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Abstract, A classification of "first order" deformations of Lie algebra represen-
tations by the use of a cohomology group is studied. A method is proposed for
calculating this group for the case of algebras which are semi-direct products. The
role of unitarity of the representations is exhibited. Applications are made for the
Poincare and E(3) algebras.

Up to now, only the "first order" deformations of Lie algebra re-
presentations (connected or not with a deformation of the Lie algebra
itself), seem to allow some possibilities of classification.

We recall in part I, how this is achieved by the introduction of a
cohomology group H1^, L(V)) where V is the (possibly infinite-dimen-
sional) representation space. When ^ is a semi-direct product K.T of
a semi-simple and compact algebra K by an abelian ideal T, a general
method can be used to determine this group H1.

The procedure is exposed in part II; it is nearly the same as that
which may be used for the computation of the finite dimensional re-
presentations of such algebras [1]. The application to the motion algebra
E(S) is straightforward, if one considers only the deformations leaving
the rotation subalgebra and it representation fixed. For the Poincare
algebra we shall see, using the "Lorentz basis" that the same method
can be applied (even with a non compact K).

In all the cases, we do not claim that the method used here is com-
pletely rigourous for the infinite dimensional representations — since
topological questions should be discussed in that case — nevertheless we
think it has at least an heuristic value.

Our main result is that the dimension of various interesting cohomo-
logy groups H}(@9 L(V)), restricted in order to produce unitary de-
formations, is one on B. This is true for SL(2, E), V being a representa-
tion space for the continuous series, for E (3) and the Poincare algebras,
with the representations [m, s], m > 0. It results for instance in the
Poincare case that a deformation of such a representation [m, s], m > 0
with a fixed algebra can always change the mass, the spin being "rigid".
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It results also that a ' 'first order" deformation of the representation
associated to a deformation of the algebra1 (Poincare-> De Sitter etc.)
has always the general form:

+ t [A, y^TM for T^T
of which the "Gell-Mann formula" is a particular example (and even the
only "rational" example).

Some remarks about the deformations of the representations have
been formulated in [2] (whose notations will be used here), and also in
various articles of HERMANN [3]. For the deformation of the algebras
alone, we refer to [4, 5, 6], and for the main cohomological definitions
and results to [7] and [8].

I. Some Generalities

1, Lie Algebras Deformations

Let & — ([ ], V) be a Lie algebra, V its underlying vector space, and
[ ], the Lie algebra law.

A deformation of ^ is a family of Lie algebras defined on the same
space F, but with a law depending of a parameter t:^t = ([ ] t , V) and
such that:

We always assume that it is possible to expand it, at least in some
neighbourghood of t = 0:

[a, y]t = [*, y] + Wi(*> y) + *2^2(*> */) + ••• *,y£V. (i.i)
The functions Ft have to be antisymmetric, and to verify a set of relations
in order to satisfy the Jacobi condition. [These "integrability conditions"
can be interpreted geometrically and can be expressed by an element
oiH* (&,&).]

2. Deformations of Representations

Let <p be a representation of ^ . (p is an homomorphism of & into
a space L(W). (One says also that W is a ^-module.) A deformation
cpt of cp, associated with a deformation ^t of ^ , is a family of maps:
V-+L{W) such that:

<p*-T^<r<p> ( L 2 )

Vt, V*, y £ V : <pt([x9 y]t) = [Vt(x), <pt(y)]L(w) • (1.3)

We shall also assume that the following expansion is valid:

cpt(x) = <p(x) + tcp^x) + t*<p2(x) + • • • . (1.4)

A deformation is said of the first order if (p2 — cp3 — • • • = 0.

1 Without "first order" term: Fv Ex: [P^P',] = ± i^L^ and V
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Through (1.3), the functions 9̂  and Ft have to satisfy a set of
conditions:

S <P,(FA*,v))= E [<PAX), <ps(y)] • (1.5)
p + q = n r + $ = n

p,q — 0,...n r, s = 0, s, ...n

These "integrability conditions" can also be interpreted in different
ways — in particular they are linked to the group H2(@, L(W)). In the
following we shall restrict ourselves to the first order condition (n = 1):

^x, y)) = [cp^x), <p(y)] + [<p(x), (pAy)] — (p±[x, y] . (1.6)

3. Equivalence of two Sets (@tJ cpt) and (&'ti cp't) [2]
Let (&t, (pt), (&''t, <p't) be two deformations of the same algebra ^

and representation (p.
We shall say they are equivalent if there exist a couple (Tt, At)

belonging to (QL{V), GL{W)) such that:

n; At= £ t«An
( l / j

In the particular case To = Ao = 1, the condition (1.7) gives at the first
order in t:

) + I ^ o W ^ i ] • (1.8)

