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Abstract. In the algebraic formulation the thermodynamic pressure, or free
energy, of a spin system is a convex continuous function P defined on a Banach
space 33 of translationally invariant interactions. We prove that each tangent
functional to the graph of P defines a set of translationally invariant thermo-
dynamic expectation values. More precisely each tangent functional defines a
translationally invariant state over a suitably chosen algebra 21 of observables,
i. e., an equilibrium state. Properties of the set of equilibrium states are analysed
and it is shown that they form a dense set in the set of all invariant states over 51.
With suitable restrictions on the interactions, each equilibrium state is invariant
under time-translations and satisfies the Kubo-Martin-Schwinger boundary condi-
tion. Finally we demonstrate that the mean entropy is invariant under time-
translations.

1. Introduction

The purpose of this paper is to continue the general analysis of quan-
tum spin systems which was presented in [1, 2] and [3]. In [2] we gave
an algebraic formulation of the mathematical framework of quantum
spin systems and showed that the thermodynamic pressure, or free
energy, P could be considered as a convex continuous function defined
on a Banach space of translationally invariant interactions. Further it
was shown that the pressure also served as a generating functional of
equilibrium states in the sense that the functional derivatives, i.e., the
tangent functionals to the graph of P, determined translationally in-
variant states over a suitably chosen (7* algebra 21 of observables. The
states introduced in this manner play the same role as the more con-
ventionally used correlation functions or thermodynamic expectation
values. The results of [2] were, however, incomplete in the sense that
we could only rigorously establish that P generated equilibrium states
under certain restrictive conditions. In particular it was shown that if
the interaction Φ were such that the tangent functional to the graph of
P at Φ was unique then this tangent functional determined an equilibrium
state. It was further shown that the equilibrium states obtained under
such conditions described pure thermodynamic phases. This latter result
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was derived by establishing and using a variational principle for the
pressure which involves the mean entropy introduced in [1]. In the
following we complete the results of [2] by proving that each tangent
functional to the graph of P determines an equilibrium state, thus
covering the situation when mixtures of phases can occur. Further we
establish a variational principle for the mean entropy which involves the
pressure and also show that every translationally invariant state over 21
can be approximated by physical equilibrium states. Next we extend the
results of [3] by proving that if the interactions are such that time trans-
lations correspond to a one-parameter group of automorphisms of 21 then
the corresponding equilibrium states are invariant under such transla-
tions and satisfy the Kubo-Martin-Schwinger boundary condition.
Finally, we demonstrate that the mean entropy is invariant under time-
translations.

It should perhaps be pointed out that whilst we work in an essentially
quantum mechanical setting the results we derive also have relevance
for classical spin systems and lattice gases. In fact the analysis of [1, 2]
was based on earlier works [4, 5, 6] in a classical framework; many of
our present results can be directly transcribed to this framework.

2. Convexity Theorems

The aim of this Section is to derive two mathematical theorems con-
cerning the tangent planes to the graph of a convex function the physi-
cal application of these results will be dealt with in the following Section.

Lemma 1. Let X and Y be complete metric spaces and let Y be separable.
If ZC X x Y is a residual set, i.e., the complement of a set of first category,
then there is a residual set XτCX such that for all x ζ X1 the setZ n ({x} x Y)
is a residual set in {#} x Y.

Proof. We may assume that Z is open and dense and then it is suf-
ficient to find Xx C X such that Z r\ ({x} x Y) is dense in {x} x Y for
all x ζ Xv Let alf α 2 . . . be a denumerable dense set in Y and define Wι by

ζZ; d(Π2(z); a<) <

where Π1 (z), Π2(z) denote the co-ordinates of z and d(. .) the metric in Y.
Clearly Wi is open and dense. If xQ ζ Π W\ it follows that for each i there

is a yi £ Y such that (xOf y^ £ Z and d {yt a^ < -j-. Then {y{} is dense in Y.

