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Abstract. A study is made of the relationship of SU3 and its adjoint group
S U3/Z3 to the subgroup of RS which leaves invariant not only the length a{at of
a real eight component vector at but also the cubic invariant dii-k

aiaoai{i &wt being
the totally symmetric isotropic JSU3 tensor introduced by GELL-MANN. A formula
for the rotation ReRS corresponding to UeSUS, and a formula inverse to this,
which provides a way of parametrizing UsSUS, are derived.

1. Introduction

It has often been argued that the absence of quarks implies that it
is not 8U3, but rather its adjoint group 8U3IZ3, which is the under-
lying symmetry group of strong hadronic interactions. Even if the
validity of this argument is open to question, the relevance of the group
8 U3JZ3 is surely not. Accordingly it would seem desirable to have a pre-
cise description of the group 8U3JZ3 itself. In particular, we seek a
realization of it as a transformation group of some vector space, and the
relation of this realization to the usual realization of 8U3 itself. The
motivation for studying these matters stems in part from an interest in
the results themselves and in part from a practical interest in the para-
metrization of 8U3, for one possible parametrization is achieved by
specifying the relationship of 8 U3 to 8 U3JZ3. The practical interest in
question involves the construction of effective Lagrangians invariant
under chiral 8U3 X 8U3; in attempting to generalize the approach of
CHANG and GURSEY [1] to this problem at the 8U2 level, the crucial
technical step is the explicit parametrization of a 3 X 3 unimodular
matrix.

The matters studied in this paper correspond at the 8U3 level to
familiar results about 8 U2 and 123. It is of course very well-known that
8U2 is homomorphic to the group R3 of rotations in Euclidean space
E3 of three dimensions. There are in fact two elements i U of 8 U2 which
correspond to each rotation R of B3. Alternatively, if one forms the
factor group 8U2JZ2 of 8U2 with respect to its centre Z21, one sees

1 The centre of a group G is a subgroup of G consisting of all elements of G
which commute with all elements of G.
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that this group, the adjoint group of 8 U2 is isomorphic to R3. One may
also take the point of view that R3 is a realization of 8 JJ2\Z2 as a trans-
formation group acting in E3, and regard the formula, expressing
U £8U2 in terms of the R £R3 to which it corresponds, as yielding
a parametrization of 8U2. Explicitly [2], if the rotation

xi->xi^Rijxj (1.1)

of R3 corresponds according to

y U-1T,) (1.2)

to t.U £8U2, the inverse relationship is

±U = (1 + TvB + it, sijlcBjk)imi + Tr5)]V». (1.3)

This yields a parametrization of 8 U2 in which R £R3 defines a vector V.

V<=ea*X**, (1-4)

and knowledge of V determines U, in view of the identity [2]

T2 = 3 -f 2 TTR - (TTR)* . (1.5)

Of course, parametrization of 8U2 is an easy matter. One has amongst
other results the parametrizations provided by the usual exponential
representation of a unitary matrix, and by the rational or Cay ley repre-
sentation, and one can easily relate these to each other and to the
parametrization (1.3).

Here we consider the homomorphism of $£73 to its adjoint group
8U3JZ3, showing, in a manner closely corresponding to the approach
of [2] that the latter can be realized as a subgroup of i?8, the group of
real rotations in Euclidean space E8 oi eight dimensions. More precisely,
8U3JZ3 is isomorphic to the group of rotations

x^x'^R^Xj,! g i,j< 8 , (1.6)

in J578, which not only leave
XiX€ (1.7)

invariant, but also leave invariant the cubic form

diwXiXjXj,., (1.8)

where dij1c is the totally symmetric isotropic tensor introduced by GELL-
MANN [3] in his initial paper on the eightfold way. We give formulae
generalizing (1.2) and (1.3) which make explicit the correspondence
between R £ S U3JZ3, and U £S U3, and show that the analog of (1.3)
does indeed provide a parametrization of 8U3. It is not a simple para-
metrization, but then neither are the 8U3 versions [4] of the exponen-
tial or Cayley parametrizations.
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The matter presented below depends on knowledge of the algebraic
properties of the GELL-MANN [3] matrices At- of SU3, which play the
role for 8U3 that the Pauli matrices play for 8U2, and of the tensors
dijk and fijk, which enter the multiplication law of the X{. All the neces-
sary information is presented in the previous paper [4] where references
are given and notation is explained3.