4. Definition of &(&, L(W))
W being a representation space for @, there is a canonical way to put

a ^-module structure onto the space L(W), i.e. to define an action
of <& into L(W):
for A £L{W), x £<&, let x.A be the element of L(W) denned by:

x.A = [cp(x),A]L(w) . (1.9)

Z1^, L(W)): the 1-cocycle-elements of Z1 (&, L(W)) are the functions
^ of <& into L(T̂ T) satisfying the condition:

d y) being defined by the general formula:

dy)(x,y) = x. ip{y) — y. y>(x) — ip([x,y]) (1.10)

or more explicitly, using the definition of x. A in our case (see 1.9) :

y)= [q>(x)9y)(y)]—[<p(y)9y)(x)] — y)([x,y]) . (1.11)

, L (W)): the coboundaries are the functions ip : & -> L (W) which
may be put under the form:

yj(x) = x.A (= dA (x) by definition) . (1.12)
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Here, this means:
ip(x) = [<p(x),A] .

Using the Jacobi identity, it is easy to verify the inclusion B1 C Z1-
The group H1^, L(W)) is the quotient space:

5. Occurence of H1^, L(W)) in the Deformations of Representations
Let us first notice that the conditions (1.6) and (1.8) can now be

written:

) + dA^x) . (1.8')

a) Fixed Algebra Case

If one considers inly the deformations of the representations of a
given Lie algebra, it means that all the Fi (i =j= 0) defined in (1.1) are zero,
and the condition on cpx is, from (1.6'):

&<h(*> V) = 0 , i. e. cp, $&(&, L(W)) . (1.6")

The equivalence of two deformations (pt and cp't becomes now the usual
equivalence of two representations; since with Tt = 1 the Eq. (1.7) is:
Af1 <pt(x) At = (pl(x), and at the first order, one gets:

cp[(x) - cp^x) = dA^x) , i. e. (p[ - cp, g B\^} L(W)) . (1.8")

Then the elements (px leading to inequivalent deformations of op have
to belong to W(&,L(W)).

In particular, one knows that if H1^, L{W)) = 0, the representation
cp is rigid: all deformations are equivalent to the initial representation.

b) Particular Lie Algebras Deformation

In the particular case Fx = 0, (but F2 etc. =j= 0), cpx is always a cocycle.
It is the usual way of deforming the Poincare algebra into the JJe Sitter
algebras. However in that case, the representation is not in general rigid
even with H1^, L(W)) = 0, or more generally a coboundary does not
give necessarily a deformation equivalent to the initial one (see 1.8'). An
example is the "Gell-Mann Formula".

c) Deformation with a Given Lie Algebra

Let us assume that one has constructed two deformed representa-
tions cpt and cp't, associated with the same Lie algebra deformation @u

and let us assume also that: q>t — cp't (mod tn), i. e. the two deformations
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are different only by terms of order ^ n. Then cp'n — cpn is a cocycle.
Moreover if <p'n — (pn is a coboundary, then the difference between <pt

and (p[ can be rejected to the next order.
The first part is a consequence of the conditions (1.5) which can be

written: dcpn~ S terms involving FifFn, and 9^ for i < n. For the
second part: if {cpn— (pn) (x) = [q)(x), A], let us define ^ = etnA, then
9̂ ' and ^ ^ ^ J " 1 are identical modula tn+1.

6. The Semi-Simple Lie Algebras. One Example

With the definition of equivalence given in I — 3, it is easy to prove
the following result [2]:

/ / 0 is a Lie algebra such that H2(&,&) = 0 and &(&, L{W)) = 0 for
some representation cp into a space W, then all the deformations (^ti <pt)
of (@, <p) are equivalent to the initial set (@9 <p).

This is the situation for a semi-simple Lie algebra, and a finite
dimensional representation space W. Let us now show on one example,
that it is no longer the case when W is an infinite dimensional space.

Let us consider the deformation of SL(2,R) representations, the
algebra being fixed.

HERMANN has proved that the discrete representation of SL(2,R)
is rigid (a result in agreement with the intuitive picture) [3]. With the
restriction of making always a deformation into the unitary representa-
tions, a direct computation of H1 for the continuous series (relative to
the compact generator J3), gives that:

IP(8L(2,B),JB9L(W))

is a one dimensional space on E.
(The notation means that we require ^(Jg) = 0).

This proves that the continuous series can be deformed with J3 fixed,
in essentially one direction (infinitesimally), as it can be also expected
from a geometrical point of view. (Details are given in appendix A.)

II. Determination of HX(9S9 L(V))

In view of the application to the Euclidian and Poincare algebras,
we shall first give a general way of constructing the group H1, when the
algebra is a semi-direct product K.T.

The procedure is suitable when K is compact, or in a non-compact
case, when the representation is finite-dimensional. However, we shall
see that it applies also to the Poincare case with an infinite dimensional
representation.