Corollary. Let 9ί be a Banach space and Y a subset of the closed unit
ball in 9£ which is a residual set. Let ω ζRbea unit vector. It follows that
for ε> 0 there is a unit vector ω' with ||ω — ω ' | < ε such that

{A; λω' ζ Γ, - 1 ^ λ ^ 1}

is a residual set in [— 1, 1],
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In the following we will need the notion of the tangent functional to
the graph of a convex function; a tangent functional is essentially a tan-
gent plane normalised suitably. If / is a convex continuous function
defined on a Banach space 9ί an element yx ζ Qί' is said to be a tangent
functional to the graph of / at x if

f(x+ω)^f(x) + ya(ω), ω ζ % .

If / is diίferentiable at x the only tangent functional at x is the derivative

Theorem 1. Let f be a convex function defined and continuous on a

neighbourhood of zero in a separable Banach space 9ί. Let y ζ9C be a tangent

functional at zero to the graph of /. It follows that y is contained in the

weak * closed convex hull of the set of tangent functionals % defined by

% = {z ζ 9ί' there exist xx -> 0 (in norm) such that f is differentiable at

each xx and weak * l imD/# α = z}.
oc

Proof. From convexity we may directly deduce that for a sufficiently
small neighbourhood "T of zero there is an M > 0 such that \f(x) — j(y)\
^ M ||x — y\\ for x,y ε Ψ*. In particular it follows that \y\ ̂  M and
||zII ^ M for all z ε tζ. Now assume the theorem is false; then there exists
a weak * continuous linear functional on 9ί\ i.e., an element of 96, which
strongly separates y from ^ . In particular there exists a unit vector ω ε QC
and a real number m such that y(ω) > m and z(ω) ̂  m for all z ε %.
Since % is bounded we can replace ω by any ω' sufficiently close to it
and still obtain separation. But as / is convex it is differentiable on
a residual set and hence, using the preceding corollary, we see that we
may assume that / is differentiable at λω for all A in a residual subset
of [— 1, 1]. By weak * compactness we can choose a net /lα->0 and
λΛ ^ 0 such that / is differentiable at each λxω and Dfλιχω converges in
the weak * topology on 9ί\ Since limDfλΰt ω £ ̂  we have limZ)/Λαω (ω) ̂  m,

OC Oί

i.e.,

However, since λa ^ 0 the slope of any tangent to /(Λω) at zero must
be majorised by the left-hand side of (1). But, since y is a tangent func-
tional to the graph of / at zero, there is a tangent line to the function
λ-^f(λω) at λ — 0 with slope y(ω). Hence y(ω) ̂  m. But this con-
tradicts our assumption y (ω) > m, and thus the theorem is proved.

Lemma 2 1 . Let f be a non-negative G°° function defined on Bn then the

derivative Of of f satisfies the inequality

1 The proofs of this and the following lemma are based upon suggestions by
D. ETJELLE.



330 0. E. LAKFORD III and Ό. W. ROBINSON:

and hence
min (l + \\x\\)\\Df\\(x) = O
Xξltn

where the \.\ refers to the usual Euclidean norm on Rn which is also
identified with its dual.

Proof. We may assume \\Df\\ > 0 for \\x\\ ^ a because the contrary
assumption leads trivially to the desired result. Now, let x(t) be an arc
in Rn with x (0) = 0 and such that

We note that for t > 0 we have \x(t)\ ^ t and

t
0

a

= f(O)-fdt\\Df\\(x(t))

a

dt
+ t'

0

A simple rearrangement yields the desired result.
Lemma 3. Let fbea convex continuous non-negative function defined on

Rn and let a>0 be given. There is an x ζ Rn, with \\x\\ ^ a and a tangent
functional hx to the graph of fat x such that (1 + \\x\\) \\hj\\ < 2/ (0)/log (1 +α).

