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Abstract. A quantized space-time metric g{ k (x) is investigated within a suitably
modified axiomatic approach. Coordinate distances dx are called absolutely space-
like if gik(x)dxidxk is negative definite. For such distances, fields are assumed
to commute or anticommute, respectively (generalized locality). The quantum
fluctuations of the light cone giuipή dx{ dx* = 0 are shown to extend to distances
dx which are space-like with respect to the Minkowski metric. Generalized
locality is therefore weaker than the usual locality postulate.

I. Quantized Gravity and Wightman Axioms

A heuristic attempt is presented to describe a quantized space-time
metric (i.e., quantized gravitational potentials) g^x) according to
general ideas of axiomatic field theory. For this purpose, a considerably
weakened form of the usual field theory axiomatics (compare, e.g.,
STREATEB, and WIGHTMAN [1]) is appropriate. A closely related approach
to the quantum theory of gravitation has been proposed independently
by STROCCHI [2]. The assumptions used here will be formulated and
discussed with respect to their applicability to quantized gravity. Most
problematic in this respect is the usual locality postulate, which is there-
fore treated separately in the next section.

Postulate 1 (Quantum Theory, Invariance, Spectrum). Pure states of
the system are unit vectors Ψ in a Hubert space J4? with positive norm.
The inhomogeneous Lorentz group (or, more precisely, its covering
group) is continuously represented in Jf by unitary operators U(a, Λ).
With U(a, 1) = eiPkΦ, the spectrum of Pk is contained in the closed
forward light cone. A vacuum state Ψo, defined by U {a, Λ) Ψo = ΨOf

exists and is unique. —

This postulate becomes meaningful only with a suitable interpretation
of U{a,Λ), since a representation U(a,Λ) with the required properties
can be constructed formally in any infinite-dimensional Hubert space Jj?.
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Under suitable asymptotic conditions, the theory considered will
describe scattering situations, with incoming and outgoing free particles
including gravitons. As usual, this leads to representations Uin(a, Λ)
and Ό0Vάl{a,Λ), with an obvious physical interpretation, in the Fock
spaces £<F m and ̂ O ut °f scattering states. Completeness of the scattering
states, ^ i n = 2/Fout = ̂ , and Lorentz invariance of the #-matrix,
Uin(a, Λ) = Uoui(a, Λ) = U(a, A), then immediately lead to Postulate 1.

This argument also explains the role of Lorentz invariance in a
quantum theory of gravity. Asymptotic completeness, together with
Lorentz invariant description of free gravitons (i.e., as mass zero, spin
two particles) and Lorentz invariance of scattering amplitudes, are
sufficient for Lorentz invariance of the whole theory. General covariance,
on the other hand, can be understood as a kind of *'gauge" invariance of
the classical theory, similar to gauge invariance in electrodynamics. By
analogy with the latter one should expect some ζ'breaking" of gauge
invariance if the theory is quantized, different gauges corresponding in
general to different "quantizations" with different HΠbert spaces. Also in
a quantum theory of gravity one should therefore expect neither less nor
much more than Lorentz invariance.

With the asymptotic free particles one can associate incoming and
outgoing free fields. The following postulate requires the existence of
"interpolating" fields, which describe the dynamics of the system at
finite times and, by asymptotic conditions, determine the #-matrix.

Postulate 2 (Fields, Cyclic Vacuum). Fields φΛ{x), α = 1 . . . N are
given, with components φaκ(%), K = 1 . . . nx being strictly localizable
operator-valued distributions in Jtf*. The smeared fields φΛκ{f)
= ff(x) ψ<χκ(x) dϊx with arbitrary test functions f(x), as well as arbitrary
polynomials of such operators and their adjoints, can be applied to the
vacuum state Ψo, thereby generating a domain D which is dense in Jf. —

More specifically, we will assume the existence of a "quantized space-
time metric"

ΰiklp) = ?*<(«) = g*k(*), »', * = 1 . . . 4 (1)

among the fields φ^x)-

The field components φxχ(x) are not assumed to be tempered or
Schwartz distributions. Instead, only strict localizability as defined by
JAFFE [3] is required. This could indeed be a necessary generalization if
gravitational interactions would turn out to be non-renormalizable.
However, some more specific assumptions about the test function space
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will be used in the following. The existence of non-negative test functions
is required in Section I I for the physical interpretation of ^(a?) . A
somewhat stronger assumption of this type will be used in Section I I I .

