_m such that $\pi(x_m)$ is a one-dimensional projection for $\pi \in \mathcal{O}_m$. If f_m denotes the characteristic function for the Baire set $\mathcal{O}_m \setminus (\mathcal{O}_1 \cup \cdots \cup \mathcal{O}_{m-1})$ then $p_1 = \sum f_m \cdot x_m$ is a projection in \mathscr{B} by [6, Proposition 4.6] and since $\cup \mathcal{O}_m = \hat{A}$ we have dim $\pi(p_1) = 1$ for all $\pi \in \hat{A}$.

If \tilde{A} denotes the C*-algebra obtained when an identity is adjoined to A then we can choose a sequence $\{u_m\}$ dense in the unitary group of \tilde{A} . Suppose now that we have already constructed $p_1 \dots p_n$ subject to the conditions of the lemma and put $q_0 = \Sigma p_i$. Then define

$$q_{1} = (u_{1}^{*} p_{1} u_{1}) \lor q_{0} - q_{0}$$

$$q_{m+1} = (u_{m+1}^{*} p_{1} u_{m+1}) \lor (q_{0} + c \operatorname{supp} (q_{1} + \dots + q_{m}))$$

$$- (q_{0} + c \operatorname{supp} (q_{1} + \dots + q_{m})).$$

Since for any projection $q \in \mathscr{B}$ we have

$$c ext{-supp}\,q = igvee_m u_m^{m{st}}\,q\,u_m \,\in \mathscr{B}$$

it follows that $\{q_m\}$ is a sequence of projections in \mathscr{B} with orthogonal central supports and $\dim \pi(q_m) \leq 1$ for any $\pi \in \hat{A}$. Hence $p_{n+1} = \Sigma q_m \in \mathscr{B}$ is orthogonal to q_0 and $\dim \pi(p_{n+1}) \leq 1$ for all $\pi \in \hat{A}$. If however $\pi(p_{n+1}) = 0$ for some $\pi \in \hat{A}$ then $\pi(u_m^* p_1 u_m) \leq \pi(q_0)$ for all m hence $\pi(q_0) = 1$. If d is finite this implies n = d and $q_0 = 1$ hence the lemma is proved. If d is infinite it is impossible since $\dim \pi(q_0) = n$. So we may assume $\dim \pi(p_{n+1}) = 1$ for all $\pi \in \hat{A}$ and continuing in this fashion we get a sequence $\{p_n\}$ with $\operatorname{card}\{p_n\} = d$.

If we have chosen $u_1 = 1$ then we can show that for all n

$$u_n^* p_1 u_n \leq p_1 + \cdots + p_n$$
.

Suppose this has been established for all $m \leq n$ and put $q_0 = p_1 + \cdots + p_n$. Then in the construction for p_{n+1} given above we have $q_m = 0$ for all $m \leq n$ hence

$$\begin{aligned} q_{n+1} &= (u_{n+1}^* p_1 u_{n+1}) \lor q_0 - q_0 \\ &\Rightarrow u_{n+1}^* p_1 u_{n+1} \le q_0 + q_{n+1} \le p_1 + \dots + p_{n+1} \,. \end{aligned}$$

It follows that

$$1 = c \operatorname{supp} p_1 = \bigvee_n u_n^* p_1 u_n \leq \Sigma p_n \leq 1$$

and the lemma is proved.

For a topological space T and a Hilbert space H_d of dimension $d \leq \varkappa_0$ we let $\mathscr{B}(T, \mathscr{B}_d)$ denote the set of functions $x: T \to \mathscr{B}_d, \mathscr{B}_d$ denoting the bounded operators on H_d , such that for each $\xi \in H_d$ the function $t \to (x(t) \xi | \xi)$ is a bounded Baire function on T. It is easily verified that $\mathscr{B}(T, \mathscr{B}_d)$ is a Σ^* -algebra and that $x \in \mathscr{B}^R(T, \mathscr{B}_d)$ iff x(t) is self-adjoint for all $t \in T$ i.e. iff $t \to (x(t) \xi_n | \xi_n)$ is a real bounded Baire function on T for some complete orthonormal basis $\{\xi_n\} \subset H_d$.

Proposition 7. (E. B. DAVIES). If A is a separable C*-algebra with continuous trace and homogeneous of degree $d \leq \rtimes_0$ then $\mathscr{B} = \mathscr{B}(\hat{A}, \mathscr{B}_d)$.

Proof. Let $\{p_n\}$ be the set of projections constructed in Lemma 6. If $\{x_k\}$ is a sequence dense in A^R then for each n, m and k let y_{nmk} denote the pointwise normalized of $p_n x_k p_m + p_m x_k p_n$. We have $y_{nmk} \in \mathscr{B}^R$ by Lemma 4 hence

$$y_{n\,m} = \Sigma 3^{-\,k} y_{n\,m\,k} \in \mathscr{B}^R$$
 .

We notice that $\|\pi(y_{nm})\| \neq 0$ for all $\pi \in \hat{A}$ since $\|\pi(y_{nmk})\|$ is either 0 or 1 and since for each π there is a smallest k such that $\|\pi(p_n x_k p_m + p_m x_k p_n)\| \neq 0$. It follows that if v_{nm} denotes the pointwise normalized of y_{nm} we may in each H_{π} choose a basis such that

$$egin{aligned} \pi(p_n) &= \begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}$$
 , $\pi(p_m) &= \begin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$, $\pi(v_{n\,m}) &= \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$.

