On Some Representations of the Anticommutations Relations

G. RIDEAU

Institut H.-Poincaré, Paris

Received April 20, 1968

Abstract. We study representations of the canonical anticommutation relations having the form:

$$A(f) = a(Hf) + b^*(Kf)$$
$$A^*(f) = a^*(Hf) + b(Kf)$$

where a(f), $b^*(f)$ and their adjoints are two basic anticommuting fields in a Fock Space.

A complete determination of the type in terms of $|K| = (K^*K)^{1/2}$ and a sufficient condition for quasi-equivalence are given.

I. Introduction

Let \mathfrak{E} be a complex Hilbert space of test functions, denoted by f, g, h, \ldots To each element f of \mathfrak{E} correspond two bounded operators on a Hilbert space $\mathfrak{F}, a(f)$ and $b^*(f)$, depending linearly and continuously on f in the uniform topology of operators. We denote briefly their adjoints by $a^*(f)$ and b(f); therefore, these are semi-linear in f. We impose the relations:

$$[a(f), a(g)]_{+} = [b^{*}(f), b^{*}(g)]_{+} = [a(f), b^{*}(g)]_{+} = [a(f), b(g)]_{+} = 0$$

$$[a(f), a^{*}(g)]_{+} = [b(g), b^{*}(f)]_{+} = (f, g)$$
(1)

$$f, g \in \mathfrak{E}, \quad [A, B]_{+} = AB + BA,$$

and we take for \mathfrak{F} the customary Fock-space associated with these two anticommutating fields. Id est, we have in \mathfrak{F} a vector Ω_0 such that:

$$a(f)\Omega_0 = b(g)\Omega_0 = 0, \quad f,g \in \mathfrak{E}$$
(2)

and all the linear combinations of vectors having the form:

$$a^*(f_1) \ldots a^*(f_m) b^*(g_1) \ldots b^*(g_n) \Omega_0$$

are a dense set in F.

Now, if H and K are operators in $\mathfrak{L}(\mathfrak{E})$ which satisfy:

$$H^*H + K^*K = I \tag{3}$$

we set:

$$A(f) = a(Hf) + b^{*}(Kf)$$
 (4)

G. RIDEAU:

Clearly, A(f) is linear and norm-continuous in f. Moreover, if $A^*(f)$ is the adjoint of A(f), a simple calculation gives:

$$[A(f), A(g)]_{+} = 0, \quad [A(f), A^{*}(g)]_{+} = (f, g).$$
(5)

Thus, we have defined by (4) a representation of the canonical anticommutation relations (CAR in the following). These representations have been introduced in [1] and are useful for describing gauge invariant generalized free fermion field [2], in particular, a free fermion gas with constant density at finite temperature [3]. Their study mainly from a mathematical point of view, is the purpose of this paper.

First, we recall some facts about the CAR. The most out-standing is the existence of a canonical C^* -algebra \mathfrak{A} which can be viewed as generated by the A(f)'s and their adjoints. Detailed constructions of it can be found in [4]. \mathfrak{A} is a uniformly hyperfinite C^* -algebra [5].

With the concept of C^* -algebra is associated the concept of state: a state ω is a positive linear functional on the C^* -algebra with norm one [6]. In our case, a state ω is uniquely determined by the quantities:

$$\omega(A^*(f_1)\ldots A^*(f_n) A(g_1)\ldots A(g_m))$$

that is, if we have, for two states ω_1 and ω_2 :

$$\omega_1(A^*(f_1) \dots A^*(f_n) A (g_1) \dots A (g_m))$$

= $\omega_2(A^*(f_1) \dots A^*(f_n) A (g_1) \dots A (g_m))$

for all f_i and g_j in \mathfrak{E} , these states are identical.

A representation π of the C^* -algebra \mathfrak{A} defined in the Hilbert space H_{π} is cyclic if there exits in H_{π} a vector Ω such that the set of vectors $\{\pi(x)\Omega, x \in \mathfrak{A}\}$ is a total one in H_{π} . If Ω is normed to one, the quantity:

$$\omega\left(x
ight)=\left(\pi\left(x
ight)arOmega,arOmega
ight), \quad x\in\mathfrak{A}$$

defines a state on \mathfrak{A} . Conversely, to each state on \mathfrak{A} can be associated canonically a cyclic representation. We have the evident result of which we shall make use in the following:

If the same state is ascribed to distinct cyclic representations these representations are equivalent.

An important notion, which is basic for our work, is the quasiequivalence of two representations [6]. Among many definitions, we take the following:

Two representations π_1 and π_2 of a C^* -algebra are quasi-equivalent if there exist a multiple of π_1 and a multiple of π_2 which are equivalent.

It should be noticed that the quasi-equivalence is a true equivalence relation.