The result that 8 U SjZ 3 can be realised as the subgroup of R 8 which
leaves invariant a cubic form like (1.8) is not new, having been noted by
DULLEMOND [5] and ESTEVE [6]. The group 8U3JZ3 has also been
further discussed by ESTEVE and collaborators [7], but most of the ex-
plicit results describing the relationship of this group to 8U3 are new.

2, Homomorphism of 8£73 to a Subgroup of RS

Let a^i — 1, 2, . . ., 8) be any point of real Euclidean space ES oi
eight dimensions. Rotations in ES are real linear transformations of the
type

ai -> a[ = RijCtj , (2.1)

which leave J2(«) = a^ invariant, so that R obeys

RR= 1 , (2.2)
or

BtiBi1t=dti, (2.3)
as well as det R = 1.

In order to relate $£73 to a subgroup of RS, the group of rotations
(2.1) in E8, we associate with each point of a of ES, a 3 X 3 traceless
hermitian matrix A, i.e. an element of the algebra of 8U3, by writing

A = a^i , (2.4)

where the )H are the Gell-Mann matrices of 8U3. Nowr we consider the
transformations of E 8 induced by the transformation

A->A'= UA U-1, (2.5)

for any U £ S £73. It is clear that (2.5) leaves invariant not only

TrA* = 2 a ^ = I2{a) , (2.6)
but also

2 2
d 1 ^ (27^

Accordingly it follows that (2.5) induces a rotation of R 8 in E 8 which
also leaves invariant the cubic form Iz(a). Since (2.5) applies to any
point a of ES, we can write it as

UXjU-'L^RnXk (2.8)
2 Hereafter, we refer to this paper as MSW.
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with the aid of (2.1) and (2.4). Hence we see that the rotation R £RS
induced by U £ $£73 according to (2.5) is given explicitly by

i^yTrtf,^^1) (2.9)

upon using MSW (2.1). To complete proof of the claim that 8U3 is
homomorphic to the subgroup of RS which leaves invariant not only
I2(a) but also /3(a), various points have to be attended to. Firstly, the
reality of R defined by (2.9) easily follows unitarity of £7 and elementary
properties of the trace. The group property of R follows that of $£73
according to

B(U1U2) = B(U1)B(Ui), (2.10)

in the same way as does the corresponding result for R3 and SU2, [2],
upon using the completeness property of the Gell-Mann matrices, i.e.

(4L(4<. = 2^26e-|^AC(j. (2.11)

If R denned by (2.1) is to leave invariant /3(#), ^ must obey

dijk RiV Rjq Bkr = dvqr . (2.12)

It can be directly proved that R defined by (2.9) obeys (2.12) either by
using an identity for

dijh \^i)ad \Aj)be \^k)cf

in terms of Kronecker deltas in a, . . ., / which follows (2.11), or else more
easily by using (2.8). Also the relationship in question is not an iso-
morphism: if U belonging to $£7(3) defines R s RS according to (2.9),
then OJ U and co2 £7, where co, co2 are complex cube roots of unity, each
also are elements of 8U3 and each gives rise to the same R s RS.
Accordingly we have a homomorphism involving a three valued mapping
of $£73 on to the subgroup of RS. Now the centre Z3 of $£73, i.e. the
group of elements of $£73 which commute with all elements of $(73,
consists of the multiples 1, co, co2 of the unit matrix, and $ £73 is related
by a three valued homomorphism to the factor group $ £7 3/Z 3 of Z 3 in
SU3. Hence 8U3IZ3 and the subgroup of RS which leaves I3{a) in-
variant are isomorphic, and the latter can be said to realise the former
as a transformation group in ES.

