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Abstract. We prove the existence of the Heisenberg picture field operators for
quantum fields with a Yukawa interaction. The interaction density

g: Ψ+(x)Ψ(x)Φ{x):

has a momentum cutoff on the Fermions, but no spatial form factor, and is thus
translation invariant.

§ 1. Introduction

We study the Heisenberg picture dynamics for a scalar Yukawa
interaction Ψ+Ψ Φ. The total Hamiltonian is not expected to be defined
as an operator on Fock space, but it may be approximated by well
defined cutoff Hamiltonians HκV. In the approximate dynamics defined
by the Hamiltonian Hκ v, particles of energy κ or larger do not interact
and particles located outside a bounded space region of volume V do not
interact. The operators HκV are positive and self adjoint [6, 7] and give
rise to the Heisenberg picture dynamics

A(t,x9 V) = eίtHκvAe-itHκv. (1.1)

In two dimensional space-time the momentum cutoff may be removed
if V is held fixed and then the limit

Hv= lim HκV (1.2)
κ —>oo

is a positive densely defined operator [2, 3].
In this paper we study the other cutoff and prove that a convergent

subsequence
A(t,κ) = lim eitHκvω Ae~itHκvω (1.3)

j—>oo

exists and is differentiate in t. The limit satisfies the differential
equation

d A (t, κ) = i [Hκ, A] (t, κ) = ί [HH9 A (t, κ)] . (1.4)
dt
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We note that Hκ has no meaning as an operator and the commutator in
(1.4) is defined by limits:

[HX,A}= lim [HxV,A]; (1.5)
F->oo

in fact [HκV, A] is independent of V for large V and for suitable A. The
limit in (1.3) exists in the weak operator topology. For fixed t the exis-
tence of a convergent subsequence (1.3) follows from very general com-
pactness principles and is not the main difficulty. The essential point is
the regularity in t which permits convergence for all t.

We use the so-called "energy method" from Partial Differential
Equations, which means that we make essential use of conserved or
approximately conserved quantities to obtain convergence in (1.3). Let
R(t) be a positive operator depending on t. Then

4τ(e~itHχr φ, Rί- t) e~itE*v φ)
d t Ψ (1.6)

= (eritsχv φ, - (R(- t) + i [HκV, R{- t)]) e~itH*v φ) .
If

- ίl{- t) + i[HκV,R(- t)] ^ const. R(- t) (1.7)

then ||.#(— ί)1//2 e~ίtHκv φ\\ satisfies a differential inequality and

\\R(- t)1/* e~itEκv φ\\ ̂  const. fli^O)1/* φ\\ (1.8)

where the constants depend on T, \t\ ^ T.
If the time dependence of R(t) comes from the free field Heisenberg
propagation,

then (1.7) simplifies to

i[HIκV, R{- t)] ^ const. R(- t) (1.9)

where HIκV is the interaction part of HκV == HQ + HIκV. We take JB(O)
to be an operator which measures the local number of Bosons. The
constants in (1.7) and (1.8) do not depend on F and (1.8) will lead to
volume independent estimates on the automorphism A -» A (t, κ, V).

The operators A (£, κ) will be defined on a dense domain 2 in the
Fock space IF of the bare particles. It would be desirable to have them
act on a domain associated with physical particles. The physical Hubert
space can be constructed from a vacuum state and a vacuum state can
be obtained by the method of [5], at least if the space cutoff were given
by a periodic box.

We introduce our basic notation. Φ (x) will denote a scalar Boson field
of mass μ0 > 0 and Π is the conjugate momentum, ψ and Ψ+ are the
Dirac field and its conjugate, which also have positive mass. Let ρ be
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a real function in the Schwartz space Sf and let

= Ψ+{X)ΨQ(X)Φ(X).

ρ introduces a momentum cutoff and replaces the κ used above ρ is held
fixed throughout the paper. Let h be a positive function in £f and let
λ be a positive number. We define

HIλ=fh(xlλ)J(x)dx

Hχ = HQ + HIλ .