 $\mathbf{230}$

II. Some Auxilary Results on Quasi-Equivalence

Let V_H and V_K closed subspaces of \mathfrak{E} spanned by the values of H and K:

$$V_H = \overline{\{H\mathfrak{f}, \mathfrak{f} \in \mathfrak{G}\}} \qquad V_K = \overline{\{K\mathfrak{f}, \mathfrak{f} \in \mathfrak{G}\}}$$

$$A^{*}(f_{1}) \dots A^{*}(f_{n}) A(g_{1}) \dots A(g_{m}) a^{*}(h_{i_{1}}) \dots a^{*}(h_{i_{p}}) b^{*}(k_{j_{1}}) \dots b^{*}(k_{j_{q}}) \Omega_{0}$$
(6)

 $n = 0, 1, 2, \ldots;$ $m = 0, 1, 2, \ldots;$ $f_i \in \mathfrak{E};$ $g_j \in \mathfrak{E}.$

One the one hand, $\mathfrak{F}_{i_1...i_p;j_1...j_q}^{HK}$ is an invariant subspace for the representation (4) in which this representation is restricted to a cyclic representation with $a^*(h_{i_1}) \ldots a^*(h_{i_p}) b^*(k_{i_1}) \ldots b^*(k_{j_p}) \Omega_0$ as cyclic vector. These subrepresentations are all equivalent because the states generated on the C^* -algebra of the CAR by the various cyclic vector are identical. This results almost immediately from the anticommutation of the A(f)'s and $A^*(f)$'s with the $a^*(h_i)$'s and $b^*(k_j)$'s.

On the other hand, we have:

$$\mathfrak{F} = \bigoplus_{p,q} \bigoplus_{\substack{i_1,\ldots,i_p\\j_1,\ldots,j_q}} \mathfrak{F}_{i_1\ldots i_p}^{HH}; j_1\ldots j_q.$$

Indeed, it can be proved easily by induction that each vector in \mathfrak{F} having the form:

$$a^{*}(Hf_{1})\dots a^{*}(Hf_{n})b^{*}(Kg_{1})\dots b^{*}(Kg_{n})a^{*}(h_{i_{1}})\dots a^{*}(h_{i_{p}})b^{*}(k_{j_{1}})\dots b^{*}(k_{j_{q}})\Omega_{0}$$
(7)

can be written as a linear combination of vectors having the form (6). Let now, in (7), $f_1, \ldots, f_n, g_1, \ldots, g_m$ run over \mathfrak{E} , p and q run over all integers and $i_1 \ldots i_p$ and $j_1 \ldots j_q$ over all choice of the indices, we obtain a set of vectors which is a total one in \mathfrak{F} ; then we get:

Theorem 1. The representation of the CAR defined by (4) is a multiple of a cyclic representation. The multiplicity is equal to 2^{r+s} , where r and s are the dimensions of $V_{\overline{H}}^{\perp}$ and $V_{\overline{K}}^{\perp}$.

In our case, the state which defines the cyclic representation satisfy:

$$\omega(A(f_1) \dots A(f_n) A(g_1) \dots A(g_m)) = (A^*(f_1) \dots A^*(f_n) A(g_1) \dots \dots A(g_m) \Omega_0, \Omega_0) = (-1)^{\frac{n(n-1)}{2}} \delta_{nm} \det(K^*Kg_i, f_j) \dots$$

Since the knowledge of these quantities characterizes completely the state, it is clear that two representations (4) with the same value of K^*K can differ only by their multiplicity, and then are quasi-equivalent.

Corollary. All the representations (4) having the same value of $|K| = (K^*K)^{1/2}$ are quasi-equivalent.

In particular, the representation (4) is quasi-equivalent to the representation defined by:

$$A(f) = a(|H|f) + b^*(|K|f)$$
.

Lemma 1. If H and K in $\mathfrak{L}(\mathfrak{E})$ satisfy the relations:

$$H^*H + K^*K = I \qquad HH^* + KK^* = I$$

 $H^*K = K^*H \qquad HK^* = KH^*$ (8)

and if K is an Hilbert-Schmidt operator, there exits in $\mathfrak{L}(\mathfrak{F})$ a unitary operator U such that:

$$A(f) = a(Hf) + b^{*}(Kf) = Ua(f)U^{*}$$

$$B^{*}(f) = -a(Kf) + b^{*}(Hf) = Ub(f)U^{*}.$$
(9)

Proof. The representation of two anticommuting fields defined by the right member in (9) is irreducible. Indeed, from (8), we get:

$$a(f) = A(H^*f) - B^*(K^*f)$$

$$b^*(f) = A(K^*f) + B(H^*f).$$

Therefore, an operator commuting with A(f), $B^*(f)$ commutes with a(f), $b^*(f)$ and thus is scalar.