Proof. Let ρn be a sequence of positive C°° functions of compact
support with the following properties

1. f dxρn(x) = 1

2 Qn* f ~^ f uniformly on compact sets

3. (<?»•/) ( 0 ) ^ 2 / ( 0 ) .

Now ρn * / is non-negative, C°°, and convex; therefore, there exists an
xn with ||a?J| ^ a such that

by lemma 2. Next, possibly passing to a subsequence, we can assume
xn -> x and hn = D^ (ρn * /) -> hx. We then have

d +
But, by convexity, we also have

(e * /) to. + *) ^ (β
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and therefore

f(x+δ)^f(x) + hx(δ)
i.e., hx is a tangent functional to the graph of / at x. This completes the
proof of the lemma.

Theorem 2. Let fbea convex continuous function defined on a separable

Banach space 9ί and let h £ 9ί' have the properties that h(x) ^ / (x) for all

x ξ 9£. It follows that h is contained in the weak * closure of the set of tangent

functionals to the graph of /.

Proof. We can suppose, without loss of generality, that h = 0. Now
let ω1} ω2,. . ., ωΛ £ 9£ and ε > 0 be given. We have to find an x ε 9£ and
a tangent functional yx to the graph of / at x such that ^(co^l < ε for
i = 1, 2, . . ., n. Now by the Hahn-Banach extension theorem, it suffices
to find an x in the linear subspace §£ of 9£ spanned by ωv . . ., ωn and
a tangent functional yx ε 96' such that ^(ft^)) < ε for i = 1, 2, . . ., w,
i.e., we can, effectively, assume that 9ί is finite dimensional. The proof
of the theorem is thus immediately given by lemma 3.

Note that x and the tangent functional yx can be chosen such that
we not only have \yx((ύi)\ < ε for i = 1, 2, . . ., n but also 1 (̂̂ )1 < ε.
This remark, which will be of importance in the next Section, follows
from the estimate given in lemma 3.

3. Equilibrium States

In this Section we apply the foregoing results to the characterization
of the equilibrium states of a quantum spin system and to the derivation
of certain properties of these states. The characterization we obtain
completes earlier results obtained in [2] and [3]. We begin by recalling
the mathematical framework associated with a quantum spin system.

A quantum spin system is described in terms of a simple separable
C* algebra 21 of quasi-local observables and a collection {21 (A)} of (7* sub-
algebras of 21, where Λ takes values on the finite subsets of Zv. Elements
of the 21 (A) are called strictly local observables. The algebras 21 and
210), A C%v, satisfy the following properties

2. 21 is the norm closure of U v

3. [2l(A)> 3102)] = 0 if Ax r\ A2 = 0
4. the group Zv of space translations is a subgroup of the auto-

morphism group of 21 and the action of these automorphisms is such that

A ε 2l(Λ.) -> xxA ε Qί(A + x), xζZv

and

l l t ^ r ^ l l η ^ ^ O , A,Bε<Ά and x £Z>
23 Commun. math. Phys., Vol. 9
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5. for each ΛcZv, $l(Λ) is isomorphic to the matrix algebra of
bounded operators 93 ($)A) o n a finite dimensional Hubert space ξ)Λ.

The states, i.e., the normalized positive linear functional over 21,
form a weakly compact convex subset E of 2Γ and the translationally
invariant states, i.e., the states such that

ρ(τaA) = ρ(A), AεQί, xεZv

form a weakly compact convex subset E r\ L%v of E. The extremal
elements S(E r\ L^v) of this latter subset enjoy many remarkable pro-
perties of an ergodic nature (see for example [7] and [8]) which allow
the physical interpretation that they describe single thermodynamic
phases. If we consider a state ρ restricted to any subalgebra 21 (A) then,
by property 5. above, the state defines a positive operator ρΛ on $)Λ

such that

T r ^ ( ρ J = l and TT^Λ{QΛA) = q(A)

for A £21(̂ 1) [here and in the sequel, we tacitly identify 21 (/I) and
93 (&i)]. The density matrices ρΛ are related by certain compatibility
conditions, but for our present purposes it suffices to note that we can
define a local entropy Sρ(Λ) of a state via