Then HIλ is ϋ^-bounded and Hλ is self adjoint and semibounded [6, 7].
Let U(t, λ) = exp(— itHλ). The number λ measures the volume cutoff
and replaces the V above.

§ 2. The Local Number of Bosons Operator
Let

R(t) = / + / φ-(a&, t) Φ+(x, t) oc(x) dx , (2.1)

where Φ~ is the creation part of the free field Φ and Φ+ is the annihila-
tion part of Φ and α is the positive integrable function

Computed in momentum space,

jβ(f) = / + fr(k, h t) a*{k) a (I) dk dl (2.2)
where

r(k, I, t) = eWO-MW &(k - I) μ(k)-V* μ{l)-V* (2.3)

and ά is the Fourier Transform of α. One can check that r is the kernel
of a bounded operator on the one particle space. It follows that

for some constant c. Thus any vector <p with a finite number of particles
is an analytic vector for R and R is essentially self adjoint on the domain
consisting of these vectors. Also R(t) is positive and R(t)a is essentially
self adjoint on the same domain, for any real a.

We define

^n K w J

3f will provide an invariant domain for the Heisenberg picture field
operators. By our remarks above, 2 contains all vectors with a finite
number of particles and so Sd is dense.
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In this section we derive our basic estimates showing that various
operators can be bounded by powers of E{t). In case the operators
depend on the space cutoff λ, the bounds will be independent of λ. For
example operators which are linear in the Boson field are dominated by

Theorem 2.1. Let Ω ζ@(R(t)n+1ϊ2), n^O and let fζ£f(x) be a
Schwartz space function defined on configuration space. There is a con-
tinuous function c(n, t) and a Schwartz space norm \f\n such that

\\R(ψΦ(f)Ω\\ + \\R(ψΠ(f)Ω\\ £ c(n,t)\\R(tr+V*Ω\\ | / | n .

Proof. Φ± (x) = Φ± (x, 0) and JΓ* {x) = 77± (x, 0) may each be ex-
pressed in the form

/ K±{x-y)Φ±{y)dy (2.4)
ft = t

where K± (y) ζ Θ'c{y) for each fixed y0 and depends continuously on yo;
Θ'c is the space of distributions for which an arbitrary derivative of the
Fourier Transform is continuous and has at most polynomial growth.
Thus Φ± (/) and 77=*= (/) have the form

/ (K±*f)(y)Φ±(y)dy, (2.5)

where the convolution occurs in the space variables only, and since
K± ζ Θ'e, K

± * f(x, t) ζ £f{x) for fixed t and depends continuously on /
and t. Hence

/ | Z ± */(aj, ί ) | d a s ^ Co W I/I. (2-6)

\K±*f(x,t)\^c0(t)oc(x)\f\ (2.7)
for some Sf norm |/|.

To complete the proof in the case n = 0, we may suppose that / is
real and that Ω is a vector with a finite number of particles with wave
functions in 5". Then Ω ζ&(Φ+(x)) and Ω ζ@(Π+{x)). One can verify
that with a new norm |/|,

= 4 / K+*f(x)K+*f (y) <Φ+ (x) Ω, Φ+ (y) Ω)
Xo = Vo = t

•dxdy+\f\*\\Ω\\>

- \ J _t

 |Z+ * /(ίC) Z+ * /(2/)l (|Φ+(a;) β|2 + l|Φ+(ί/) β||2)

dxdy+\i\*\\Ωψ

The estimates for Π(f) are similar and the theorem is proved for n = 0.