0 being of the form K.T with K semi-simple, and T abelian, we
denote by X the elements of T, and Y those of K.
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Let us call V the representation space, and cpQ the representation of ^ .
L(V) has the ^-module structure given by (1—9).
When V is a finite-dimensional space, the Serre-Hochschild theorem

[9] simplifies the task, in particular by restricting the problem to the
irrelative cohomology. (Since it gives H1^, L(V)) ~ Hl(T,L{V))K.
However, in the simple case of H1, it is easy to give a direct proof of
that result.

Let cp be a one-cochain: cp £ L(%?, L(V)). The restrictions of cp respec-
tively to T and K are denoted by cpT and cpK. From the condition of
cocycle (1.10), one gets:

(2.1)

T.<pT(X)-X.<pK{7)=<pa,([Y,X])

using the notations defined by (1.9).
K being semi-simple, HX(K, L(V)) = 0, and cpK is also a coboundary:

1A £L(V) such that cpK{Y) = Y.A(= [<po(Y),A] = dA(Y)).

Now the map <p = cp — SA belongs to the same cohomology class than
cp, and verifies:

a) (pK(Y) = 0 V7(Z

b) <pTt&(T9L{V)) (2.2)

c) Y.<pT(X) = <pA[Y,X])

[always with the notation (1.9)].
The two last conditions mean exactly that: (pT £H1^, L(Vj)K,

(which is the Serre-Hochschild theorem).
Let us examine now the restrictions resulting from the two last con-

ditions. In the following, we shall use the notation cp instead of cpTi cp0

being always the representation of ^ .
Condition c). We proceed in the same way as in [1]. Let us emphasize

here that there is nothing more than the usual Wigner-Eckart theorem;
in fact the principle is the following: by (c) cp (X) is transforming under
the subgroup K exactly like the representation cpo(X) itself, hence it is
clear that cp (X) can allow transitions only between some given represen-
tations of K.

Let us formulate it like in [1]:
T is a ^-module for the adjoint representation, we assume that it is

a simple module D* (it is the case for E(3) where T ^ D1 and for the

Poincare algebra where T ^ B% ?)•
V is a jfiT-module: by restricting the representation cp to K.
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First we add the following supplementary assumptions:
— K is compact, and cp is a unitary representation

or — K is non compact, and cp is a finite-dimensional representation.
In both cases, the following decomposition is valid:

F = 0 Di dim D* < oo ,
i

Dl being an irreducible representation of K. (It comes from the semi-
simplicity of K in the second case).

We restrict ourselves to cases of multiplicity one for each Dl which
occurs in the decomposition. (The general case can be also considered,
according to [1], but with some more complicated notations, and we do
not need it in our examples).

T and F being i£-module, L(V) is a i£"-module and therefore the
space L(T, L(V)) has a canonical structure of ^"-module, defined by

where (2.3)

(Y.f)(X)=Y.f(X)-y>([Y,X]) * ^

Elements tp such that Y.y) = Q are said iT-in variants. The space of
invariant elements is denoted by [7]:

L(T,L(V))K

with these notations, the condition (c) can be read now:

tp£L(T,L(V))*. (2.4)

Using the canonical isomorphisms:

L(V) ^ F* ® V= 0 (JO** 0 I » ) .

The map <p(T) £ L(V) can be decomposed into blocks cp^(T)
giving transitions between Dl and Dj, and from (2.4):

qfii £ (£)«* 0 ])i* 0 Di)K m (2.5)

Here the K- in variance means: projection of the product onto the trivial
representation D° of K. Using again the canonical isomorphisms, one gets:

where 6^ is a basis of D*, and Xe £D0C= T. In other words, the cpji

are simply the Clebsch-Gordan coefficients used in the coupling of

In the particular case of the E (3) and Poincare algebras, the multi-
plicities of the representations appearing in the product decomposition
is always one. When such a situation is realized, the space defined by
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(2.5) is one dimensional. But we already know an element of (2.5): the
initial representation cpQi restricted to T, obviously satisfies the con-
ditions (c) and (b).

Hence, with the above assumption over the product decomposition,
it results that:

(/>>* = &'($, (2.6)

where Cji is an arbitrary constant depending only on the representations
Di and D*.

Restrictions on the coefficients Cji come from the condition (2.2) b.
Condition b). I t is the condition: op ^ZX{T, L(V)), i. e.

[with the notation (1.9), or:[with the nota

[ftiD.fd'
Let us "translate" first this condition in a langage very similar to the
preceeding one.

For an arbitrary ip £L(T, L(V)) let us define the antisymmetric
bilinear form, B ̂ L(T A T, L(V)):

B(X,Xf) = X.ip(X') — X'.y)(X) . (2.6)
Notation (1.9).