We turn next to the inversion of (2.9). One form of the formula for
£7 in terms of R is not hard to obtain, but this will not be the simplest
form. Two steps are involved.

a) From (2.8) with the aid of (2.11), we obtain

)--§-. (2.13)

b) For any 3 x 3, V = Fo + VkXk we have

det V=V<?~ F0/2(F) + y / 3 ( F ) , (2.14)
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by direct computation using explicit representations [5] of A7c. Writing
(2.13) with the aid of MSW (2.2) as

2U{TrU-1)=~(l + TrR) + KiXi, (2.15)

where3

Ki = hue Bik = (da* + i Un) Rn,, (2.16a)
= ^ + *7o (2.16b)

we find

8 (Tr l7-i)3 = ..|_. ( 1 + T r ^ ) 3 (2.17)

since, of course, det £ 7 = 1 .
Now (2.15) and (2.17) yield a formula for computing U given R.

Eq. (2.17) is not in its simplest form, and is hard to simplify directly.
The fact that three distinct U £8173 correspond to given R, reflects
itself in the fact that a cube root has to be taken in (2.17) to compute
(2.17). This step cannot be avoided — it seems [4] that explicit para-
metrizations of SU3 always involve the solving of a cubic equation or
what is roughly equivalent the extraction of a cube root.

To obtain a simpler expression for TrC7~x and also to discuss how
the inverse formula to (2.9) provides a parametrization of SU3 in the
sense of MSW Section 3, we must extract more information from (2.13).
Firstly, we see by taking its trace, that (2.13) yields

(TrU) (TrU-1) - (1 + Tri?) . (2.18)

Secondly, we multiply (2.13) by itself to obtain

4 £72(Tr U-^Y = (j + Iilk 7H Afc) ( | + Rvn A,A,), (2.19)

and hence

Tr U2(Tr U-1)2 = y (1 -1- TrB)2 + ~ 12(K) , (2.20)

upon using Eqs. (2.2) and (2.1) of MSW to compute traces on the right.
Eq. (2.18) and (2.20) yield a formula for (Tr£7~3) much simpler than
(2.17). To obtain it, we note that

Tr U-1 = ~ (Tr U)2 - ~ Tr U2 .

which can be proved by diagonalizing U. Hence

:L72(Tr6T-1)2

(2.21)
(Tr C7-1)3 = ~ (Tr U)2 (Tr TJ-1)2 - \ Tr L72(Tr U~1)2

3 In Terms of the matrix notation of MSW, where we defined Dj9 Fj by
^ik = ifij1i9 we have d{ - Tr(DtR)9 iff - T
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Now (2.13) and (2.21) yield the required formula inverse to (2.9)

"11/3 ' \£.&&)

^y(l+TrU)>-TJa(Z)J
where

iTt. =- dtjkJijk -f ^ fijjcRjjc •

One might well ask, if (2.17) reduces to (2.21). The answer not sur-
prisingly is that it does if one extracts all the information conveyed by
(2.13). Because we need much of this information in section three, we
give some of the details of the reduction of (2.17). From (2.13) and its
hermitian conjugate

2t7+(TrC7)==T+i?J>aABA1)

by direct multiplication and use of UU+ = 1, we obtain

4 Tr U Tr U^ = ( | + Blk ^h) (y 4- Bpq Kk) • (2.23)

This can be rearranged as a matrix equation of the form a0 -f oci )H = 0, from
which a0 = 0 and a* = 0 follow. Taking the trace of each side of (2.23),
whose left side is a multiple of the unit matrix, and using (2.18), we get
the scalar equation implied by (2.23) in the form

3 (1 + TiB) = ~ (1 + TrB)* + y [I2(d) + J2(/)] . (2.24)