Obviously D becomes a dense invariant domain of definition common
to all operators 9?αjg;(/) a n ( i ψ*κ(f) Little can be said to justify this
assumption physically, since it is mainly a technical one, invented to
permit application of WIGHTMAN'S formalism [4].

The following postulate specifies the transformation law of the fields
φκ(x) with respect to space-time translations U(a, 1). Usually one also
fixes the transformation law with respect to Lorentz rotations £7(0, A).
This, however, would here be very dangerous for the following reason.

In gauge invariant relativistic theories like electrodynamics and
gravitation theory, two classes of "gauges" can be distinguished. C(/vari-
ant gauges employ gauge conditions which are manifestly covariant with
respect to Lorentz transformations. Examples of this are the Lorentz
gauge of electrodynamics, and FOCK'S [5] harmonicity condition for
gravity. Gauge conditions which are not manifestly Lorentz invariant
define non-covariant gauges like, e.g., the Coulomb (radiation) gauge, or
corresponding gauges of gravitation discussed by ARNOWITT, DESER and
MISNER [6]. Only in covariant gauges the electromagnetic or gravita-
tional potentials transform as a Lorentz vector or tensor, respectively.

Experience from quantum electrodynamics, as well as attempts to
quantize gravity in Fock's gauge [7], seem to indicate an incompatibility
of covariant gauge with asymptotic completeness (as shown by the
occurrence of "unphysical particles"), or even with positive Hubert space
norm. In the framework of axiomatic field theory, this question has been
analyzed recently by STROCCHI for electrodynamics [8] and for the
linearized theory of gravitation [2], Covariant gauges seem to require a
reinterpretation, or even a reformulation, of Postulate 1. (Compare also
WEINBERG'S approach [9], where asymptotic completeness excludes
manifest Lorentz covariance of the potentials corresponding to free
photons and gravitons.)

We will therefore not assume a covariant gauge, but require simple
transformation laws with respect to translations only.

Postulate 3 (Manifest Translation Covariance). The fields φΛ(x)
transform under U(a, 1) as

ϋ(*> 1) ψaκ(x) U-Ha, 1) = φaK(χ + a) . - (2)

Eq. (2) should be formulated, more precisely, in terms of smeared
fields φxκ(f), and is then required to hold on the domain D. By this
postulate, Ό becomes translation invariant, i.e., U(a91) D = Zλ
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By translation invariance, the w-point Wightman functions [1] are
distributions in the n — 1 coordinate differences only. Smearing with
n — 1 test functions is then sufficient to yield well-behaved functions of
the remaining single coordinate. Therefore the expectation values
(ϊ 7, ψocκ(x) S7) e χ i s t f° r a n < states Ψ £D. In particular, any such state
yields a well-behaved c-number metric

9iic(x\Ψ) = (Ψ,9iic(x)Ψ). (3)

By translation invariance of Ψo, the (mean) vacuum metric gi]c(x\Ψ0)
is constant. Lorentz invariance and asymptotic condition should then
suffice to yield

(Minkowski metric), even for non-covariant gauge. Eq. (4) holds trivially,
of course, for covariant gauge.

Let us, moreover, assume all c-number metrics gi1c(x\Ψ) to possess
the same signature as ηilc. The (mean) light cone in state Ψ can then be
defined, for any space-time point, in terms of

II. Absolutely Space-Like Distances and Generalized Locality

In classical gravitation theory, the causal structure of space-time is
modified since Minkowski's metric ηik is replaced by the Einstein -
Riemann metric gi1c(x). Similar modifications have to be expected in a
quantum theory of gravity.