Yukawa Interaction 13

The commutator [Φ τ (x, t)9 Φ
± (/)] or [Φ^ (x, t), Π± (/)] has the form

where i^ £ 0̂ (0?) an<^ ^he convolutions are in the space variables only.
Thus [R(t), Φ±(f)] and [R{t),Π±(f)] nave the form

and the multiple commutators

[B(t), [..., [R(t), Φ± (/)] . . . ] = (adΛ(t))« Φ±(/)
and

[B (<), [ , [Λ (ί). Π± (/)] ] = (ad B («))» /7± (/)

have the form

/ α ( # x * * αίlΓi * ± •/). . .) (y)Φ±(y)dy . (2.9)

Now multiplication by α and convolution by Kx are continuous operators
on Sf(x) and so we have estimates similar to (2.6) and (2.7) for the
coefficient of Φ^ (y) in (2.9). As in the case n = 0, this leads to a bound

Y Φ(t) Ωψ + H(adJ2(<))"JT(/) fl||«

with a new norm |/|. The theorem now follows for arbitrary n, using (2.8)
and (2.10).

Corollary 2.2. Let Aό(x) denote one of the operators Φ(x), Π(x), Ψ(x)
or Ψ{x)+, 1 ^ j ^ n, and let Ω^@. Then

(Ω,A1(xl9)...An(xn)Ω)

is in £?' as a function of xx, . . ., xn.
Proof. By the nuclear theorem, we need only show that it is in SP'

in each variable separately. But

|/ f^xj .. . fn{xn) φ, A^xJ .. . An{xn) Ω) dx,... dxn\

= \(Ω,A1(f1)...An(fn)Ω)\

ίS μ W ί ] (fίnh]). . . Λ(/i) fl| II Λ(/») Ωϊ •

By Theorem 2.1, the quantity above is bounded by

\\R{ψM Ω\\ \\R(ψ«+*n Ω\\ c(t) Π \U\ (2.H)
i = l

and the proof is complete.
Corollary 2.3. Let A(x) denote Φ(x), Π{x), Ψ(x) or ψ+(x) and let

j ^ 0, n ^ 0. There is a continuous function c{j, n} t) and £f-norms \ \Un

such that
[Λ(ί)» (ad Hny A(/) Ω\\ £Ξ c(j, n, t) \f\j>n \\R(ty+«+W Ω\\

forl< λ ^ oΰ and all f ζ £f.
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Proof. One can compute directly that (ad R(t))m (a,dHIλy A(f) is
a sum of terms of the form

f s(xlf. . ., xk) (Ω, Ax{x^) . . . Λk(xk) Ωydxx. . . dxk

with k ^ j + 1. Also s ζ £f(xx, . . ., xk) and s depends continuously on /,
so the corollary follows from Corollary 2.2 and (2.11).

Theorem 2.4. Let n ^ 0. There is a continuous function c (n} t) such that

\\B(t)« [R(t), HIλ] Ω\\ g c(n, t) \\R(ψ+V*Ω\\

for 1 g λ g oo, Ω ζ 3>{R{t)n+ίβ).
Proof. Let

rλ>n(x, t) = α(αf) JAM (y - x) Ψ+ (y) Ψβ(y) h(yjλ) dy

rλ,n (x, t) = α(αs) (J<+) ( , 0) * r^,,,.,) (as, ί)

Oltn(t) =frhn(x, ψ rλ,n(y, t) i-iΔ(+){x - y, 0)dxdy .

To prove the theorem it is sufficient to show that

||(ad Λ(ί))« HIλ Ω\\ g φ , t) \\R{tγi* Ω\\

for n ^ 1. One can show that (ad B(t))n HIλ is a linear combination of
Aλn(t) and Aλn(t)* and that

Aλtn(t) Aλ,n(t)* = Bλtn(t) + Cλtn(t)

and so it is sufficient to show that

M A , » ( 0 £ | 2 + \<Ω, Bλtn(t) Ω)\ + \(Ω, Cλ>n(t) Ω}\

We use the following lemma.
Lemma 2.5. Let D be a monomial in the space derivatives of order s.

There are continuous functions c2 (s, n, t) and c3 (n, t) such that

\\Cλin(t)\\^c3(n,t),

and c2 and c3 are independent of λt λ ζ [1, oo].