There is also a canonical iT-module structure on the space
L(T A T, L(V)), it is defined by:

Y£Z-> Y.B(:L(TA T,L(V))
with:
(Y.B) (X, X') = Y.B(X, X') - B([Y, X], X') - B(X, [Y, X']) (2.7)

B being any antisymmetric bilinear form.
For the particular form of B defined by (2.6), it is a simple conse-

quence of the Jacobi identity, that:

Y.B^O
which can be noted, as before:

B£L(TAT,L(V))K. (2.8)

We have also a decomposition:

L(T A T, L(V))K = 0 L{T A T, L(D\ &))K . (2.9)

Let us call Sli the finite-dimensional space L{T A T, L(Di, Dj))K. A par-
ticular element of Eij is furnished by the representation itself:

These forms are not independant; according to the commutation relation
of (pQ, one has:

£&*<=(). Vi.j (2.11)

17 Commun. math. Phys., Vol. 9
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Coming back to the condition (b), we write it now in more details
between two spaces Di and Dj:

[<pQ(X)9 <p(X')yi- [(po(X% <p(X)]» = 0 ,

Introducing the relation (2.6):

or:
JT (C** + Ofc*) 5j**(Z, X') - 0 VZ, Z7 £ !T . (2.12)

To sum up, the following relations result from (b):

where JSj** is denned by (2.10).
The space Z1 (&, L (V)) is determined by the functions (p£L(&,L( V))

satisfying (2.6) and (2.13).
B1^, L(V)). A coboundary is a linear function %p of ^ into i>(F),

such that ip{X) = 3-4(Z) = [<po(X),,4] for some 4 ££(F) .
We are only considering the j^-relative cohomology. Hence y is zero

on K. Thus A has to commute with K. The matrix blocks Aji are then of
the form: Aji = frfd**, and the general form of a coboundary is:

III. Some Examples

2. Euclidian Group E3= T3x SO (3)
The algebra is formed by 6 generators:

H+, H-, H%, F+, F-, Fs .

Hi are the generators of the rotation sub algebra. We have also:

[H+, F+] = [H-, FJ\ = [H3, F3] = 0

[H+,F.] = -[H-,F+] = 2Fa

[H+, F3]=-F+; [H-, F3] = F-; [F+, H3] = - F+;

[F-,Ha]=F-

and the F generators commute.
00

The representations space is V = (J) D*.
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We want to compute the group ffliE^, L(V)), the E3 representation
on V being given by the following action (with the notation <po(X) = X):

1) (I - m) f,,

TO2 &_1>m - A

+ Ci+1Y(j + m + 1) (j + m + 2) ii+1,m+1

- Asy{j + m) (j- m +T) &,„-!

- C / + 1 | /0"- m + 1) ( ? - m + 2)
with

h _

and a is a real number.
(This representation is easily obtained by contraction of the represen-

tations of SL(2, C) given in Gelfand-Minlos-Shapiro).

a) "Unrestricted" EP-(EZ9 80(3), L(V))
We shall consider the deformation "around" the rotation part: i. e.

leaving fixed the representation of SO(3). It corresponds to a computa-
tion of a #0(3) relative cohomology group, denoted by Hx(EZi SO(3),
L(V)) (its elements are required to be zero on SO(3)). From (II) (2.1),
it is the general situation when F is a finite dimensional space. By
"unrestrictive cohomology" we want to emphasize that there is no sup-
plementary conditions on the cochains. In particular, we do not make
any condition of unitarity in that part. The deformation obtained with
this elements of H1 can lead to non-unitary representations.

Let <p be an element of H1^, SO{3), L(V)). We have

1) From condition (2.6), we have only 3 constants to introduce; it
is convenient to choose the following ones

17*
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For example, one has:

+ y;- ]/(j + I)2 — m21

2) Let us write explicitly the condition (2.2)

2' (fijCj+i + -4^y )̂ 7 = (y<^-+1 + C i + 1 flj+x) {j
9" (n A H R \ (n ~\\ (A™ R H \ (£ \(XjX±j—-^ — \jj Pj~±) \J — -»•/ — K'^jK'j — ri it v

O ; ' ; / / . , Z"1' A w \ / f t , ] \ i) o A | / / , , / ^

From

2' and 2" give

therefore

c in that case:

+ 2)

1 - C , + 1 a i + 1 ) ( 2

(3.2)

j + 3) •

Pj Hi +1)
Q is a constant (possibly complex).
With Tj — y^1— CCJ we are left to solve

(2j + 1) <7,r, = j ^ ^ + (2j + 3)

with
<7

we get

or

thus

^ 1 ^ - ^ , - ^ ^ + ̂ ) - ^ - ^ . (3.3)
Thus the general solution of the system is

a3- = AOj- 4- ifc?'

with ^ - h\ = ry + 2AOy.
A coboundary is:

6A(x) = [-4,99 (a;)] and because we work with a irrelative eohomology,
(here #0(3)). A must commute with the H generators, i. e. A has the
from
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Therefore for F operators:

[Atfp0(F)] = (^- ! -^) Cj[] h-urn'-i/iH.!-/*,) < W ] 6 + 1,*' (3'6)

(where we have omitted the explicit expression of the rotation Clebsh-
Gordan coefficients). From the existence of a lower dimension space i >
in F, we have to ask that:

or:

The only solution for the constant C tindependant of j) is:

yj-i^ — ACj + kj.

