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Abstract. Field equations satisfied by the irreducible realizations of any in-
homogeneous pseudo-orthogonal group are derived. For those representations
which are characterized by the vanishing of the invariants of the inhomogeneous
group, the field equations are of first order, of the form SABpB ψ = φA ψ. The
possibility of considering 80(q1, q2) as a higher symmetry group is discussed briefly.

1. Introduction

One main problem in particle physics is to write down irreducible
field equations, which are covariant under a prescribed combined sym-
metry group. This is equivalent to the determination of the irreducible
realizations of this group. Amongst these equations, the first order
equations are of particular interest. The combined symmetry group con-
tains the dynamical symmetry group (DG) and the internal symmetry
group (TG) as subgroups. DG is an inhomogeneous group, which defines
the mass and the spin of the particle, and contains the Poincare group
(PG) as subgroup. TG is a homogeneous group, which defines other
internal symmetries like isospin and hypercharge, e.g. $£7(3). The com-
bined symmetry groups discussed in the literature, cf. Refs. [1,2], have
a special structure. First the homogeneous group is constructed, and
then one of its subgroups (e.g. the Lorentz group) is extended to an
inhomogenous group. The generators of the combined homogeneous sub-
group are written in a DG x TG notation. The usual field equations for
DG are then generalized in a manifestly covariant DG x TG form. This
is a quite general and a very convenient way of obtaining the required
field equations. The search for irreducible field equations reduces
actually to the determination of the equations satisfied by the irreducible
realizations of DG.

The traditional DG is the Poincare group, 80(3, 1). However, its
irreducible realizations with nonvanishing mass satisfy second order
equations [3, 4, 5]. PUBSEY [6] constructed infinitely many sets of field
equations among various irreducible realizations of PG, which describe
a particle with definite mass and definite spin. MCKERBEL [7] did the
same for vanishing mass. This implies actually the enlargement of DG.
Such an enlargement is of current interest. In fact, FBONSDAL [8] and
ROMAN et al. [9] have proposed the groups $0(3, 2) and $0(4, 1) as
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DG, instead of PG. They have shown how a symmetry breaking mass
formula can be obtained in terms of the invariants of the subgroup
$0(3, 1). Contrary to PG, certain realizations of the de Sitter group
$0(4, 1) satisfy first order field equations [10], which describe particles
with definite mass and definite spin. FLATO and STERNHEIMER [11] and
HALBWACHS [12] have proposed the conformal group $0(4,2) as a
possible symmetry group. The noncompact group $(5(6) plays also the
role of DG in the relativistic $£7(12) theory [1]. In fact, SU (12) is
locally isomorphic to $£7(3) x $ί7(4), and $£7(4) is the covering group
of $(5(6). It is, therefore, of interest to consider the inhomogeneous non-
compact groups SO(qv q2)} which contain PG as subgroup.

The purpose of the present paper is to derive the field equations
satisfied by the irreducible realizations of any inhomogeneous ortho-
gonal or pseudo-orthogonal group. In general, these equations are of the
second degree in the momenta. These equations are mere generalizations
of WINNER'S equations for PG [3, 4, 5]. However, if the invariants of the
inhomogeneous group vanish, the corresponding realizations are found
to satisfy first order field equations. These are the mere generalization of
the corresponding equations for the de Sitter group, derived recently by
the author [10]. STEPANOVSKII [13] had obtained similar equations for
PG with vanishing mass. His derivation is somewhat different from ours.
It is based on little group techniques, and is restricted to WINNER'S [3]
unitary representations of PG, transforming according to the representa-
tion D(s, 0) of the proper Lorentz group. Our derivation is more general.
It proves that Stepanovskii's equations are valid for any other realization
of the massless particles, transforming according to D(sl9 s2) of the
proper Lorentz group.

The generalization of the first order field equations derived in the
present paper in an 8U( 12)-symmetric way is straightforward, and will
be published separately [14]. The inhomogeneous group SO(qvq2) is
interesting in itself. In fact, it can be considered as a combined symmetry
group, by setting some of its momenta equal to zero. This will be dis-
cussed briefly in the present paper. Besides, by a special choice of its
momenta, one can obtain a theory of massless particles containing
another intrinsic energy, which we call the " pseudo -mass". The smallest
group affording this possibility is the conformal group $0(4,2). The
implications of such an enlarged symmetry of the massless particles will
be published separately [15].