Now, if K is an Hilbert-Schmidt operator, it can be written [7]:

$$K f = \sum\limits_i \lambda_i g_i(f,f_i) \,, \quad \lambda_i \ge 0 \,\,\,\,\, \Sigma \lambda_i^2 < \infty \,,$$

where $\{f_i, i = 1, 2, ...\}$ is an orthonormal basis and $\{g_i, i = 1, 2, ...\}$ an orthonormal set of vectors in \mathfrak{E} . The λ_i 's are eigenvalues of |K|. By (8), we have for H:

$$Hf = \sum_{i} \sqrt{1 - \lambda_i^2} h_i(f, f_i),$$

where $\{h_i, i = 1, 2, ...\}$ is an orthonormal set of vectors. Moreover, by the first Eq. (8), we have:

$$\lambda_i^2(h_i, g_j) = \lambda_j^2(h_i, g_j) \; .$$

So, $(h_i, g_j) = 0$ if $\lambda_i \neq \lambda_j$. But for $\lambda_i \neq 0$, $\lambda_i = \lambda_j$ is possible only for a finite number of j, since K is Hilbert-Schmidt. Let $i_1, i_2, \ldots i_n$ be these values of j. From the second Eq. (8), we get:

$$(g_{i_k}, h_{i_l}) = (h_{i_k}, g_{i_l})$$
 .

Hence the matrix with elements (g_{i_k}, h_{i_l}) is unitary and hermitian. So, its eigenvalues are ± 1 and there exists a unitary finite dimensional matrix u, such that:

$$\sum_{k} h_{i_k} u_{kl} = \pm \sum_{k} g_{i_k} u_{kl} \, .$$

232

Setting:

$$g'_{il} = \sum_k g_{i_k} u_{kl}$$

we have:

$$g_{i_k} = \sum\limits_l \, \overline{u}_{k\,l} g_{i_l}', \, h_{i_k} = \sum\limits_l \, \overline{u}_{k\,l} arepsilon_1 g_{i_l}', \quad arepsilon_l = \pm \, 1$$

and the terms $\lambda_i \sum_k g_{i_k}(f, f_{i_k}), \sqrt{1 - \lambda_i^2} \sum_k h_{i_k}(f, f_{i_k})$ in the expansions of Hf and Kf become respectively:

$$\lambda_i\sum\limits_k g'_{i_k}ig(f,\sum\limits_l f_{i_l}u_{lk}ig)\,, \quad \sqrt{1-\lambda_i^2}\sum\limits_k arepsilon_k g'_{i_k}ig(f,\sum\limits_l f_{i_l}u_{lk}ig) \quad arepsilon_k=\pm 1\,,$$

If λ_i is zero, the corresponding f_i and g_i in the expansion of K are immaterial and we can always assume $h_i = g_i$ for all i with $\lambda_i = 0$, so that, setting now:

$$f_{i_k}' = \sum_l f_{i_l} u_{l\,k}$$

and dropping the dashes, we can write for Hf and Kf:

$$Kf = \sum_{i} \lambda_{i} g_{i}(f, f_{i}), \quad Hf = \sum_{i} \sqrt{1 - \lambda_{i}^{2}} \varepsilon_{i} g_{i}(f, f_{i}) \quad \varepsilon_{i} = \pm 1$$

where, this time, g_i , i = 1, 2, ... is an orthonormal basis in \mathfrak{E} , as implied by $HH^* + KK^* = I$.

Then, we have:

Now the vector:

$$arOmega = \Pi_i ig(\sqrt{1-\lambda_i^2} - arepsilon_i \lambda_i a^*(g_i) \ b^*(g_i) ig) arOmega_0$$

is in F, as follows from the condition $\sum_i \lambda_i^2 < \infty$, and a straightforward calculation gives:

$$A\left(f
ight) arOmega=B\left(g
ight) arOmega=0$$
 , $f,g\in\mathfrak{E}$;

Thus, the A(f), $B^*(g)$ defined in (9) determine an irreducible Fock representation in the same way as the a(f)'s and $b^*(g)$'s, therefore these two representations are unitarily equivalent. This completes the proof of the lemma.

As a first application, we can derive the:

Lemma 2. If, in (4), H and K are positive operators, we can always assume that K does not admit zero or one as eigenvalues.