The causal structure of Minkowski space-time leads to the usual
locality postulate. Fields φΛ(x) and ψβ(y) are required to commute (or
anticommute) if the distance y — x is space-like with respect to ηik9 i.e.,
with the signature used here, if

W^-^)(0*-**)<O. (5)

In the presence of a quantized metric gi]c(x)} (5) does not necessarily
forbid signal exchange between x and y, since gi1c(x) instead of ηik

should determine the causal structure of space-time. Coordinate dis-
tances y — x fulfilling (5) are therefore called formally space-like. A
coordinate distance y — x is called absolutely space-like, if signal exchange
between x and y is forbidden even in the presence of the quantized metric
gijc(x). Locality assumptions are justified only for absolutely space-like
distances.

In the following heuristic discussion, expressions like gijc(x) aiak

with a fixed c-number vector a are considered formally as observables
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at the point x. A measurement of giΊc{x) aiak in state Ψ shall determine
whether a neighboring point x + dx, with dx parallel to a, can be causally
connected with x (case gik{x) aιak ^ 0) or not (case gik(x) aiak < 0).
By definition, infinitesimal distances dx are absolutely space-like if and
only if they are parallel to vectors a with gik(x) a1 aft negative definite
(and without eigenvalue zero). 0-number vectors a with this property
will therefore be called absolutely space-like directions. The crucial
problem here is, of course, whether such directions may exist at all or,
more generally, whether a field quantity like gi1c(x) aiak may be semi-
bounded. This is as yet an open question.

Because of translation invariance, gik(y) aiak is unitarily equivalent
to gik(x) aιak, and is thus negative definite if and only if gile(x) aiak is.
Therefore the absolutely space-like character of distances dx and direc-
tions a does not depend on the reference point x.

Finite absolutely space-like distances y — x can not so easily be
characterized in terms of gί k (x). Of course, they too are clearly translation
invariant. Moreover, the following statement is obviously true:

Finite distances y — x which have absolutely space-like direction, i.e.,
with gik(x) (yi — xι) (yk — xh) negative definite, are absolutely space-like.

Indeed, if signal exchange is already forbidden for all infinitesimal
distances dx parallel to y — x, it must be also forbidden for the finite
distance y — x itself. The inverse is not conjectured to hold. By definition,
a finite distance y — x might well be absolutely space -like even if it
does not have absolutely space-like direction, i.e., if signal exchange is
possible for some sufficiently small fraction of the distance y — x.

The foregoing considerations should be made more rigorous by
replacing the formal "observables" gik(x) αiαk by gik(f)αiαk with
suitable non-negative test functions f(x). More precisely, suitable self-
ad joint extensions of gik(f)αiαk have to be considered, provided they
exist and are, in some physical sense, unique. Whereas the smearing
with f(x) is unproblematic in view of the translation invariance of
absolutely space-like directions, the problem of self-adjoint extensions
is as yet unsolved.

With the usual motivation, we will now generalize the locality
postulate of axiomatic field theory [1] to the situation considered here.
(The correct spin-statistics relation has now, in the absence of a proof,
to be postulated.)

Postulate 4 (Generalized Locality). Smeared fields φx(f) and ψβ(g)
commute (or anticommute) on D, if f(x) g(y) Φ 0 for absolutely space-
like y — x only. —
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III. Quantum Fluctuations of the Light Cone

The main result of this paper may be summarized as follows. Denote
by A (resp. F) the set of all absolutely (resp. formally) space-like directions.
Then A is a proper subset of F, i.e.,

A ς F . (6)

The relation A Q F is obvious from Eq. (4). Let us therefore assume
A = F. Then a contradiction can be derived by methods due to EPSTEIN,

GLASER and JAFIΈ [10]. Since these authors consider the usual axiomatic
framework which does not contain the theory investigated here, we will
shortly repeat their argument, thereby convincing ourselves that the
usual additional assumptions (temperedness and manifest Lorentz
covariance of the fields) are not necessary for our purpose.