2. The Group Invariants

The infinitesimal generators of the inhomogeneous pseudo-orthogonal
group 80(qv q2) are the n = qt -j- q2 generators pΛ of the translation and
the n(n— l)/2 generators JΆB = —JBA °f * n e rotation. This group will
10*
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be denoted hereafter by iSθ(ri). For convenience, we use a euclidian
metric pApA ~ invariant, such that q1 components of pA are hermitian
and the other q2 components are anti-hermitian. The corresponding Lie
algebra is

> Vc\ = δBCPΛ — &A CPB, [PA> PB\ = 0 ,
( )

$J + 8J ^ ^ ^ ^
The generators ΣAB of the homogeneous subgroup (hSO(n)) satisfy the
latter commutation relation among themselves, together with
[ΣAB, pc] = 0. Its finite-dimensional representations are non-unitary,
and are obtained from those of the compact group hSO(n), gx = n and
q2 = 0, by the well-known unitary tick. The generators ΣAB are hermitian
in these representations. The other unitary representations are all
infinite - dimensional.

In order to construct the invariants of hSO(n), we introduce the
following completely anti-symmetric pseudo-tensors for n ^ 3:

Γ2U,-An-»=(Ψ)ΣBΰΓ$ϊ%Λ,...Λl._at, (2.2)
where

Γ^U.-Λn.a = (1/2) eΔlΛ,...ΛΛ,aBC Σsc . (2.3)
εAtAt' An i

s ^ n e Levi-Civita symbol. For n = 2N + 1 odd, 1 ?g h g N
while for n = 2 JV even, 1 ^ ^ ^ iV — 1. By successive application of
(2.2), we arrive at the following useful identity:

(2.4)

The summation extends over all permutations of the J.'s, such that
(—l) p = + 1 for an even permutation, and —1 for an odd permutation.
(2.4) holds for 1 ^ h ^ N— 1 if n = 2N + 1 and for 1 ^ k < N — 2
if n = 2iV". In the latter case we have in addition:

=i(N-ϊ) nV> + ̂ iϋί ' ( ϊ ) (2-5)
Further, for n = 2 JV + 1 we have

JT-EiM = i ^ / 1 ^ (2-6)

With the help of these pseudo-tensors we construct the invariants of

80(n):

The summation extends over lower indices alone. In particular,
_£)(!) = (1/2) ΣABΣAB. These invariants are also invariants of O(n). For
n = 2N + 1, £>{k), 1 < k^ N, we all the invariants of 80 (n). On the
other hand, for n = 2N, we have only N— 1 invariants of the type
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, 1 fg k g iV— 1. The remaining invariant is a pseudo-scalar:

DW = Γ W = (1/2) ΣΛBΓψ£» . (2.8)

For £ $ (5 (%) we introduce, on substituting JAB = %ApB — XBVA + ΣA B,

= (1/2) ZncΠ^clU-A^^ (2.9)

Here
εAxA%"Άn-zBCD

= (1/6) sAιAz...An_zBCDPBCD ,
and

ί i ΰ σ = ̂ 5 ί > σ + ̂ 5 0 ^ + ̂ c ^ ^ (2.11)

The N + 1 invariants of iS0(n) are one pseudo-scalar

for n = 2N+l ,

and N scalars:

Δ = P Λ P Λ ' (2 13)

Obviously all C^ and Zl commute with JAB and ^ .

3. Second Order Field Equations

Each irreducible representation of iSθ(n) is characterized by
N + 1 numbers Δ = dl and CW = c^)/. Thus the carrier space ψ
satisfies N -f 1 equations

Aψ = dip ,

The particular representation c£ = c(fc) = 0 satisfies first order equations,
as we shall see in the next section. For n even, all of Eqs. (3.1) are of the
second degree in pA. On the other hand, for n odd, N of them are of the
second degree, while h = N is linear. For example, for w = 3we have two
equations

Σ - pφ = cw ,
2 / (3 2 )