Sβ(Λ) = - T r ^ ρ ^ o g ρ Λ

and, if ρ is an invariant state, i.e., ρ ε E r\ L^>, a mean entropy via

where N(A) is the number of points in the set AcZv and, for simplicity,
here, and in the following, we take the limits over parallelepipeds whose
sides each tend to infinity. The mean entropy defined in this manner is
a non-negative affine upper semi-continuous function on E r\ L^v (for
details, and proofs of these statements, see [1]).

Physically we consider the points x ε Zv as sites of particles or "spins",
which interact together. In our rather abstract setting we introduce an
interaction Φ as a function from the finite sets X C Zv to 21 with values
Φ (X) £ 21 (X). We assume

1. Φ(X) is Hermitian

2. Φ(X + a) = τaΦ(X) for a£Zv

With respect to the norm introduced in the last conditions the inter-
actions Φ form a separable Banach space 93. The finite range inter-
actions, i.e., those interactions such that for X$ 0 Φ(X) = 0 unless

for some finite A, form a dense subset 93OC 93. It is convenient to
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introduce an auxiliary Banach space $βl9 which we leave arbitrary up to
the assumption that 33OC 33X C 93 and 93O is dense in S 1 # The interaction
energy of a spin system confined to the finite set A is defined for
Φ £ 93X by

UΦ(A)= Σ W .
XCΛ

We also introduce the "interaction energy" at the origin by

A _ y Φ(X)
φ ~ *-

The following theorem gives information concerning the equilibrium
states of spin systems with interactions Φ ζ 23X in part the theorem
summarises results already derived in [2].

Theorem 3. 1. // Φ ζ 2^ then the thermodynamic pressure

exists. The function Φ -> P(Φ) is convex continuous on the Banach space

\P(Φ) - P(Ψ)\ ^ | |Φ - Ψ\\ , Φ, Ψε &!.

2. // ocφ ζ 93{ is a tangent functional to the graph of P at Φ, i.e.,

P(Φ +Ψ)^ P(Φ) - ocΦ(Ψ) for all Ψε ^

then ocφ determines a state ρφ £ E r\ L%v through the relation

The states ρφ defined in this way will be called equilibrium states.

3. // T C 93χ is the set of Φ such that the graph of P has a unique tangent
functional at Φ then T is a residual set in 93j and for Φ ε T the equilibrium
state QΦ determined by the tangent functional ocφ is ergodic i.e.,
QΦ ε ${E r\ L£v). Further we have for Φ ε T the relation

= Hm TJ-Uφ(Λ)) THΛ ({e~™ ™) . (2)

4. The pressure P, the mean entropy S, and the set of equilibrium states
are related as follows

φ)= sup {S(ρ) - ρ(Aφ)} , Φ

where ρφ is any equilibrium state associated with Φ. The supremum in the
last expression is reached by a unique state ρφ if, and only if, Φ ε T.

5. The pressure P, the mean entropy 8, and the space 93i of interactions
are related as follows

= inf {P(Φ) + ρ(Aφ)} for ρ ^
Φ€93
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6. The equilibrium states are weak * dense in the set E r\ L%v of all
translationally invariant states over 21.

Proof, Statements 1. and 3. together with parts of statement 4. are
proved in [2]. In particular it is shown in this reference that the maximum
principle (3) holds and that, for Φ ε T, the tangent functional ocφ deter-
mines an ergodic equilibrium state ρφ, the relation (2) is valid, and ρφ

gives the unique supremum in (3). However it now follows directly from
theorem 1 that a general tangent functional ocφ determined an equilibrium
state ρφ; in the present context theorem 1 states that a tangent func-
tional ocφ with Φ $ T can be approximated weakly by convex combina-
tions of tangent functionals ocΨ with Ψ ε T. The facts that in general
ρφ gives the maximum in (3) and that this maximum is unique only if
Φ ε T follow from considerations reproduced in [2] and [3]. It remains
to prove statements 5. and 6. we begin with the latter.