By Theorem 1 we have $w_{nm} = [p_n, v_{nm}] = [v_{nm}, p_m] \in \mathscr{B}^R$ with

$$\pi\left(w_{n\,m}\right) = \begin{pmatrix} 0 & i \\ - i & 0 \end{pmatrix}$$

for all $\pi \in \hat{A}$.

If we make the obvious identification of all H_{π} and their various bases and regard \mathscr{B} as functions from \hat{A} to \mathscr{B}_d then if $\{\xi_n\}$ denote the chosen basis in H_d we have for all $x \in \mathscr{B}^R$

$$(\pi(x) \xi_n | \xi_m) + (\pi(x) \xi_m | \xi_n) = 2tr \pi(v_{nm}x)$$

It follows from [6, Proposition 5.1] that the function $\pi \to tr \pi(v_{nm}x)$ is a bounded real Baire function hence $x \in \mathscr{B}^R(\hat{A}, \mathscr{B}_d)$.

Conversely if $x \in \mathscr{B}^{R}(\hat{A}, \mathscr{B}_{d})$ then for any n, m there exist bounded real Baire functions α_{nm} and β_{nm} on \hat{A} such that

$$\pi \left(p_n x p_m + p_m x p_n \right) = \begin{pmatrix} 0 & \alpha_{nm}(\pi) + i \beta_{nm}(\pi) \\ \alpha_{nm}(\pi) - i \beta_{nm}(\pi) & 0 \end{pmatrix}.$$

By [6, Proposition 4.6.] we have

$$p_n x p_m + p_m x p_n = lpha_{n\,m} \cdot v_{n\,m} + eta_{n\,m} \cdot w_{n\,m} \in \mathscr{B}^R$$
 .

Since \mathscr{B} is uniformly closed this implies

$$(\Sigma 2^{-n} p_n) x (\Sigma 2^{-n} p_n) \in \mathscr{B}^R$$

hence by Lemma 5, $x \in \mathscr{B}^R$ and the proposition follows.

Theorem 8. If A is a C*-algebra of type I then \mathscr{B} is a Σ^* -algebra.

Proof. Suppose first that A is separable. Then by [4, 4.5.5. Théorème] combined with [4, 3.6.3. Proposition] we can find a countable ascending chain of ideals $\{I_{\alpha}\}$ such that $I_{\alpha} = \bigcup_{\beta < \alpha} \overline{I_{\beta}}$ if α is a limit ordinal and $A_{\alpha} = I_{\alpha}/I_{\alpha-1}$ is a separable C^* -algebra with continuous trace and homogeneous of degree $d_{\alpha} \leq \kappa_0$ if α is not a limit ordinal. To each I_{α} corresponds a central projection $p_{\alpha} \in \mathscr{B}$ such that $I_{\alpha} = p_{\alpha}A'' \cap A$; hence by Lemma 2 $\mathscr{B}_{I_{\alpha}} = p_{\alpha}\mathscr{B}$. If α is not a limit ordinal then the quotient map $\Phi: I_{\alpha} \to A_{\alpha}$ extends to a normal homomorphism of I''_{α} and since $\Phi(\mathscr{B}_{I_{\alpha}}) = \mathscr{B}_{A_{\alpha}}$ by [6, Proposition 4.2.] we have the isomorphisms

$$(p_{\alpha} - p_{\alpha-1}) \mathscr{B} = (1 - p_{\alpha-1}) \mathscr{B}_{I_{\alpha}} = \mathscr{B}_{A_{\alpha}} = \mathscr{B}(\hat{A}_{\alpha}, \mathscr{B}_{d_{\alpha}})$$

Since therefore \mathscr{B} is the countable direct sum of Σ^* -algebras it is itself a Σ^* -algebra.

In the general case we proceed as follows: If $\{x_n\} \in \mathscr{B}$ is a sequence converging weakly to some x then by [6, Lemma 4.5] there is a separable C^* -subalgebra B of A such that $\{x_n\}$ is contained in the monotone σ -closure of B. Since by Lemma 2 this closure is isomorphic to \mathscr{B}_B and since B as a subalgebra of A is of type I by [4, 4.3.5. Proposition] we have $x \in \mathscr{B}$ and the theorem is proved.

References

- DAVIES, E. B.: On the Borel structure of C* algebras. Commun. Math. Phys. 8, 147-163 (1968).
- 2. The structure of Σ^* algebras. To appear.
- 3. Decomposition of traces on separable C^* algebras. To appear.
- 4. DIXMIER, J.: Les C^* algèbres et leurs representations. Paris: Gauthier-Villars 1964.
- KADISON, R. V.: Unitary invariants for representations of operator algebras. Ann. Math. 66, 304—379 (1957).
- 6. PEDERSEN, G.K: Measure theory for C* algebras III. To appear in Math. Scand.
- PLYMEN, R. J.: C* algebras and Mackey's axioms. Commun. Math. Phys. 8, 132-146 (1968).

G. K. PEDERSEN Institute of Mathematics University of Copenhagen H. C. Ørsted Institute Universitetsparken 5 Copenhagen Ø, Denmark

226