Proof. Let $\{f_i, i = 1, 2, ...\}$ and $\{g_j, j = 1, 2, ...\}$ be orthonormal basis in the eigenspaces of \mathfrak{E} corresponding to the eigenvalues one and 16 Commun. math. Phys., Vol. 9

zero respectively. For f in \mathfrak{E} , we may write:

$$f = \sum_{i} \alpha_{i} f_{i} + \sum_{j} \beta_{j} g_{j} + h, \quad (h, f_{i}) = (h, g_{j}) = 0, \, i, j = 1, 2, \dots \quad (10)$$

Moreover, by (3):

 $Hf_i = 0$, $i = 1, 2, \ldots, Hg_i = g_i$ $i = 1, 2, \ldots$

Now, let $\{\theta_i, i = 1, 2, ...\}$ and $\{\omega_j, j = 1, 2, ...\}$ be two sets of arguments such that:

$$egin{aligned} 0 < heta_i < &rac{\pi}{2}, & 0 < \omega_j < &rac{\pi}{2} \ & \sum heta_i^2 < \infty \ , & \sum heta_j^2 < \infty \ . \end{aligned}$$

From the preceding lemma, we deduce the existence of an unitary operator V in $\mathfrak{L}(\mathfrak{F})$ such that:

$$egin{aligned} Va(f)\,U^* &= \sum\limits_i \,lpha_i(\cos heta_ia(f_i)+\sin heta_ib^*(f_i))\ &+ \sum\limits_j \,eta_j(\cos \omega_j a(g_j)+\sin \omega_j b^*(g_j))+a(h)\;,\ Ub^*(f)\,U^* &= \sum\limits_i \,lpha_i(-\sin heta_ia(f_i)+\cos heta_ib^*(f_i))\ &+ \sum\limits_j \,eta_j(-\sin \omega_j a(g_j)+\cos \omega_j b^*(g_j))+b^*(h) \end{aligned}$$

Since the space spanned by the vectors h of (10) is invariant by H and K, we have:

$$A'(f) = UA(f)U^* = a(Hh) + b(Kh) + \sum_i \alpha_i (\cos\theta_i b^*(f_i) - \sin\theta_i a(f_i))$$
$$+ \sum_j \beta_j (\cos\omega_j a(g_j) + \sin\omega_j b^*(g_j)) = a(H'f) + b^*(K'f)$$
(11)

with:

$$\begin{split} K'f &= Kf - \sum_{i} \left(1 - \cos\theta_{i}\right) \left(f, f_{i}\right) f_{i} + \sum_{j} \sin\omega_{j} \left(f, g_{j}\right) g_{j} \\ H'f &= Hf - \sum_{i} \sin\theta_{i} \left(f, f_{i}\right) f_{i} - \sum_{j} \left(1 - \cos\omega_{j}\right) \left(f, g_{j}\right) g_{j} \,. \end{split}$$

If f given by (10) must verify K' f = 0, we have:

$$Kh + \sum_i lpha_i \cos heta_i f_i \sum_j \beta_j \sin \omega_j g_j = 0$$
.

The inequalities imposed on θ_i and ω_j imply $\alpha_i = \beta_j = 0$; but, from Kh = 0, follows h = 0 by the definition of h. In the same way, we shall show that K'f = f implies f = 0. Thus we have constructed a representation with the required property, unitarily equivalent to the initial one.

Remark. One can show easily that in the conditions of the lemma, the representation is cyclic with Ω_0 as cyclic vector. This remark shall be of some use in the following (cf. section III).

234

Let us now consider two representations of the type (4):

$$A_1(f) = a(H_1f) + b(K_1f), \qquad (12)$$

$$A_{2}(f) = a(H_{2}f) + b(K_{2}f), \qquad (13)$$

where H_1 , K_1 and H_2 , K_2 are assumed positive. We state:

Theorem 2. If $(H_1K_2 - K_1H_2)$ is an Hilbert-Schmidt operator, the representations (12) and (13) are unitarily equivalent.

Proof. Let us consider:

$$a'(f) = a((H_1H_2 + K_1K_2)f) - b^*((H_1K_2 - K_1H_2)f),$$

 $b'(f) = a((H_1K_2 - K_1H_2)f) + b^*((H_1H_2 + K_1K_2)f).$

Since $[H_1, K_1] = [H_2, K_2] = 0$, the operators $H = H_1H_2 + K_1K_2$ and $K = K_1H_2 - H_1K_2$ have the properties stated in the lemma 1. Therefore there exists a unitary operator U in $\mathfrak{L}(\mathfrak{F})$ with:

$$a'(f) = Ua(f) U^*, \quad b'(f) = Ub(f) U^*.$$

But:

$$a'(H_2f) + b'^*(K_2f) = a(H_1f) + b^*(K_1f) = A_1(f)$$

Hence:

$$A_1(f) = UA_2(f) U^*$$

III. The Main Results

Since, by (3), K is bounded by one, we can define an operator Θ by:

 $\Theta = \operatorname{Arc\,sin} |K| \; .$

Theorem 3. Each representation (4) is quasi-equivalent to a similar representation for which the corresponding |K| has a discrete spectrum.