First of all, the well-known Reeh-Schlieder theorem remains valid
here since our postulates are already sufficient for its proof [11]. Accord-
ing to this theorem, the algebra of field polynomials smeared with test
functions which are zero outside some fixed open space-time region has
the vacuum Ψo as cyclic vector. Postulate 4 now implies the usual
locality postulate, since by our hypothesis A—F all formally space-
like distances must be absolutely space-like. From locality and Reeh-
Schlieder theorem follows by standard arguments (compare [1]): The
vacuum Ψo is separating vector for fields φaκ{χ) o r linear combinations
φ(x) thereof if they are smeared with test functions f(x) with compact
support, i.e., φ(f) Ψo = 0 for such f(x) implies φ(f) = 0.

Consider a linear combination of fields φ(x) with the following
properties [10]:

i) (Ψ, φ(f) Ψ)^0 for all ψ ζD and some fixed test function f(x)

with compact support,

ii) (W»q>(im = 0.
These properties immediately imply [10] φ{f) Ψo = 0, i.e., φ(f) = 0.

If i) and ii) hold for some set of test functions / (x) whose linear combina-
tions are dense in the whole test function space, they will imply φ(g) = 0
for all test functions g{x), i.e., φ{x) Ξ= 0. Let us at this point make the
additional assumption that the set of all non-negative test functions
with compact support is already large enough to serve this purpose.
(This assumption is satisfied, of course, for the test function spaces 3l
and ST.)

Choose now an arbitrary formally light-like direction a, i.e.,
ηikOίaP = 0, and consider φ(f) = —gi1c(f) a1 a* with an arbitrary non-
negative test function f(x) with compact support. By A = F, a formally
space-like direction b is also absolutely space-like, and is thus space-like
with respect to giJc(x\Ψ) for any state ΨζD. The formally light-like
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direction a is then, with respect to gik{x\Ψ), space-like or at most light-
like. This implies property i) above. Property ii) follows from Eq. (4).
Therefore giJc{f) a1 oft = 0 for all non-negative f(x) with compact support,
and thus gik(x) a{ak = 0 for an arbitrary formally light-like direction α,
i.e., gik{x) is conformally flat. Such gik(x), however, can not describe a
quantized field of gravity. This is the desired contradiction.

According to relation (6), the local light cone gιk{x) dxί dxk = 0 of
the quantized metric gik(x) exhibits quantum fluctuations which neces-
sarily extend to certain formally space-like directions. In other words,
the light cone at x of gik(x\Ψ) must include, for some states ΨζD,
certain points which are formally space-like with respect to x. Therefore
generalized locality (Postulate 4) is, at least for sufficiently small dis-
tances y — x} a weaker assumption than the usual locality postulate. I t
may be even vacuous, if there are no absolutely space-like distances at
all. (Note, however, that the non-existence of absolutely space-like
directions does not necessarily imply the non-existence of absolutely
space-like distances.)

The linear static approximation of the classical Einstein theory
yields, in harmonic coordinates, the local velocity of light

c' = c(l + 2F/c2) (7)

with Newton's gravitational potential F (see, e.g., [5], Ch. 5, § 55). For
non-negative mass densities, F ^ 0 and therefore c' ^ c, i.e., formally
space-like directions remain space-like also in the gravitational field.
The relation (6) excludes such possibility for quantum theories of gravi-
tation which satisfy our general assumptions. However, this is not too
surprising in view of the approximate nature of the classical result (7)
and the non-existence of positive mass densities in quantum field
theory [10].

Moreover, harmonic coordinates define a covariant gauge, and the
quantized version of the theory [7] therefore does not belong to the class
of theories considered here. In covariant gauges, manifest Lorentz
covariance of gιk{x) implies Lorentz invariance of the set A of abso-
lutely space-like directions. By this, together with Eq. (4), either A = F,
or A is empty. Since our result (6) is not likely to apply to this case, we
can not yet exclude the possibility A = F for such theories.
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