ψψ = dψ ,
where Σ is the spin vector. HAMMER-GOOD'S theory [16] of massless
particles is a special case of Eqs. (3.2), with d = c2 and c = p0 is the
energy of the particle. Eqs. (3.1) are the generalization of WIGNER'S
equations [3] for the Poincare group.
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The physically interesting groups are those which contain 80(3, 1)
as subgroup. Thus we concentrate on the groups SO(q1, q2) with q1 ^ 3
and g2 = 1 Let plf p2 and p3 be the hermitian cartesian components of the
physical momentum p. Let, further ,p± = ip0, where p0 is the hermitian
energy operator of the particle. The mass m of the particle is given by

m2 = Vl — P2 = M2 — d , (3.3)
where

^ 2 = Σ V\ (3.4)
-4 = 5

M is invariant under the subgroup 80{q1 — 3, q2— 1). M2 and m2 are
both real. The components pA characterize the particular representation.
In space-time, Eqs. (3.1) become field equations if pμ ->— id μ i μ = 1,2,3,4,
and the other momentum components are kept constant:

Pi+ι = mi9 l ^ i < n - ± . (3.5)

q1 — 3 of the m/s are real and the other q2 — 1 are imaginary. However,
we can consider the symmetry group as an arbitrary pseudo-orthogonal
group, such that the components mi may be complex. If some of the
m/s are set equal to zero, the field equations become invariant under the
corresponding subgroup. For example, if all m$ = 0 and d φ 0, the field
equations are invariant under SO(q1 — 3, q2—1). This subgroup may
serve as an internal symmetry subgroup. On the other hand, the non-
vanishing of some of the "mass-components" mt introduces more than
one fundamental length in the theory. One could perhaps distinguish
between strong and other interactions of the hadrons in this way. How-
ever, we shall not discuss this possibility here.

Since the mass of the particle is the physically interesting quantity,
we classify the different theories according to the values of m2 and M2.
The classification of the inequivalent theories reduces to that of the
little group. The latter is the maximal symmetry subgroup which leaves
a minimal number of pA invariant, subject to the conditions m2 = cst.
and M2 = cst. It depends on the signs of m2 and M2. For example, if m
is real and m, M ή= 0; then we can choose all pA — 0 except p4: = iεm and
pn = ηM, where ε, η = db l The little group is SO(q1 — 1, q2 — 1) if M
is real, and SO(q1, q2 — 2) iϊ M is pure imaginary. In the Table we give
the different little groups of SO(qv q2) for different signs of m2 and M2.
The original symmetry S0(n) reduces to S0(n—2) if m2, M2 Φ 0 or
m2 = M2 = 0. On the other hand, if either m or M vanishes, but not
both, the little group is S0(n— 1). The case m = M = d = 0 will be
discussed in detail in the next section.
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Table. Different little groups of SO(qly q2)

The little group
signm2 signif2 nonvanishing pA components SO(qu —nl9 q2 — n2)

+
+
—
—
0
0

—
0

+
—
+

+
—
0
0
0

Pi = i ε m,
Pt = iε m,
Pi = ε

Pi = ε
m\9

m\,
pn= η M
pn=iη \M\
p^ — i ε m
Pi = ε m\
pn = K, pn

Pn —

Pn =

Pn =

Pn =

-1 =

i η \M\
ηM
i η \M\

iηK

1
0
2
1
1
0
0
1
1

1
2
0
1
0
1
1
0
1

4. The Associated Lie Algebra

In order to construct the irreducible representations of iSO(n), it is
sufficient to study the Lie algebra generated by PABC> given by (2.11),
over the field of complex numbers and pΛ. In fact, PABC generate a
finite-dimensional Lie algebra:

= ^AA'XBB'CC + δβB'XCCΆA' _ , v _ _

A' + OC

+ ^BA'XCBΆC + ^CB'XBAΆC +
where

^i i ' ί ί ' = PAA'BVB' + PBBΆVA'
Introducing

P̂ 4 = — i Σ A B p B , (4.2)
we find that

Also

iΔΣAB + PAPB-PBPA (4.3)

, PB\

PBB'C+ ^BB'^AA'C^ UBA'FCBΆ

B'FCA'B + δcA>FAB,B -f OCB'FBAΆ >

A>XBB> + δBB'XAA'— δBA>XAB>

where
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Further

[XΛB, Pc] = PcXBA + Δ{δΛaPs-δ30PΛ-p0ΣΛB} .