Proof. Let us assume Θ have a spectrum with a continuous part. VON NEUMANN has shown [8] that we can add to Θ a Hilbert-Schmidt operator, A such that $\Theta + A$ has a discrete spectrum contained in $[0, \pi/2]$ as Θ spectrum is¹. Moreover, A can be chosen so that $||A|| < \varepsilon$, where ε is some positive number. We can form $\cos(\Theta + A)$ and $\sin(\Theta + A)$ which are positive operators and consider the representation defined by:

$$A'(f) = a(\cos(\Theta + A)f) + b(\sin(\Theta + A)f).$$
(14)

Using a technical device customary in quantum field theory, we have:

$$e^{i(\Theta+A)} = e^{i\Theta} \left(1 + i \int_{0}^{1} A(t) dt + i^{2} \int_{0}^{1} dt_{1} \int_{0}^{t_{1}} dt_{2} A(t_{1}) A(t_{2}) + \dots + i^{n} \int_{0}^{1} dt_{1} \int_{0}^{t_{1}} dt_{2} \dots \int_{0}^{t_{n-1}} dt_{n} A(t_{1}) A(t_{2}) \dots A(t_{n}) + . \right)$$

16*

¹ We owe this remark to Dr. O. E. LANFORD.

Here $A(t) = e^{-it\Theta}Ae^{it\Theta}$. Since A(t) is a Hilbert-Schmidt operator with the same Hilbert-Schmidt norm as A, the series in the right member, minus his first term, converges in the Hilbert-Schmidt norm and defines an Hilbert-Schmidt operator. Thus we have:

$$e^{i(\Theta+A)} = e^{i\Theta} + T ,$$

where T is a Hilbert-Schmidt operator. Taking the adjoints of the two members, we get:

$$e^{-i(\Theta + A)} = e^{-i\Theta} + T$$

and these relations imply:

 $\cos(\Theta + A) = \cos\Theta + \frac{T + T^*}{2}$, $\sin(\Theta + A) = \sin\Theta + \frac{T - T^*}{2i}$. Now:

$$\sin(arTheta+A)\cos arOmega-\cos(arOmega+A)\sin arOmega=rac{1}{2}\left(Te^{i arOmega}+T^*e^{-i arOmega}
ight)$$
 ,

Since the right member is a Hilbert-Schmidt operator, it results from the lemma 2 that the representation (14) is equivalent unitarily to the representation defined by:

$$A^{\prime\prime}(f) = a(\cos\Theta f) + b^*(\sin\Theta f) = a(|H|f) + b^*(|K|f)$$

But, as a by-product of the theorem 1, this last representation is quasiequivalent to the original one.

Therefore, if we do not make any distinction between quasi-equivalent representations, we may assume that K in (4) is a positive operator with a complete discrete spectrum. Moreover, if we take in account the lemma 2, we may even assume that K does not admit zero or one as eigenvalues. Thus we write:

$$K = \sum\limits_i \, \sin heta_i \, P_{f_i}$$
 , $0 < heta_i < \pi/2$

where P_{f_i} is the projection operator on the eigenvector f_i . Since the orthonormal set f_i , i = 1, 2, ... is complete and Ω_0 is a cyclic vector, we may characterize the representation by the set of numbers:

$$(A^*(f_{i_1}) \dots A^*(f_{i_n}) A(f_{j_1}) \dots A(f_{j_m}) \Omega_0, \Omega_0)$$

= $\omega(A^*(f_{i_1}) \dots A^*(f_{i_n}) A(f_{j_1}) \dots A(f_{j_m}))$,

which define uniquely a state ω on the C^* -algebra of the CAR. All these numbers are zero, except if the sets (i_1, \ldots, i_n) and (j_1, \ldots, j_m) are identical up to the order. By the CAR, these last quantities can be written as linear combinations of $\omega(N(f_{i_1}) \ldots N(f_{i_n}))$ where $N(f_i) = A^*(f_i) A(f_i)$, and a direct calculation gives:

$$\omega(N(f_{i_1})\ldots N(f_{i_n})) = \prod_{k=1}^n \sin^2 \theta_{i_k}.$$

We must remark that the adjunction of an Hilbert-Schmidt operator to a symetric operator does not change the limit points of the spectrum.

Thus if Θ has a continuous spectrum, the discrete spectrum of $\Theta + A$ admits all the points of a segment as accumulation points. This remark shall be used in the following.