Let ρ ε E r\ L^v be any invariant state then from (3) we see that

P(Φ) 2s S(ρ) - ρ(Aφ) ^ - ρ(Aφ)

where we have used the non-negativity of 8 to obtain the second inequa-
lity. Thus the function Φ-> α(Φ) = ρ(Aφ) is linear and its graph lies
below the graph of P. Hence by theorem 2 α lies in the weak * closure
of the set of tangent functionals to P and thus by statement 2. of the
above theorem we obtain the desired result.

To prove statement 5. we note that by (3)

P(Φ) + ρ(Aφ)-8(ρ)^0 (4)

for Φ ζ 932 and ρ ε E r\ LχV. However, given ε > 0 we can choose Φ ζ 33j
and ρφ such that

8(ρ) + y > S(ρφ) = P(Φ) + Qφ(Aφ) (5)

and

\ρΦ{Aφ)-ρ(Aφ)\<\. (6)

Here we have used the upper semi-continuity of S and the remark at the
end of the proof of theorem 2. Combining (4), (5) and (6) we find with
this choice of Φ

This establishes the desired property and completes the proof of the
theorem.

In the foregoing we have left a certain arbitrariness in the definition
of the Banach space 93X. In the following, however, we will consider one
specific Banach space which we define as the set of interactions Φ £ 93
which have the property that

IIi = Σ ΪΦ&n exp{N(X)} < + oo . (7)
X
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For this space of interactions it is possible to discuss the time develop-
ment of the spin system. In particular, for each Φ ε 93i there exists a one-
parameter group of automorphisms of the algebra 21 of quasilocal ob-
servables corresponding to time translations. We denote the action of
this group by A ε 21 -> τf A ε 21 for t ε E; the action is defined by

τfA=]imeίtuφWAe-ίtuφW t ε E, Aε<Ά, Φε^.
Λ—>oo

(The existence of this limit was established in [3] for a dense subset of
23X; RUELLE [9] has shown that the arguments of [3] can be improved
to establish the existence for all Φ ε 93X.)

Theorem 4. // Φ ε 931? the space of interactions whose norm is given by
(7), then any equilibrium state ρφ, defined by a tangent functional to the
graph of the pressure P at Φ, has the following properties;

1. ρ φ is invariant under time-translations, i.e.

ρφ(tfA) = ρφ(A) for all Aε% teE.

2. ρφ satisfies the Kubo-Martin-Schwinger boundary condition. Ex-
plicitly, for A,Bε% the function t-> ρφ(A(τf B)) extends to a bounded
continuous function on the strip 0 ^ Im{ί} ^ 1 which is analytic on the
interior of the strip, and we have

Proof. Let T C 23i be the set of interactions at which the graph of
P has a unique tangent plane. For Φ in T the properties stated in the
theorem have already been proved in [3]; we will obtain the general
statement from this result by an approximation argument using theo-
rem 1. It is easy to see that weak limits of convex combinations of states
satisfying 1. and 2. again satisfy 1. and 2.; hence, by theorem 1, it will
suffice to prove the theorem in the special case in which

ρφ = lim ρφ
α

where Φα is a net in T converging in norm to Φ and ρφ(χ is the state
determined by the unique tangent plane to the graph of P at Φα. More-
over, we can assume that A and B are strictly local the assertions for
general elements of 21 are then obtained by a straightforward limiting
argument.