Multiplying b}̂  Xi and taking traces yields the octet vector equation in
the form4

y (1 + TrTi) dt + (d * d), + (/•/)< = (). (2.25)

To extract the scalar content of (2.25), we operate on it with octet vectors
di, f^ {d * d)i9 (d * f)i and (/ * f)i in turn, and grind down terms like
(d * d)i{d * f)i using identities involving dijk and j i j l c tensors displayed in
section two of MSW. After rather long but straightforward calculations,
one derives4

y (1 H- TrB) T2{d) -f <#> + (dp) = 0 , (2.26a)

y] ,/, , (2.26b)

T r M A (2.26c)

I2(/) - Ja(d)] , (2.26d)

y (1 + Tri?) [<#> + <^/2>l + y [I2(d) - I2(f)f + y (d,/,)2 = 0 . (2.26e)

4 We are again using notations of MSW, namely:

(a * b)i = dijfc a^
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Eq. (2.24) having been used to simplify various of these results. The first
four of these results allow

Ia(K) = <<P>> - 3 <<//*> + 3» <d*f) - i </*>

to be simplified. Taking the real and imaginary parts of (2.17) separately
for convenience, one finds now that these reduce to the corresponding
parts of (2.21), easily in the case of the imaginary part, but not so easily
and with use of (2.24) in the case of the real part.

Another consistency question that might well be asked is whether the
norm of the complex number (2.21) reduces to (1 -f Tri2)3/2 as (2.18)
demands. With the aid of the consequence

y (W - [y (1 + Tri?)]2 It(d) - Y [/,(/) - I2(d)f , (2.26f)

of (2.26a) and (2.26e). one finds the desired answer to this question.

3. Parametrization of 8C73 Using the HomomorpMsm

A parametrization of SU3 in terms of a single real octet vector ai

is achieved by writing U £ S (73 in the form

U = uQ + u^i (3.1)
where

ut = xai + y(a * a)8- (3.2)

and giving the complex quantities w0, x and y as explicit functions of the
invariants I2(a) a n ( i ^ia)- We could indeed show that (2.22) achieves
such a parametrization. Or, alternatively we can say that a rotation R
of RS which satisfies (2.12) yields, according to (2.21), a parametrization
of 8 US of the type described by (3.1) and (3.2), if a is a real octet vector
determined by R, and u0, x and y are given explicitly as function of the
two independent scalars that can be formed from R. In the latter context,
three points need to be discussed:

i that R determines only two independent scalars,
ii that R determines suitable real octet vectors for use as (a' in (3.2),
iii that u0, x and y are indeed known as explicit functions of the

scalars selected under i,
and we discuss them in turn.

Scalar quantities that can be built from R include the following

h (d) = <d*), <<P/>, {df\ h(d) = <d*), <<P/>, {df\ h
A possible choice of independent scalars is the pair Tr R and [J2 (/) — / 2 W\
From (2.24), [(/2(^) + ^(Z))] anc^> hence, I2(d) a n d I2(f)

 c a n ^ e expressed
in terms of them. Then, by (2.26f) so also can dj^ and, by (2.26a) to
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(2.26d), so also can <#>, (d2f), (dp) and </3>. An alternative choice
retains Tri?, and replaces [/2(/) — ̂ W l ^y Tri£2, the justification
stemming from the identity

h(f) - I2(d) = y [8 - 3 Tri?2 - (TrJS)2 + 10 TYR] . (3.4)

To prove (3.4), expand I2(/) anc^ ̂ (^) separately using (2.10) and (2.24)
of MSW, subtract and use (2.12).

To show that fi = fijjcRjk c a n P^aY the r ° l e °f ' a ' i n (3.2), it is
necessary only to establish the existence of a result of the type

di=«U+M*f)t, (3-5)
with a, /? functions of the invariants of R. It is clear that operation on
(3.5) with ji and di leads to solution for a and /S in terms of invariants.

Given the answers to questions i and ii, it is now apparent that (2.21)
can be cast readily into the required form.
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