If zl φ 0, the Lie algebra {PABC} i s semi-simple. The corresponding
realizations of iS0(n) are the solutions of Eq. (3.1). On the other hand,
if Δ = PAVA = 0> then

B'] = ( ^ ' ^ J3' ~ VB' ̂ A A') XB C

— PB'δBA') %CA + (PA' $CB' ~ Ί>B'^G

I i i } = ̂  P5 - P Λ , (4.4)

generate an abelian ideal, and the finite-dimensional Lie algebra
^S n o ^ semi-simple. For the finite-dimensional irreducible re-

presentations, {PABC} should be semi-simple [17]. Thus these represen-
tations are characterized by XAB — 0 Then

[PA, PB\ = PΛPB-PBPA = 0, (4.5)

and
[PABC PJ>] = 0 . (4.6)

In fact, for all k,

^ . (4.7)

This is proved most easily by induction: From (2.9) one proves that, if
(4.7) holds for Jc, it holds also for fc + 1 but (4.6) implies that (4.7) holds
for Jc = 1. Hence it holds for all k. This proves that PA belong to the
centrum of the algebra. From (4.5) it follows that

PA = -iΣΛBpB = λpΛ, (4.8)

where λ is a characteristic number of the representation. We show in
what follows that λ is the maximal (real positive) eigenvalue of ΣΛ B-
Eqs. (4.8) were obtained recently by the author [10] for the de Sitter
group 80(4,1).

5. First Order Field Equations

Let ψ be the carrier vector space of the preceding representation.
Then ψ satisfies

ΣABPBΨ = iλpΛψ . (5.1)
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Since A — PAPA — 0> these representations exist only for noncompact
groups iSθ(n). In this case the mass is given by

»»t=p8-pί=2>»g (5-2)

are the "mass-components" of the "mass-vector" in an
euclidian (or pseudo-euclidian) (n— 4)-dimensional space, transforming
according to the subgroup SO(q1 — 3, q2 — 1).

If m2 φ 0, we can choose pΛ = 0 for all A except pn — mn-4 = m and
£>4 = ίεm, where ε = ± 1 . Then (5.1) becomes

(Σ±k + iεΣkn)ψ = 0, k Φ 4, n .

y is an eigenfunction of 27w4 of eigenvalue ελ. Since for the finite-
dimensional representations of JιSO(n), ΣAB *S hermitian, and λ is real.
For each triad n, 4, k 4= w, 4,

y — J 1 y — y y — y

are generators of 80(3). As is well-known from the theory of angular
momentum, if Σ3ψελ= eλψeλ, then (Σt 4- iεΣ2)ψeχ = 0 if and only if λ
is the maximal eigenvalue of Σs. Eqs. (5.3) show that λ is the maximal
eigenvalue of i7 n 4 (for all w φ 4 ) . By arguments similar to those of
HEPNEB, [18] for 80(5), it can be shown that for any 80(n), all generators
ΣAB have the same eigenvalues. Hence λ is the maximal real positive
eigenvalue of ΣAB in the representation.

If m — 0, we define the real "pseudo-mass" K such that

tfa-l W - 4

rL — ZJ \mk\ — ZJ
 mk » l° ̂ i

^ = 1 ^ = ^ 3

where mk is pure imaginary for 1 g AJ ̂  g2 — 1, and real for q2 ^ k
<n — 4. In this case we can choose pQa+z ~ mQ2-i== iεK> Pn — mn-± = ^>
and all other pA = 0. We can prove in the same way that λ is the maximal
real positive eigenvalue of ΣAB- We note that, in any case, the little
group is 80(q1 — 1, q2 — 1). I t is interesting to note that for theories of
massless particles (m = 0) with a nonvanishing pseudo-mass K, we can
define a rest-system in which the energy and the physical momentum
of the particle both vanish.

