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Abstraet. An existence theorem for the “gap equation’ in the superconductivity
theory is given, as a consequence of the Schauder-Tychonoff theorem. Sufficient
conditions on the kernel are given, which insure the existence of a solution amongst
a particular class of continuous functions. The case of a positive kernel is studied
in detail.

1. Infroduction

For a non relativistic many-fermion system the existence of a
“superfluid” or “‘superconducting’ state is related to the appearence of
non trivial solutions in a non linear integral equation, called the
“gap equation”.

Various approximation methods for finding the solution of the gap
equation have been devised [1, 2, 3], which give rise to a “linearization”
of the equation. All these methods produce solutions with the same non-
analytic behaviour for small values of the interaction strength. A neces-
sary condition for the appearence of non trivial solutions has been given
a long time ago by CooPER, MILLs and SESSLER [4] (see also ref. 1). The
convergence of an iterative procedure has been proved, under certain
conditions, by Krramura [5]. Fixed point theorems were first used by
OpEH [6]. We prove here an existence theorem under entirely different
assumptions, which cover many cases of physical interest. We make use
of the Schauder-Tychonoff theorem, which allows us to find a solution
amongst a particular class of continuous functions.

2. The Existence Theorem

Let us consider the gap equation in its simplest form (i.e. the equation
for the spherically symmetrical solutions at zero temperature):

_ 3 / @ (k) ,
¢(k) _Of K(k: k) V(klz _ 1)2 + (P(k")z dk (1)
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and make the following hypotheses on the kernel K (k, k'):
K is a measurable real valued bounded function on R+ x R™*;
(I) {let M >0 be a bound such that |[K(k, k') =< M for every
(k, k') ERT X R+
I There exists a compact interval I = {k: & < k& < &}, ICRH,
b & <1 < &, such that K (k, k') = 0 for (k, k') €I x I.
T There exist three positive numbers a, 4,e(0 <a < 4, e>0)
() such that the following inequalities hold.

(I1L,) fK/clo —————V(Tzl_w Fz=l+e for hel.
(ITL,) |K (k, k)|~ Al < - for K €.
g A
R'i'[l V(kz +A2

am,) [ IK(Ic,Ic’)IV(_k,_——Z_:.ll—)Z—Hz—dk’g 1 forall kCR*.
R+

(IV) There exists an L > 0 such that

’ A ’
R+f [ b ) = B (kg )| e 4 5 Ll — B
for every (k,, k,) € Rt X R+.

For the remainder of this section we will consider only kernels veri-
fying conditions (I) ... (IV).

Definition 1. Let & (R*) be the space of all continuous numerical
functions on R+, with the topology of uniform convergence on compacts.
& (R*) is a Fréchet space.

We consider now the following subset of & (R*):

A= A&, £y a, A, L) = {f ¢ F(R*): f real valued,

flw=sup ()] < 4,inff()) 2@, 2() = sup [[BL=SE) < L}
kER* kel (kth)e:IZXR+ - 2

It is straightforward to prove the following proposition:

Proposition 1. £~ is a convex compact subset of F (R*), and 0 ¢ A .

Furthermore we have:

Proposition 2. The application T : A4 — F (R*) defined, for every
fed by

&) ,
T ky= | Kk, k') ________dk k
() () RJ[ (e, 1)y 4 (LERY)

s @ continuous mapping of A into A .
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Proof. By (1), (T'(f)) (k) is defined for every k& € R* because
| (&) | < 4
WV&s =1+ (¢ |~ V&= 1) + 4
and 7'(f) is real valued because of (I).
By (IV) and the condition ||f|., < 4 we have:

for every k&' € R+ 2)

A

17 () = T Gl = [ [K (ki ¥) — K (o )| Ji= e
0

< Llky —ky| for (ky,ky) CR* x R by by .

Therefore A(7T'(f)) = L which implies in particular 7'(f) € # (R*). Fur-
thermore, for every k € R+ we have by (IIL,)

co , 4 ,
760 W) = [ K0 k)| e a5 4
0
Consequently || 7'(f)] =< 4.
For k¢clI, we have by (II), (IIL), (III,) and the inequality
inf f(k') = @
keI
ﬂMMngmkﬁﬁ::Tﬁﬂ—-fmmkﬂ
I R+—T
4
GEEETT

Therefore T'(") C . It still remains to prove the continuity of 7.

As A C F (R*) is a metrizable space, in order to prove the continuity
of T on " it is sufficient to show that from

it follows that 7'(f,) == T'(f) in .
In order to see that this is the case, let’s fix an arbitrary number
7 > 0 and write

[T (fa) (k) = T'(f) (k)|

dk' =2 a(l + &) —ae=a; so }créfl T) (k)= a.