From the lemma we have

MA . W Ωψ = (|| / rλ,n(x, t)* Φ+(x, t) dx Ωff

<(ϊ\\rλ,n{x,t)\\\\ΦHx,t)Ω\\dxf

^ f h.»(*. Oil dx f \\rλ,n(x, ί)H \\Φ+(x, t) Ωl* dx

< ca(0, n, tf f x{x) dx \\R(tfl2 β||a
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if Ω is a vector with a finite number of particles and wave functions in
£f> so that Ω 6 @(Φ+(x, tj). By continuity the inequality extends to all
Ω in ^(^(ί)1/2) and similarly

|<fl, Bλ,n(t) Ω)\ £ ca(0, n, 0a / *(x) dx \\R(t)W β | | 2 ,

and then the theorem is proved.
Proof of Lemma 2.6. We have

ΨQ(χ) = fρ(χ-y)Ψ(y)dy

DΨρ(x) = f (Dρ) (x - y)Ψ(y) dy

and it follows from the anticommutation relations that Ψρ{x) and
DΨρ(x) are bounded operators:

\\DΨβ(X)\\<\\Dρ\\2.

The same argument applies to Ψ£ (x) and D Ψ+ (x) and so

\\DJλ(x)\\ g c
where

Ji(x) = Ψ+(x)Ψβ(x)h(xlλ)

and c is a constant independent of x and of λ ^ 1. The distribution
A(+)(x) is a 0°° function except on the cone \x\ = t, and from the ex-
plicit formulae for ZH+), [1], we can write

A(+)(x,t) = θ1(x)t) + θ2(xίt)

where 02( , t) ζ £f(x) and depends continuously on t and

Θ1(x) = Σ Dμημ(x) •
μ

Here Dμ is a monomial in the space derivatives and ημ is a continuous
function with compact support in x for each fixed ί, and the sum over μ
is finite. Thus

κ,(*. on ^
oc(x)f\θz(y-x)\\\Jλ(y)\\dy

as required. The derivatives Drλfl(x, t) are estimated similarly. Some of
the derivatives are applied to α, and by our explicit definition of α,

The remaining derivatives are applied to Jλ and do not cause trouble
because \\DvJλ(y)\\ is bounded uniformly in y and in λ ^ 1. In the same
fashion the bound
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is proved using our inductive definition of rλ>n. Finally

n(x, t)\\ \\Dμrλtn(y, t)\\ \ημ(x - y, 0)| dxdy

af, ί)|| \KΛy> t)\\ \θt{x - y, 0)| dxdy

£ Σ ca(0, n, t) c2(\μ\, n, t) (/ α(β) dxf | | ^ ( , 0)|U
μ

+ c2(0, n, ψ (/ α(β) (ίa;)2 ||Θ2( , 0)|U = c,(», ί) .

Corollary 2.6. There is a continuous function c (n, t) independent of
λ such that

\\R(- ί)« ϋ(t, λ) Ω\\ g c(n, t) \\R(0)nΩ\\ .

Proof. Let Ω be a state with a finite number of particles. Then
U(t, λ) Ω ζ@(Nn) C @(R(- tY) and

JΪ (U(t, λ) Ω,R{- t)n U{t9 λ) Ω)

= (U(t, λ) Ω,i[HIλ, R(- ψ] U(t, λ) Ω)

^ Σ c(i, t) (U(t, λ) Ω, J B ( - ty u(t, λ) Ω)
7 = 1

g Ci(w, ί) <ί7(ί, λ) Ω,B(~ ty U(t, λ) Ω) .

The corollary follows by an integration over t.

§ 3. The Heisenberg Picture Fields

We define the Heisenberg picture field ΛH (x, t) as the limit of
a weakly convergent sequence

AH(x, t) = lim ϋ{t, λ,)* A (x) ϋ(t, λό) (3.1)
j—>oo

A(x) = Φ(x),Π(x),Ψ(x) or ψ+{x). (3.2)

AJI (x, t) is defined for each fixed t as an operator valued distribution in
£f'(x);iί fζ£?(x) then

AH(f,t) = fAH(x,t)f(x)dx

is an unbounded operator with domain 3t and

Aπ{i,t)9c®. (3.3)

•^H (/, t) is smooth as a function of t (strong derivatives) and satisfies the
differential equation (1.4).