We remark that Eqs. (5.1) are derivable from generalized Bargmann-
Wigner equations in n dimensions. Let γψ, k = 1, 2, . . ., 2λ} constitute
2 λ commutative Clifford algebras in n dimensions:

γfγf+γfγT = 2δABi,

{γf, 7 « ) ] = o f o r k ^ j , ( ' }
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A, B = 1, 2, . . ., n. As is well-known, this Clifford algebra (for each h)
possesses one irreducible representation of 2^ dimensions, if n = 2N.
If n = 2N + 1, there are two inequivalent representations ± γΛ of 2^
dimensions. The generalized Bargmann-Wigner equations are

γ(BVBψ = Q> 1 ^ ^ ^ 22 . (5.6)

ψ may be constructed as the direct product

fc = l

Here ψW is the carrier vector space in 2-̂  dimensions, belonging to the
irreducible representation of γ^\ It satisfies

γfpBψ{k) = 0, l^h^2λ. (5.8)
The matrices

2λ

γA = (i/2) Σ yf, (5.9)
k= 1

ΣAB = — i[?A> 7B\ (5.10)

2λ

= -( i/2) Z 1 (Λ&) y8 } - 3.12*) (5.10)
& = l

afford a generally reducible representation of S0(n + 1) with a maximal
eigenvalue λ. ΣAB are also reducible representations of 80(n). Multi-
plying (5.6) by γψ} and summing over all k < 2λ, we arrive at Eqs. (5.1).
The irreducible representations of the latter equations are obtained by
the full reduction of (5.10) under 80{n).

In order to put (5.7) in the usual Bargmann-Wigner [19] form, take
pΛ — 0 for A > 5, and p5 = m, and denote

It is easily verified that the complete set of Eqs. (5.7) are obtained by
multiplying the Bargmann-Wigner equations

(y^fti + m)^ = 0

by the different elements ΣψB. The original Bargmann-Wigner equations
were derived for the case n = 5, where γ^ are four-dimensional Dirac
matrices.

6. Observables and Auxiliary Equations

For convenience, we define SΛB = —(i/λ)ΣΛB such that the field
equations become

PΛψ = SABpBψ = pΛψ , (6.1)
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where PA is redefined from now on as PA — SABpB. Relations (4.5) and
(4.7) are not satisfied automatically; they hold only when applied to the
state vector ψ:

[PA, PB\ ψ = 0 , (6.2)

[ ^ , t f J & . ^_ M _χ]V = O. (6.3)

The definition of an observable 0 should be modified. As usual, if ψ is a
solution of (6.1), then also Oψ is a solution of the same equations. 0
needs not commute with pA — PA it suffices that

[pΛ-PA,O]ψ = 0. (6.4)

Hence PΛ and ΠΛ

k?Ai...Λn_2k_1a,τe observables of the theory. Also the total
angular momentum tensor JAB is observable. In fact,

i[JAB> Vc— Pc] = &BC(PA — PA) —
such that

We derive now auxiliary equations satisfied by the observables
?-Άn-*k-i> w n ^ c n a r e helpful in solving the field equations. Con-

tracting (2.4) with pB and using (6.1) we get

— ΔJ \ x) PA^1 A2A3 - An-2k-l
{A}

These equations hold for 1 ^ k ^ N— l i f ^ = 2N + 1, and for 1 ^ k
^ N— 2 if n = 2N. Further, contracting (2.5) with pc, using (6.1) we
get

—iN{λ + N—1)ΠA

N~ι) ψ = pA ΓW ψ (6.7)

for n — 2N. Contracting (6.6) and (6.7) with the corresponding

ΠA

k)

lA2...An_(2h_1 we arrive a t

0, l^k^N— 1 . (6.8)

This is true for n odd or even. Further, contracting (2.6) with pB) and
using (6.1), we get for n = 2N + 1

ΠWψ= CWψ = 0. (6.9)

Finally, for n = 2N, contracting (6.6) for k = N — 2 with PAχAiA%, we
obtain the similar equation (6.9). Hence, for the finite-dimensional
representations with Δ — 0, all invariants CW = 0.