AL 1) | aw
Kk, k - dk
gof e N X (e e

ky oo
=f+f=4+@.
0 k,
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If &, is chosen large enough so that

oo

24 , "
/lul/(k’2_1)2+Agdk—2:52_k1<oo
ks

we have J, < gindependently of £ ¢ R+ and n. k; being fixed by this
condition, there is uniform convergence of
v (k) = fu (k') _ H(¥)
J#2 =12+ fu(k)2 Y2 = 1) + f(&)"
to zero on the interval [0, k,], when 7 — co. This follows from the
inequality :
Iru (k)] =

1
inf [a?, (& — 1)% (& — 1)°]

(B Y’ = 1)+ ()2 = f(B) )/ (B — 1) + f (B)2 .

12
As J, £ M [ |r, (k)| dF’, there exists an entire n, such that for n = n,,
0

J =< %independently of k. Therefore n = ny= [T (f,) — T (] = 7

which proves Proposition 2.

Theorem. Hq. (1) admits at least one solution ¢ € . (Therefore in
particular ¢ = 0.)

Proof. The theorem follows immediately from Propositions 1 and 2
by applying the Schauder-Tychonoff theorem [7].

Remark. Condition IV holds if the following condition is verified:

There exists N > 0 such that, for every fixed £’ € R+, the function
Ky : Ky (k)= K(k, k') (k € R") verifies 1(K,) < N.

This happens in particular if for every fixed k' € R*, the function
K, is continuous on R, differentiable on R* except at most for a de-
numerable set of points of R+, and the absolute value of this derivative
is majorized by N.

In general condition III, can be satisfied with a sufficiently small
a > 0, and condition III; can be satisfied with a sufficiently large 4 > 0.
In order to produce a large clase of kernels fulfilling all the conditions,
it is then sufficient to consider kernels which vanish sufficiently fast
outside of I x I (in order to verify condition IIL,) and which are suf-
ficiently regular (in order to verify condition IV).

3. The Case of a Positive Kernel

If K(k, k') > 0 for every (k, k') € R+ x R+, one is tempted to put
I = R+, because the inequality IIT, is then automatically satisfied.
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However, since in all reasonable physical cases llm K(k, k') =0, it is not

possible in general to find in @ such that the mequahty IT1,, written with

I = R, is satisfied.
In order to avoid this difficulty we consider, in the place of ¢, the

following subset of # (R+):
H' =H"(a, 4, L) = {f € F (R*): f real valued >0,

Ifleo = sup f(k) = A, f(k) = a K (k, 1), A(f) = L}
EERY

and we make the following hypotheses on the kernel K (k, k'):
(I') K is a measurable bounded function > 0 on R+ x R+; let M
be a bound such that K (k, k') < M for every

(k, k') € R+ x R+.
(IT') There exists an @ > 0 such that the following inequality holds:

[ Kk, k) K (I, 1) dk' =1 forall k¢R*.
KR ) YT =17 + @K, D

(III') There exists an L > 0 such that

[V (e, ) — K (kg 4 dk' = Liky — k|
R+

o=tz
for every (ky, k,) € R* X R,
where A is a positive number verifying the inequalities:
Mf—ll/k—lz’-—__ﬁdkél, A.>(1/K(1,1)
It is straightforward to prove that propositions 1 and 2, as well as
the existence theorem, hold equally well if we replace " by ™, and we

take into account the new hypotheses (I'), (I1’), (III’) on the kernel. In
particular if f € 7, we have, making use of the inequality (II'):

f(&)
7))~ [ KR) g deai
R/ &= =1y + [(&)
f Kk oK, 1) it = aK (k1) .
Y& — 1 + s K (K, 1)

Example. Let us consider the kernel

. T
K (k) =—¢

oo
f dr e==" sinkr sink'r
0

_2Va &

7 [0+ (k + k)] [&& + (b — &% (OC > 0, V> O) .
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This kernel arises naturally in physical situations (see ref. 2); it
corresponds to an attractive two body potential of the form V (r) = Ve~=r,
r being the interparticle distance. It is easy to verify that

2V laK(k, K)|_ 8V 1

K(k’ k/) = o’ ok = Hsup (1’?)

for every (k, ') ¢ R* x R*
and therefore the kernel verifies the conditions (I'), (III') (see the pre-
ceding Remark). It is also immediate to see that the function
N e Kk E)
D) - g S
is continuous and strictly positive for £’ > 0.
Therefore choosing @ sufficiently small in order that
K, 1)

[ D@ dk' =1
o J&® — 1) + a*K (i, 1)

also condition (IT') is verified, and the existence theorem applies.
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