IV. An Equivalent Representation

We recall briefly in this section the construction of a family of representations of the CAR, the detailed study of which was made in [9, 10] in a slightly different form. To each $i, i = 1, 2, \ldots$, let us correspond two two-dimensional Hilbert-spaces $\mathscr{H}_i^{(1)}$ and $\mathscr{H}_i^{(2)}$ and let be $\mathscr{H}_i = \mathscr{H}_i^{(1)} \otimes \mathscr{H}_i^{(2)}$. If $\theta_i, i = 1, 2, \ldots$, is a set of arguments verifying the inequalities $0 < \theta_i < \pi/2$, we denote by I_1 the set of indices such that $0 < \theta_i \leq \pi/4$ and by I_2 the set of indices such that $\pi/4 < \theta_i < \pi/2$. We choose in each $\mathscr{H}_i^{(r)}$ the basis vectors $e_{ij}^{(r)}, j = 1, 2$, and we consider f_i in \mathscr{H}_i given by:

 $\operatorname{or}:$

$$egin{array}{lll} f_i = \cos heta_i e_{i,1}^{(1)} \otimes e_{i,1}^{(2)} + \sin heta_i e_{i,2}^{(1)} \otimes e_{i,2}^{(2)} & ext{for} & i \in I_1 \ \ f_i = \sin heta_i e_{i,1}^{(1)} \otimes e_{i,1}^{(2)} + \cos heta_i e_{i,2}^{(1)} \otimes e_{i,2}^{(2)} & ext{for} & i \in I_2 \ . \end{array}$$

Let us form the incomplete direct product \mathfrak{H} of the \mathscr{H}_i generated by the f_i 's [11]:

$$\mathfrak{H} = \bigotimes^{t_i} \mathscr{H}_i \,.$$

If a_i, a_i^* are operators in $\mathcal{H}_i^{(1)_2}$ verifying:

or:

we obtain a representation of the CAR in $\mathfrak{L}(\mathfrak{H})$ by setting:

$$A_{i} = \prod_{j < i} (1 - 2a_{j}^{*}a_{j})a_{i}, \quad A_{i}^{*} = \prod_{j < i} (1 - 2a_{j}^{*}a_{j})a_{i}^{*}, \quad (15)$$

where we have adopted the same notations for a_i and a_i^* in $\mathfrak{L}(\mathscr{H}_i^{(1)})$ and their extension to $\mathfrak{L}(\mathfrak{H})$.

The assumption on the θ_i 's implies the cyclicity of $\otimes f_i$ and an easy but tedious calculation shows that the corresponding state is identical with the state of the preceding section. Since a cyclic representation of a C^* -algebra is characterized up to an equivalence by its defining state, we get the theorem:

² These a_i, a_i^* must not be confused with the $a(f), a^*(f)$ of the preceding section.

G. RIDEAU:

Theorem 4. For each representation of the CAR defined by (4), there is a set of θ_i , i = 1, 2, ... with $0 < \theta_i < \pi/2$ and a complete orthonormal basis in \mathfrak{E} , $\{f_i, i = 1, 2, ...\}$ such that the representation is equivalent to the product representation defined by (15) where $A_i = A(f_i)$.

The representations (15) can be completely classified according to their types [12, 14]. We quote here the statements of [14], adapted to our particular case:

1) The representations are of type I_{∞} if, and only if:

$$\sum_{i\in I_1} \left(1 - \cos^2\theta_i\right) + \sum_{i\in I_2} \left(1 - \sin^2\theta_i\right) < \infty .$$
(16)

2) The representations are of type II_1 if, and only if:

$$\sum_{i \in I} \left(1 - \frac{1}{\sqrt{2}} \left(\cos \theta_i + \sin \theta_i \right) \right) < \infty .$$
(17)

3) The representations are of type III if, and only if, for some c > 0:

$$\sum_{i \in I_1} \sin^2 \theta_i \left| \frac{\cos^2 \theta_i}{\sin^2 \theta_i} - 1 \right|_c^2 + \sum_{i \in I_2} \cos^2 \theta_i \left| \frac{\sin^2 \theta_i}{\cos^2 \theta_i} - 1 \right|_c^2 = \infty.$$
(18)

where $|x|_{c} = \inf(|x|, c)$.

4) In all other cases, the representations are of type II_{∞} .

Let us now give the detailed consequences for |K|. In case (1), we denote by E the orthogonal projection on the subspace spanned by the vectors f_i , $i \in I_1$. Since inequality (16) is equivalent to:

$$\sum\limits_{i \in I_1} heta_i^2 + \sum\limits_{i \in I_2} \Big(rac{\pi}{2} - heta_i\Big)^2 \! < \! \infty$$

if we take into account $(\Theta + A)f_i = \theta_i f_i$, we deduce:

$$\left(\Theta + A - \frac{\pi}{2}\right)(1-E) + (\Theta + A)E = \text{Hilbert-Schmidt operator.}$$

But A is also a Hilbert-Schmidt operator. Then:

$$artheta=rac{\pi}{2}\left(1-E
ight)+ ext{Hilbert-Schmidt operator},$$

Hence:

 $|K| = \sin \Theta = 1 - E + \text{Hilbert-Schmidt operator.}$

Conversely, if |K| has this form, the representation is of type I_{∞} because, from theorem 2, it is quasi-equivalent to the representation corresponding to |K| = 1 - E, which is a discrete one in the sense of WIGHTMAN-GARDING [13].