7. Generalized Stepanovskii Equations

In the case of the Poincare group # 0 ( 3 , 1), Eqs. (6.1) become

Pμψ - Sμvpvφ = pμψ, 1 ^ μ ^ 4 , (7.1)
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such that pμPμψ = 0. These are the minimal linear field equations for
massless particles. These equations hold for any irreducible representa-
tion D(sv s2) of the generators Sμv of the homogeneous Lorentz group.
In this case, there is only one auxiliary equation (6.7), which may be
written in the form

8μvPvψ = YβPμψ ( 7 2 )

Here Sμv = (ll^)eμvΰcβSxβ is the dual of Sμv, and

γδ = ΣμvΣμvIU(λ+l) (7.3)

is the chirality operator. As is well-known [20], in the finite-dimensional
representation D(sv s2), the spin s is restricted by the condition

K — s2\ ^ s <Ξ Si -f s2 . (7.4)

λ is the maximal value of s in this representation. Thus

λ = s1 + s2 . (7.5)

The two invariants of D(slt s2) are

ΣμvΣμv = 4[51(51 + 1) + s2{s2 + 1)] ,

ΣμvΣμv = 4,(8,-8,) K + s2 + 1) , ( 7 ' 6 )

where Σμv = iλSμv. Hence

75= K — aa)/(si + *2) (7 7 )

2-Sj and 2«s2 are two nonnegative integers.
Denoting

β(s) -_ JL /$ i ^ \ __ ^ ω

(7-8)
,Cf(α) L /.Cf .e ^ .c(α)

Eqs. (7.1), (7.2) and (7.7) lead to

(7-9)

Each set of these equations is covariant under the proper Lorentz group.
Under spatial inversion, the two sets transform into each other. For
s1 = s and s2 = 0, Eqs. (7.9) become just STEPANOVSKII'S [13] equations.
DIRAC [20] had derived the same equations from his spinor theory
rather intuitively. Our Eqs. (7.9) and (7.10) are more general, and apply
to all realizations of the Poincare group with m = 0. The corresponding-
realizations for arbitrary m were studied by SHAW [5].

The decomposition [21]

jl l (7.11)
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corresponds to the decomposition 0(4) = 0(3) x 0(3). In fact,
[ 2 $ , Σ<$] = 0. Let

y(s) _ : Q P ~(i) y(s) _ Q ^(l)

where Jc,l,n = 1, 2, 3 (spatial components).
The total spin is

Σ = s^M + s2σW , (7.13)
and

With this notation, Eqs. (7.9) become

ai1) p ^ = poψ } (7.15a)

yip , (7.15b)
and

(7.16a)

(7.16b)

Eqs. (7.15a) and (7.16a) are HAMMER-GOOD'S equations [16] with
opposite chiralities. Eqs. (7.15b) and (7.16b) give the additional supple-
mentary conditions, which ensure that pμpμψ = 0. Actually, the Hammer-
Good theory corresponds to the choice s1 = s and <s2 = 0. The general
theory with sv s2 Φ 0 is of rather theoretical significance. In fact, the
two known massless particles, the neutrino and the photon correspond to
s1 = s = 1/2, 1 and s2 ~ 0, or s1 — 0 and s2 = s = 1/2, 1. The two con-
jugate representations (under spatial inversion) D(s, 0) and D(0, s) may
be used to define particles with opposite chiralities. In this case the
original equations (6.1) should be used. For the neutrino this affords a
possible unified description of the two neutrinos associated with the
electron and the muon [22]. The similar possibility of two photons with
opposite chiralities has been discussed recently [23].

8. One Mass-component Theories

If p5 = m and pΛ = 0 for all A > 5, the dynamical symmetry group
reduces to the inhomogeneous de Sitter group. This gives rise to an
internal symmetry subgroup SO(qx — 4, q2— 1), which commutes with
the de Sitter group. Denoting

γμ = s μ t , β™ = s μ > l e + b ,
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Eqs. (6.1) reduce to

= pμψ , (8.2)

(8.3)

(βMpμ + mβM)ψ = 0. (8.4)

Since PABC> given by (2.11), are observables of the dynamical equations,
we see that

Pμ,, = ieμ,,βWβ (8.5)
a n d

J°5.*+5.ι+5 = w i : f c + 6 f l + 6 , (1 ^ k,l^ w - 5 ) , (8.6)

are observables.

Wμ = -(il2)εμ,*βP,Σap (8.7)

is the Pauli-Lubanski pseudo-vector. The Lorentz invariant

WμWμ = m*a(8+\) (8.8)

characterizes the spin s of the particle [3]. Σk + 5tι + 5 are the generators
of the internal symmetry subgroup SO(qλ— 4, q2—1). Thus the
spin and the internal symmetries are observables.