Theorem 3.1. There is a sequence λό -> oo such that for all f ζ S(x),
Ω ζ 2, ψ ζ IF and for all t the limit

{ψ, AB(f, t) Ω) = lim (<p, ϋ(t, λ,)* A (/) U(t, λ,) Ω) (3.4)
•)—>OO

exists and defines AH (/, t) as an operator.
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Proof. For fixed /, Ω, φ and t we have the uniform estimate

\\ϋ(t, λt)*A(f) U(t, λj) Ω\\ = μ ( / ) ϋ(t, λ}) Ω\\

^c{t)\t\\\R(-tγi*Ό (1,1^1 (3.5)

from Theorem 2.1 and Corollary 2.6 and by weak compactness there is
a sequence λj such that the limit (3.4) exists. By the diagonal process
we achieve the same result for a countable dense set of /'s, Ω's, 99's and
ί's and the ί2's are dense in ̂ (^(O)1/*) in the norm ^(O) 1 ^ Ω\\. By con-
tinuity and the uniform estimate (3.5), we have convergence for all /, Ω
and φ. Using the Ascoli theorem, we get convergence for all t. To apply
Ascoli's theorem we need the following uniform estimate on the time
derivatives: | { d j d t ) Ό(t> ^ A ( / ) Ό{t> λj) β |

= \\[Hλi,A(f)]U(t,λ})Ω\\ (3.6)

Our estimates also imply

\(ψ,AH(f,t)Ω)\^c(t)\ί\\\φ\\\\B(O)^Ω\\

and so AH (/, t) is an operator with the domain Sf.
Corollary 3.2. For Ω ζ Q) we have

\\R(trAH(f,s)Ω\\ ^ c(n,t,8) \f\n\\R(tr^Ω\\

for some continuous function c and some norm \f\n. In particular (3.3) holds.
Pro°f- \\R(tr ϋ(s, λ,)* A(f) U(s, λs) Ω\\

g C l (n, t, s) \\R (t - β)» A (/) U (a, λs) Ω\\

by Theorem 2.1 and Corollary 2.6.
Corollary 3.3. AH(f, t) is O°° as a function of t for Ω ζ 2>,

^ i ) - \ Ω (3.7)

where we define the commutator by the limits

(φ,[H,AB{f,t)]Ω)

= Urn {φ, [Hλ ϋ (t, λύ* A (/) U (t, λ,)} Ω) (3.8)

= Urn (φ, U(t, λ,)* [Hi,, A (/)] ϋ(t, λj) Ω) .

In particular the limits in (3.7) exist.
2 Commun. math. Phys., Vol. 11
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Proof. Using Corollary 2.3, we have the uniform estimate

\\{djdtγ U(t, A,)* A (/) U(t, λs) Ω\\ < c(n, t) |/|n |Λ(0)»+V* Ω\\

as in (3.6). This implies that the function (3.4) is C°° in t and

\{ψ, (dldt)«AE(f,t)Ω)\ S c{n,t) |/|n \\φ\ \\R(θr+v*Ω\\.

As in the proof of Theorem 2.1, we find a subsequence λ? . for which the

limits (3.8) exist. Any such limit will satisfy the Eq. (3.7) and since the

left side of (3.7) is already known to exist and is uniquely determined,

all subsequences λj. in (3.8) have the same limit. Thus the full sequence

converges in (3.8).

We remark that for Ω ζ 3) the expectation value

(Ω)AH(x1,t1)...AH(xn,tn)Ω)

is in Sf' as a function of the space variables for fixed tτ, . . ., tn. Also

(djdt)n Aπ(f, i) 2)C@). h theory invariant under space translations could

be obtained by introducing a translated local number of Bosons operator

R{a> t) and redefining 2 as Π @(R(a, t)n). I t would be desirable to

show that the limit (3.4) converges strongly on the domain Q). Strong

convergence would imply the canonical commutation and anticommuta-

tion relations for the fields AΞ(x, t).
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