Let us now consider the case (2). Inequality (17) is equivalent to:

$$\sum_{i\in I} \left(\frac{\pi}{4} - \theta_i\right)^2 < \infty$$

which implies, since A is Hilbert-Schmidt operator:

$$\Theta = \frac{\pi}{4}I + \text{Hilbert-Schmidt operator}$$

238

or, also:

$$|K| = \frac{1}{\sqrt{2}} I + \text{Hilbert-Schmidt operator.}$$

The discussion of the case (3) is a little more involved. Let us denote by I_1^1 , I_1^2 the subsets of I_1 such that:

$$\left(rac{\cos^2 heta_i}{\sin^2 heta_i}-1
ight)>c \quad ext{if} \quad i\in I_1^1$$
 , $\left(rac{\cos^2 heta_i}{\sin^2 heta}-1
ight)< c \quad ext{if} \quad i\in I_1^2$.

Similarly, let us denote by I_2^1, I_2^2 , the subsets of I_2 such that:

$$\left(rac{\sin^2 heta_i}{\cos^2 heta_i}-1
ight) < c \quad ext{if} \quad i\in I_2^1 ext{ , } \left(rac{\sin^2 heta_i}{\cos^2 heta_i}-1
ight) > c \quad ext{if} \quad i\in I_2^2 ext{ .}$$

Thus, (18) can be written:

$$c^2\sum\limits_{i\in I_1^1}\sin^2 heta_i+\sum\limits_{i\in I_1^2}rac{\cos^22 heta_i}{\sin^2 heta_i}+\sum\limits_{i\in I_2^1}rac{\cos^22 heta_i}{\cos^2 heta_i}+c^2\sum\limits_{i\in I_2^2}\cos^2 heta_i=\infty \ .$$

At least, one of the four series in the left member should be divergent. This is evidently the case if the θ_i 's have an accumulation point distinct of 0, $\pi/4$ and $\pi/2$, or, equivalently, if |K| spectrum has a limit point distinct of 0, $1/\sqrt{2}$ and 1. In the opposite situation, we can always find three projection operators in \mathfrak{E} , E_1 , E_2 , E_3 , commuting with |K| and so that $|K|E_1$, $|K|E_2$, $|K|E_3$ must have the unique limit point 0, $1/\sqrt{2}$, and 1 respectively³. The corresponding representation is of type *III* if, and only if, at least one of the $|K|E_1$, $|K|E_2 - \frac{1}{\sqrt{2}}E_2$, $|K|E_3 - E_3$ is compact but not Hilbert-Schmidt operator.

It is now very easy to characterize type II_{∞} representations: |K| spectrum possesses effectively the three limit points 0, $1/\sqrt{2}$ and 1 and the three operators $|K|E_1$, $|K|E_2 - \frac{1}{\sqrt{2}}E_2$, $|K|E_3 - E_3$ are all Hilbert-Schmidt operators⁴.

All this discussion can be summed up in the theorem:

Theorem 5. Let us consider the representation of the CAR defined by (4). We state:

1°) The representation is of type I_{∞} if, and only if, |K| has the form:

|K| = 1 - E + Hilbert-Schmidt operator

where E is some projection operator in $\mathfrak{L}(\mathfrak{E})$.

2°) The representation is to type II_1 if, and only if, |K| has the form:

$$|K| = \frac{1}{\sqrt{2}} I + Hilbert$$
-Schmidt operator.

³ It may be that one or two of the E_i 's are the null operator.

⁴ It may be that E_1 or E_3 is the null operator.

G. RIDEAU:

3°) The representation is of type II_{∞} if, and only if, the spectrum of K has the three limit points $0, 1/\sqrt{2}$ and 1 and the three operators $|K|E_1$, $|K|E_2 - \frac{1}{\sqrt{2}}E_2, |K|E_3 - E_3$ are Hilbert-Schmidt operators, where E_1, E_2, E_3 are projection operators commuting with |K| and chosen so that $|K|E_1, |K|E_2, |K|E_3$ have spectra with the unique limit point $0, 1/\sqrt{2}$ and 1 respectively.

4°) In all other cases, the representation is of type III.

In particular, if |K| has a spectrum partly continuous, we have necessarily a limit point distinct of 0, $1/\sqrt{2}$ and 1 and consequently the representation is of type *III*. This is precisely the situation for the representation given in [3] and describing an infinite free fermion gas with constant density at a temperature T which is finite and not zero.