The field equations (8.2) —(8.4) reduce actually to (8.2) of the de Sitter
group. In fact [10], (8.3) follows automatically from (8.2). We prove
now that (8.4) is satisfied automatically by the irreducible solutions of
(8.2). Decompose ψ into the direct sum of realizations of SO(4, 1):

( 8 9 )

A2 ^ λ2 ^ 0 characterize the irreducible representation R5 (λlf λ2) of
SO (5). For the finite-dimensional representations, λλ and λ2 are both
integers (for bosons) or half-integers (for fermions) [24]. Each "de Sitter"
component ψ{λ1} λ2) satisfies (8.2). As is well-known from the theory of
de Sitter-symmetric field equations [10], we should have λ1 = λ. Further,
ψ(λv λ2) satisfies

WμWμψ(λv λ2) = m*λz(λ2 + 1) ψ(λv λ2) . (8.10)

The spin of the particle is s = A2. The theory admits different (total)
spin states s ^ λ. For a definite spin s,

V(^i,λ2) = (ΪA1A<ϊλl,v>(λ,β). (8.11)

We are left with one nonvanishing de Sitter component for each spin s.
To prove that this solution satisfies (8.4) automatically, we turn to

the rest-system p± = iem, p1 = p2 = pz = 0. Then (8.3) and (8.4) become,
for any h' = k -\- 5

(8.12)

(8.13)
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As argued in Section 5, (8.13) follows from (8.12) automatically. Hence
(8.4) is satisfied by the solution (8.11).

Since the reduced dynamical symmetry is $0(4, 1), we can introduce
a mass-formula consistent with the dynamical equations of the form

M = A + BDW + OD(2> . (8.14)

Here A, B and C are functions of the internal symmetry subgroup, and
ZW and D&) are the two invariants of 80(4:, 1) (compare (2.7)). In the
finite-dimensional irreducible representation M5(λv λ2), we have [25]

DO-) = (ll2)ΣabΣah = λ ^ + 3) + A2(A2 + 1) , (8.15)
and [26]

ω ±χ^ + 1 } {λi + 1 } {λi + 2 ) , (8.16)

where the summation extends over five dimensions. Since for the solution
(8.11), λλ = λ is a characteristic of the representations of the whole group
SO(qv q2), and λ2 = s is the spin, we get

Mψ = {A' + B's{s + l)}ψ . (8.17)

Here A' and B' depend only on the internal symmetries and the in-
variants of the whole group. Whether M = m or m2 remains arbitrary.
It is interesting that the dynamical symmetry leads unambiguously to
the spin dependence s(s -{- 1), irrespective of the type of the internal
symmetries. This is just the spin dependence of the S U (6)-symmetry [27].

We note that for the group 80 (4, 4), the maximal internal symmetry
subgroup is 80(3), It can be related to the isospin group 8U(2). How-
ever, its generators have the same eigenvalues as the dynamical spin Σa &.
This would imply that bosons are isobosons and fermions are iso-
fermions. This is obviously an unphysical restriction.

The SU(S) internal symmetry may be embedded into 80(β), as
demonstrated by HALBWACHS [12] for $0(4, 2). In fact, 817(3) C Sϋ(4)
and $ 0 (6) ~ 8 U (4)/Z2. The group 80 (6) can be taken now unambiguous-
ly as an internal symmetry subgroup of an inhomogeneous 80(qv q2)
group. We stress that this combined symmetry scheme is different from
that proposed by HALBWACHS [12]. In fact, HALBWACHS defines the
hyper change and the isospin in terms of the dynamical spin, while our
$0(6) commutes with the whole dynamical group. The smallest group
of this type is $0(10, 1). However, in order to establish the connection
with the $f7(6)-symmetry, it is more tempting to try $0(10,2) or
$0(11,1). The dynamical subgroup may be taken as $0(4,2) or
$0(5, 1). The reduction of this dynamical symmetry into the de Sitter
symmetry would follow if we assume a mass formula of the form (8.14).
Similarly, the #17(4) internal symmetry may be broken in an $£7(3)
symmetric way.
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