It follows easily from the estimates in [9] that

Urn \\τfA - τf«A\\ = 0 .

uniformly for t in any bounded interval. Hence, using the invariance of

ρφχ under τfx, we get

\ρΦ(τfA) - Qφ{A)\ ^ \ρΦ(τfA) - ρΦχ(τfA)\

+ \\τfA-τf«A\\ + \ρφχ(A)-ρΦ(A)\

and the right-hand side goes to zero as α -> oo. This proves 1.
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To prove 2., we first remark that

where
B'. = i lim [U9a(A),B]

and that ||i?£|| is bounded with respect to α for any fixed B. Hence,

βΦΛ(A(τf*B))

is a net of continuous functions on the strip 0 ^ Im{ί} ^ 1 which are
holomorphic on the interior of the strip and whose derivatives are
bounded uniformly in α and in t. Since

lim ρφχ(A (τf«B)) = ρφ(A (τfB))

for all real t, this net converges pointwise to a function continuous and
bounded in the closed strip, holomorphic on the interior of the strip,
with the right boundary values, so 2. is proved.

4. Conservation of Entropy

Theorem 5. Let Φ s S j and let ρ be a translation-invariant state over
21. For any t ε R, let the state ρt over 2ί be defined by

Then, S(ρt) = S(ρ) for all t.
Proof. By reversibility, it will be sufficient to show that 8 (ρt) ^ 8 (ρ),

and, since 8 is upper semi-continuous, this will follow if we can show
that ρt can be approximated arbitrarily well by states with the same
entropy as ρ.

If a is a strictly positive integer, we let

Λ(a) = {(%, . . ., nv) ζZv; - α < % ^ a}

Γa = {(2%α, . . ., 2nva)',n1,. . ., nv

and we let xv x2, . . . be an enumeration of the elements of Γa. Define
a one-parameter group of automorphisms aτf of 21 by

= lim expίit Σ τXjUφ(Λ(a))) AexpL it £ ^ϋφ(A(a))\ .

This one-parameter group of automorphisms corresponds to an inter-
action which differs from that defined by Φ only in that all interactions
between translates of A (a) by different elements of Γa are suppressed.
Note that:
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1. If Aε^ί(Λ(a)),"τf(A) = exp{itUφ(Λ(a))}A exp{- itUΦ(Λ(a))}.
2.IixεΓa, τx»τf = «τf τx .

Let

ρt(A) = Q(tW)

then aρt is a state over 21 invariant under the subgroup Γa of Z" and its
entropy is equal to that of ρ. Therefore, if we define

°^ ) = W Σ'Qt(τmA),

aρt is invariant under Zv and has the same entropy as ρ. Taking into
account the remarks at the beginning of the proof we see that all we
have to prove is that

lim a§t(A) = ρt(A)
a—>oo

for all strictly local A in 21.
By the translation invariance of ρ,

W χβΛ(a)

so it will suffice to prove

Since 1̂ is strictly local, the terms in the sum on the left with τx(A)
$ 21 (Λ (a)) become negligible as α-> oo, so we can replace the left-hand
side by:

] i m -Λfk- Σ exp{itί7φ(Λ(α) - x)}A exp{- itϋφ(Λ{a) - x)} .
a+oo JS{a) )

Thus, to complete the proof it will suffice to prove the following assertion:
For any Aζ% any ί, and any ε > 0, there is a finite subset A of Zv

such that, whenever Af ̂ >A,

\\exp{itϋφ(A')}A exp{- itUφ(Λ')} - τf(A)\\ < e .

This assertion is equivalent to the assertion that, for any t, any A, and
any increasing sequence Λn of finite subsets of Zv whose union is all of Zv,

lim exv{itUφ(An)}A exp{- itϋφ(Λn)} = τfA .

For t small and A strictly local, this follows from the power series ex-
pansion for τf (A). For t small and general A, the assertion follows since
a sequence of isometries on a Banach space which converges strongly on
a dense subset converges strongly everywhere. Finally, the assertion for
general t is proved by remarking that, if a sequence of isometries on
a Banach space converges strongly, the sequence of ntli powers converges
strongly to the nth power of the limit.
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