Now, we will show that k$ is a matrix element of a coboundary i. e. from
(3.6) we look for arbitrary complex numbers jUj such that:

A solution is:

We have thus shown that:

w(F)

j

ft. = ° •

= *<Po(F) + [A

(3.7)

(3.8)

where A is a complex number, A an operator defined by (3.7) and (3.5),
or equivalently:

, #0(3), L(V)) = 1 on C .

(#0(3) means we consider only the #0(3) relative cohomology: it cor-
responds to leave #0(3) fixed during the deformation).

b) Restricted H1(EZ, #0(3), L(V))

To consider the deformation of 12(3) representations into unitary
representations of the group (i.e. with hermitic operators <p(F))
(Fz = F£, (F+)+ = F~), we are led to introduce some restrictions on the
<p(F). They are:

(3.10)
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From (3.10), one gets that Q is a real number. (See (3.4)) and from (3.9),
since C^ is pure imaginary, and A real, that kj has to be real. (The (fa)
are then pure imaginary). Introducing these restrictions in the preceding
results, one gets:

dim#i (Jg?3, 80 (3), L (V)) = 1 on 1R (r = restricted) .

Remark. For the deformation of representation of E(3), the algebra
being fixed, the picture associated with these results is very analogous
to those which appears in the SL(29 E) case (see appendix). The discrete
casimir is left unchanged, the continuous one is translated along a real
axis for the unitary deformed representations.

2. The Poincare* Group

In attempt to extend the above method (part II), it is natural to
look for an expression of the Poincare's unitary representations in a basis
where the Lorentz subalgebra is diagonal. This procedure seems par-
ticularly suitable for a deformation leaving the homogeneous Lorentz
part fixed. In the following we restrict ourselves to that kind of defor-
mations only. We shall use the Lorentz basis form of the representations.

a) Spin Zero Case

Let us consider first a representation [m, s] with m > 0 and 8 = 0.
Restricted to 8L(2, C), it has the following reduction [Joos] :

(a) D&M
o

(Denoting the unitary representations of SL(2,C) in the usual way:

In [10], it is shown that it is possible to transform the usual Poin-
care's representation, in such a way that the translation operators act
like ladder operators between the non-unitary representations of 8L(2, C).

For example (dropping the index jQ = 0)

(b) <po(Po) \im->*>=2[WM-W [ ( ? ' ~ a ) 0'+ »A+ l)p/* \jm; A-t>

+ 2[A(A + »)P» [(j + iX) {j~ik + 1 ) ] V 2 l / m ; X + *> •
And there is at least a "formal" equivalence between the direct integral
(a) and direct sum:

+ OO

0
n — —oc

[Since we can reconstruct the usual representation, from expression like
(b)].
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It is also in a similar sense (not very rigourous mathematically . . .)
that we shall apply now the results of the section II. The dimension one
for spaces like (2.5) or (2.9) comes from computations made in [10].

From (2.6), a cocycle is a transition operator between ^°> l l -> &°>iX ± 1,
it corresponds to two sorts of coefficients Cx + i>* and C1"1^. (2.13) gives
only one non trivial relation on the symmetric part S of these coefficients:

j$x+i,x = s*,*+i ==cte = a (3.11)

where a is an arbitrary (possibly complex) number.
The antisymmetric part A**1 of Cj>{ can always be put under the

form: ^ — (tf, which here also corresponds to a coboundary. Let us take
for example: v

b(p) =

6(0) = 0 .
Then

Finally, every cocycle can be put under the form:

pp+i,* = acpl + ̂ v + (b(p) -b(p + 1)) ^ J + LP , (3.13)

where we had written p for X + ip.
Restricted deformations into unitary representations: it is not possible

to express directly in a non ambiguous way the unitarity of the group
representations in the "Lorentz basis". However, using the explicit form
of the hermitian operator q)0(P0) we shall admit that a condition of
hermiticity for ^(PQ) is:

CM+i = CM-i . (3.14)

With this condition, a is now a real number.
Therefore from (3.13) dim.tf1 = 1 (on B).

b) Representation m > 0, 8 =j= 0
Four types of transition are allowed now. They are:

(7oiA)-*0o±M)
or

From (2.6), the matrix elements of the cocycle are proportionnal to those
of the initial representation:
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The conditions (2.13) on the coefficients are of two sorts, according to
the final state (j'o, X') is different or not from the initial state (j0, A).

a) Oo, A') * O'o, A).
The situation can be pictured by:

i

X+i

X

u
B

A
J

C

Jo

D i ^

J o + 2 To

Fig. 1

Starting from A, B is a possible final state, and two ways are allowed:
ABC and ADC.
The 2 conditions (2.13) may then be written (with obvious notations)

QBA = QGD + QDA . (3J6)

Starting from C and going to A, one sees that the symmetric part and
the antisymmetric part of CA B satisfy independently this condition. Let us
examine first the symmetric part of the coefficient SAB. If we start from
B to D, we have:

SDC + $CB = SDA + AB (3J7)

with (3.16), it gives:

or more explicitly:

i. e. the symmetric part are independent of the "fixed index"

(3.18)

(3.19)

The antisymmetric part AAB can easily be put under the form of a
difference XA — 1B. I t is enough to observe from (3.16) that it obeys a
Chasles relation (and to proceed in the same way as in 3.12).



Deformations of Lie Algebra 257

The situation is a little more complicated since four ways are now
allowed:

>

1 ^
1 c

1

-iX+i

> 1 «-,
< 1

- X - i

Fig. 2

We have to compute the forms BQ defined by (2.10). It is enough to
compute only the diagonal term. We use the following notation:

(Po, P3)

Up to factor, they are:

We use the notations of [10] for the expression of the representations.
For example:

(3.20)

and

%x a n d (3j9 being explicit ly computed in [10]. F o r a representa t ion [m,S]:

m2 (s -\- iX) (s — iX -f- 1)
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PJ9 is obtained by changing j0 <-> — ih
Let us put now

From the conditions (2.13):

8x,A + i ^A +« + ^A,A-t £A-; + ^ +1 Bu +1 + £*.,*.-i Bh-i = o (3.23)

or (using the independence of / of the constants).

ik(oc[- aJU) + ?0(/?y.- /%_x) (3.24)

+ ( « i + a i _ i ) + (/8;.+ /J/._1) = 0 .
The solution of this equation is

, A(A + i) a — y
a ) 0?+(* + *)•)

( ^ 0 + i ) Q 6 - y

where a and y are two constants (a, y ^C). Using the explicit form of
<xx and ^o, one gets finally:

axx + i 4 m + i)K-y
-nfi(e + iXH-a+l)

*I.J. + I__ 4 ?o( /o+i )«+y
m2 (5 - y0) (5 + j0 + 1) '

The initial representation being of spin S, j0 has to belong to [—8, +8].
The only way of eliminate the poles for s = jot —j0 —1 in (3.26)2 is to
put: y = — 8(8 + 1) a. But then:

8*.*+* = ̂ r= S^o +1 = a ' . (3.27)
m2 v ;

We have then:
9 ^ ) = a>0(P, () + [A, <po{PM)-] (3.28)

where a' is a possible complex number.
Exactly as in the Euclidian case, we do not have made until now

any restriction about the hermiticity. The condition that <px is an her-
mitian operator is equivalent to the condition ex! is a real number and A
an antihermitian operator (in the impulsion basis).

c) Zero-Mass Representation and Discrete Helicity

The reduction on 8L(2, C) have been given in [10] and in [11].
There is only one possible transition from (/0, X) to (;0, X — i) or (/0, A -f- i),
depending upon the sign -f or — of the helicity, therefore one type of
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coefficient:
<ptu(P,) • (3.29)

In that case, the conditions (2.13) are always trivially satisfied: there
is no condition on C^~i>x.

Remark. A simple change of basis in the space V = © Di<»x + ln

transform cpx into <pQ.

d) Continuous Spin and Zero-Mass Representation

With W2 — — C2/, £ continuous, the coefficients oc% and (3jo of the
initial representation are:

C2

*x ~ 401 + A2) (f0 + (A + •)») '
£2 (O.OV)

Four transitions are allowed in that case, and the computation is exactly
the same as in the case 8 =f= 0, m > 0.
The only difference is that the domain of variation of j0 is now
— °° <?o < + °°-
From (3.25) one gets for the symmetric part of the coefficient:

t)a-y)
(3.31)

Finally, we have obtained the following results: for a unitary representa-
tion [m, 8] m > 0, 8 ^ 0 0/ /Ae Poincare group &>, the group H1^, L(V))
is a one dimensional space on C. With the "unitary restriction", it is a one
dimensional space on R.

In the case of the zero-mass representation, the obtained cocycle can
always be transformed into the initial representation cp0 by a change of basis.

In the continuous spin case, H1^, L(V)) is a 2-dimensional space
on C in general.