V. Complementary Results

We can use theorem 5 for etablishing the reciprocal statement of the lemma 1, and, to some extent, of the theorem 2. Indeed, we have:

Lemma 1'. If H and K in $\mathfrak{L}(\mathfrak{S})$ satisfy the relations (8) and if there exists U unitary in $\mathfrak{L}(\mathfrak{F})$ such that relations (9) are satisfied, K is a Hilbert-Schmidt operator.

Proof. Since the representation of the CAR provided by the first line in (9) is of type I_{∞} , it results from the first part of theorem 5 that:

$$|K| = 1 - E + \text{Hilbert-Schmidt operator.}$$

with E some projection operator in $\mathfrak{L}(\mathfrak{S})$. Now, since this representation is equivalent to Fock-representation, it can be shown easily that E is unity operator. Thus, |K| is actually a Hilbert-Schmidt operator; and the same is evidently true for K.

Theorem 2'. Let us consider the two sets of operators:

$$A_{1}(f) = a(H_{1}f) + b^{*}(K_{1}f) B_{1}^{*}(f) = -a(K_{1}f) + b^{*}(H_{1}f)$$
(19)

$$\begin{array}{l} A_{2}(f) = a(H_{2}f) + b^{*}(K_{2}f) \\ B_{2}^{*}(f) = -a(K_{2}f) + b^{*}(H_{2}f) \end{array}$$

$$(20)$$

where H_i , K_i are positive and satisfy:

$$H_i^2+K_i^2=I$$
 .

If there exists U unitary in $\mathfrak{L}(\mathfrak{F})$ such that:

$$A_2(f) = U A_1(f) U^*$$
, $B_1^*(f) = U B_1^*(f) U^*$,

the operator $H_1K_2 - K_1H_2$ is necessarily Hilbert-Schmidt.

Proof. We can write:

$$a(f) = A_1(H_1f) - B_1^*(K_1f)$$

$$b^*(f) = A_1(K_1f) + B_1^*(H_1f) .$$

Hence:

$$\begin{split} Ua(f) \, U^* &= A_2(H_1 f) - B_2^* \left(K_1 f \right) = a \left((H_2 H_1 + K_2 K_1) f \right) \\ &+ b^* \left((K_2 H_1 - H_2 K_1) f \right) , \\ Ub^*(f) \, U^* &= A_2(K_1 f) + B_2^* \left(K_1 f \right) = - a \left((K_2 H_1 - H_2 K_1) f \right) \\ &+ b^* \left((H_2 H_1 + K_2 K_1) f \right) . \end{split}$$

From the preceding lemma, $(K_2H_1 - H_2K_1)$, hence its adjoint, is necessarily Hilbert-Schmidt.

Acknowledgements. We are indebted to Dr. R. T. POWERS for many helpful discussions which have greatly contributed to improve this paper, to Pr. O. E. LAN-FORD III, for valuable criticisms and suggestions, to Pr Stormer for having pointed out reference [14], and to R. WIGHTMAN and Pr. KADISON for their kind hospitality.

References

- 1. SHALE, D., and H. W. F. STINESPRING: Ann. Math. 80, 365 (1964).
- 2. VERBEURE, A., and E. BASLEV: I. H. E. S., preprints.
- 3. ARAKI, H., and W. WYSS: Helv. Phys. Acta 37, 136 (1964).
- 4. POWERS, R. T.: Representation of the canonical anticommutation relations Princeton's Dissertation, june 1967.
- GUICHARDET, A.: Ann. École Norm. Super. 83, 1 (1966).
- 5. GLIMM, J.: Trans. Am. Math. Soc. 95, 318 (1960).
- 6. DIXMIER, J.: Les C-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.
- 7. GUELFAND, I. M., et N. Y. VILENKIN: Les distributions, tome IV, Paris: Dunod 1967.
- 8. NEUMANN, J. VON: Acta Sci. Ind. 229 (1935).
- 9. CORDESSE, A., et G. RIDEAU: Nuovo Cimento 46 A, 624 (1966).
- 10. — Nuovo Cimento III. 50 A, 244 (1967).
- 11. NEUMANN, J. VON: Comp. Math. 6, 1 (1938).
- 12. J. D. C.: Bures Comp. Math. 15, 169 (1963).
- 13. WIGHTMAN, A., and L. GARDING: Proc. Nat. Acad. Sci. U.S. 40, 6 (1954).
- MOORE, C. C.: Proc. of the fifth Berkeley Symposium on Mathematical statistics and probality, Vol. II, part. II, p. 447 (1967).

G. RIDEAU Physique Théorique Institut Henri Poincaré 11, Rue Pierre Curie F-75 Paris V^e