IV. Application to the Deformations of Representations

1. With a Fixed Algebra

In that case the coboundaries may always be rejected by means of
a unitary transformation, and the only thing we have to consider is the
deformation produced by the representative elements of H1^, L(V))
[Cf. I. 5 a].

I t results from III, that the only deformations leaving the Lorentz
subalgebra fixed of the Poincare representation [m, S]m=£ 0 are of the
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form:

where a(0 = 1 + ta + £26 + . . .
and correspond to a representation [mf, S] with the same spin value, and
with a different mass: m'(t) = a(£)^V ^ course this is not surprising,
since the rigidity of the spin is expected.

A similar result holds for the E (3) algebra. For the zero mass represen-
tation, it results from III , B, that the representation [m — 0, j0] is rigid.
But here, it has to be noticed that the condition for the Lorentz algebra
to be fixed is certainly too strong. In fact, if one allows the generators
N to move, J being fixed, one can easily deform the mass zero represen-
tation of helicity 8 into a representation of mass m 4= 0. I t follows
clearly from the expressions of the generators given in [12].

2. With a Deformation of the Algebra. The "Gell-Mann Formula"

According to a general result of Richardson on the stability of the
subalgebras, one knows that all the deformations of the algebra K.T3

is of the following form:
the only new commutator is:

[Xx>X?]t=[Xx,Xp]0 + tF1(Xx,Xe) + ... where XX,X^T
and

Let us consider now a second order deformation ^t of the semi-direct
product ^ = Z . T

%\[Yt, 7,] = C% Yk XxiT (4.2)
[Yi,Xx]=CixXli Yt£K.

The first order deformations of the representation have already been
examined with different methods by BEHREND [13] and HERMANN [14].

With:

*<r)-*(D } (4.3)

they have found that it is possible to take (with some assumptions):

% ( X ) = [A, <po(X)], (4.4)

where A is the second order casimir of K, suitably "normalized". The
relation thus obtained, already known in some eases in the physics
litterature (for example [15, 16, 17]) was called the "Gell-Mann formula".
For more details about that formula, we refer to Hermann articles [14].

3 K is semi-simple and T abelian.
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Let us consider the Poincare algebra (or 22(3) algebra). We know
from (III) that the general form of <p± is:

% ( Z ) = X<po(X) + [A, <po(X)], (4.5)

where A commutes with <po(K). A is then determined by its matrix
elements a(j0, X), depending only on the Lorentz representation (j0X).

In the following, we found the general form of A for a deformation
of a Poincare representation [m, S] m H= 0 corresponding to the following
deformation:

[£/*» L
Qo\ = i{gixeLVQ- g^QLVG + g^Lpo - gVGLfXQ

[L^Pf
Q] =i(gveP;-g,QP'v) (4.6)

s = 4- 1 gives a deformation into SO(3, 2), and
g = _ 1 gives a deformation into 80(4:, 1).
We have used the notation

We have to study the second-order condition of commutation, i. e.:

toW.ttW] =•«£„,, (4.7)
where (px is given by (4.5):

a) Spin Zero Case

jQ = 0, the matrix elements of A are only functions of X. (4.7) gives
only a condition on the coboundary part:

[[4,P,J,[ .4,P,]] = «<£„,. (4.8)
Let us define:

a(X) = a(A+ t)— aW
we have

and (4.8) is equivalent to:

(the other parts are identically verified).
With the notations introduced in part I I :

,., P,) + a2(A - i) Bl-HP,., Pv) = - eiL,,,. (4.10)
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It is enough to examine one matrix element of the preceding form. Let
us choose (see [10]):

(P0>P,|A,j»

- - 2

we have
X,j + 1, m| Los |1, j , m> =

and we know from the commutation of the P^, that:

Finally one gets from (4.10):

In the spin zero case

therefore

or(A)»-<r(A-0* = -i-eU, (4.11)

the solution of (4.11) is easy to obtain in 2 steps:

or2(A) = ^ ( A 2 + a + y ) (4-12)

y is an arbitrary constant

then: a(% + i) - a{X) - ± ^ f (A2 + f A + y)1/2. (4.13)

The general solution for a(X) can be deduced from (4.13). It is a sum of
square roots, and furnishes a dependence in A which is in general irra-
tional, i. e. A is an irrational function of M2 — N2. The only simple (and
rational) case corresponds to y = — 1/4, i.e.:

«(A + i) - a(X) = ± £ (A + \) . (4.14)
This is easily solved:

a{X) = T -^<(1 + A2) + a constant.
Or equivently:

A= ± ^L (N2 - M2) + constant, (4.15)

which corresponds to the "Gell-Mann Formula".
[The hermitic solution corresponds to e = + 1, i. e. to a deformation
into 80(3, 2)].
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b) Initial Representation: [m, S] m > 0, S 4= 0
In the diagonal part of the Eq. (4.8), we have to take into account

the four allowed transitions. We use the notations:

Then:
of,(A) &+HP,, Pv) + of.(A- i) S*-'(P^, P,)

+ eSOo) #-+1(P,> P,) + rftfo- i) £ ? w ( ^ > A) = - « £ , , •
The computations are very analogous to those given in part III (2) and
we omit the details. The results are the following:
— From the non diagonal part, one gets that:

either a3-o (A) is independent of j0 and QX (Jo) independent of A

<ti.W = (~)MA) (4-17)
either

e*Oo) = (-)"eOo)-
— The diagnonal part furnishes 2 equations which can be solved by

using the preceding remark. They are:

»A(aJl - aJU) - (ai + ai_a) - j o (^ , - ^ - x ) (4.18)

The solutions are

and

A is an irrational function of the two Casimirs in general. The only
simple case can be computed by requiring (4.19) to be a perfect square.
The solutions is then unique up to a constant factor, it is:

and corresponds here also to the Gell-Mann formula.

Acknowledgements, We thank J. LASCOUX for its interest and for a critical
reading of the manuscript.

Conclusion

For all the reasons exposed in I. 5 a, b, c, it is important to know the
group H1^, L(V)) for the deformations of the representations. We have
seen that the group H1^, L(V)) is a one-dimensional space on C, both
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for the Euclidian and the Poincare algebras (in the case m > 0, 8 ^ 0
for the last one). With some hermiticity conditions, necessary to produce
a deformation into unitary representations of the group, it becomes a
one dimensional space on E. Then the deformations of Poincare's re-
presentations, the algebra being fixed, correspond simply to a variation
of the mass, the spin being rigid. (As it can be expected in general for
all the discrete numbers indexing the representation). When the algebra
is also deformed, we have seen the general form of the first order deforma-
tion, the most simplest example being given by the "Gell Mann Formula".

Appendix

Deformation of the Continuous Series of 81/(2, E)
Let us study the first order condition (1.6) (or 2.2) satisfied by a

general deformation

We start from a unitary representation of the SL(2, E) Lie algebra:
[of the class C® or C^2 in Bargmann notations],

<Po(H+)fm=ocmfm+1 (A.I)

9*0 C^-) fm — ^w-l /w-1

where m assumes all integers (or half integers) values between — oo, -f- oo.
(One may choose ocm = (q + m(ra — I))1/2 q being the value of the

+ 00
Casimir. We require that the deformation leaves the space 0 fm in-

— 00

changed, and the simplest way is to ask that (po(H3) remains fixed during
the deformation.

From (2.2 c), cp^H±) transforms under (po{H3) like (PQ{H±), or
equivalently:

1 fm 2 GMm+1} (A-2)
The last relations (2.2 b) is

i. e.

or

where a is a complex number independant of m.
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The solution can be written:
1 (a

(A.4)

Let us examine now the condition of being a coboundary for <pv The
general form of a coboundary is of the type A.2 (because we are dealing
with ^-relative cohomology), with:

For some arbitrary (complex) numbers jum.
It is then easy to see that any solution of the form (A.5) must have:
a=0.

It remains one condition: gn = |aw|2 {(xm-1— /y,m) but it is always

possible given a number xm = • ,2 to construct such [xn. I t is enough

to take:
n n—1

p — 1 p = 0

To sum up, the group H1(SL(29 R), #3 , L(V)) (relative to Hz) is - on (7,
a one-dimensional group, a representative of which being given by:

1

s
 M+1 (A.6)

One can check that there does not exist a non trivial deformation
only at the first order. Nevertheless it is easy to prove that a cocycle
(A.6) is "integrable" (i. e. is the first term of a family cpn given a deforma-
tion). It is enough to consider the representation corresponding to the
value q + at of the casimir. One has (up to a phase)

1 at

It is also easy to measure the weakness of the "equivalence to the first
order" on that example. Using the previous deformation, one can con-
struct a series of non equivalent deformations with the same first term cpv

Restricted Deformations

Until now, we have not taken into account any consideration of
unitarity, and a complex number a leads to a non-unitary deformed
representation.
18 Commun. math. Phys., Vol. 9
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Let us require now the unitarity of the deformation. For (pv it means:
dm = Cm~1 and from (A.3) one sees that a is then a real number.

In that case (choosing a real ocm), H1 is a one-dimensional space, on JR.
Both cases correspond well to the intuitive picture.
Since the character integer or half integer is not altered by a deformation,
we can choose for "structure space" the complex plane: a representation
being determined by the value of its casimir q. The unitary continuous
series are lying on an axis: q ̂  1/4 so that:
— a deformation into a unitary representations can start into only one

direction (this axis);
— a deformation into a non unitary one can start into any directions

in the complex plane: this is expressed by a multiplication by a
complex number.
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