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Abstraet. Field equations satisfied by the irreducible realizations of any in-
homogeneous pseudo-orthogonal group are derived. For those representations
which are characterized by the vanishing of the invariants of the inhomogeneous
group, the field equations are of first order, of the form S,z ps v = p4 . The
possibility of considering SO (g,, ¢;) as a higher symmetry group is discussed briefly.

1. Introduction

One main problem in particle physics is to write down irreducible
field equations, which are covariant under a prescribed combined sym-
metry group. This is equivalent to the determination of the irreducible
realizations of this group. Amongst these equations, the first order
equations are of particular interest. The combined symmetry group con-
tains the dynamical symmetry group (DG) and the internal symmetry
group (TG) as subgroups. DG is an inhomogeneous group, which defines
the mass and the spin of the particle, and contains the Poincaré group
(PG) as subgroup. TG is a homogeneous group, which defines other
internal symmetries like isospin and hypercharge, e.g. SU (3). The com-
bined symmetry groups discussed in the literature, cf. Refs. [1, 2], have
a special structure. First the homogeneous group is constructed, and
then one of its subgroups (e.g. the Lorentz group) is extended to an
inhomogenous group. The generators of the combined homogeneous sub-
group are written in a DG x TG notation. The usual field equations for
DG are then generalized in a manifestly covariant DG x TG form. This
is a quite general and a very convenient way of obtaining the required
field equations. The search for irreducible field equations reduces
actually to the determination of the equations satisfied by the irreducible
realizations of DG.

The traditional DG is the Poincaré group, SO(3, 1). However, its
irreducible realizations with nonvanishing mass satisfy second order
equations [3, 4, 5]. PURSEY [6] constructed infinitely many sets of field
equations among various irreducible realizations of PG, which describe
a particle with definite mass and definite spin. McKERREL [7] did the
same for vanishing mass. This implies actually the enlargement of DG.
Such an enlargement is of current interest. In fact, FroNsDAL [8] and
Romax et al. [9] have proposed the groups SO(3,2) and SO(4,1) as
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DG, instead of PG. They have shown how a symmetry breaking mass
formula can be obtained in terms of the invariants of the subgroup
80(3,1). Contrary to PG, certain realizations of the de Sitter group
SO (4, 1) satisfy first order field equations [10], which describe particles
with definite mass and definite spin. FLaTo and STERNHEIMER [11] and
Harswacns [12] have proposed the conformal group SO(4,2) as a
possible symmetry group. The noncompact group S0 (6) plays also the
role of DG in the relativistic ST (12) theory [1]. In fact, ST (12) is
locally isomorphic to S U (3) x ST (4), and 8 U (4) is the covering group
of SO (6). It is, therefore, of interest to consider the inhomogeneous non-
compact groups SO (g, ¢,), which contain PG as subgroup.

The purpose of the present paper is to derive the field equations
satisfied by the irreducible realizations of any inhomogeneous ortho-
gonal or pseudo-orthogonal group. In general, these equations are of the
second degree in the momenta. These equations are mere generalizations
of WiaNER’s equations for PG [3, 4, 5]. However, if the invariants of the
inhomogeneous group vanish, the corresponding realizations are found
to satisfy first order field equations. These are the mere generalization of
the corresponding equations for the de Sitter group, derived recently by
the author [10]. StepaNovskiI [13] had obtained similar equations for
PG with vanishing mass. His derivation is somewhat different from ours.
It is based on little group techniques, and is restricted to WIGNER’s [3]
unitary representations of PG, transforming according to the representa-
tion D (s, 0) of the proper Lorentz group. Our derivation is more general.
It proves that Stepanovskii’s equations are valid for any other realization
of the massless particles, transforming according to D(s;, s,) of the
proper Lorentz group.

The generalization of the first order field equations derived in the
present paper in an S U (12)-symmetric way is straightforward, and will
be published separately [14]. The inhomogeneous group SO(q,, ¢,) is
interesting in itself. In fact, it can be considered as a combined symmetry
group, by setting some of its momenta equal to zero. This will be dis-
cussed briefly in the present paper. Besides, by a special choice of its
momenta, one can obtain a theory of massless particles containing
another intrinsic energy, which we call the “pseudo-mass”. The smallest
group affording this possibility is the conformal group SO (4, 2). The
implications of such an enlarged symmetry of the massless particles will
be published separately [15].

2. The Group Invariants

The infinitesimal generators of the inhomogeneous pseudo-orthogonal
group SO(q;, ¢,) are the n = ¢, + ¢, generators p, of the translation and

the n(n — 1)/2 generators J 4 p = —J g4 of the rotation. This group will
10%
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be denoted hereafter by 780 (n). For convenience, we use a euclidian
metric p4p, = invariant, such that ¢; components of p, are hermitian
and the other ¢, components are anti-hermitian. The corresponding Lie
algebra is
i[Jap Pol = OpoPa—OacPs  [Pas Pl =0,
i[Jap Jopl = dapIpc+ dpcJap—04cSpp— OppJac-

The generators X p of the homogeneous subgroup (%80 (n)) satisty the
latter commutation relation among themselves, together with
[2 45 pcl = 0. Its finite-dimensional representations are non-unitary,
and are obtained from those of the compact group 2SO0 (n), ¢; = n and
¢, = 0, by the well-known unitary tick. The generators X, p are hermitian
in these representations. The other unitary representations are all
infinite-dimensional.

In order to construct the invariants of 2SO (n), we introduce the
following completely anti-symmetric pseudo-tensors for n = 3:

@.1)

TPty 0= 12) Zpo TEGE 4ty or» (2.2)
where
TPy oty = (12) €4, 4,4, 8¢ 280 - (2.3)

€4,4,---4, is the Lev1-C1V1ta symbol. For n =2N +1odd,1 £ k< N
while for n = 2N even, 1 < k < N — 1. By successive application of
(2.2), we arrive at the following useful identity:

F(k) 2t Ap_2k-1C ZBC"—' ikrgi)AzWAn-zkAB

—1)n
_ (k—‘_)1 {%v (—1)P 854, I‘(k+ dygps -

(2.4)

The summation extends over all permutations of the A4’s, such that
(—1)? = +1 for an even permutation, and —1 for an odd permutation.
(24) holds for 1 < k< N—1lifn=2N+landfor 1<k N—2
if n = 2N. In the latter case we have in addition:

P50 Ep0 = i — 1) TG 0,51 . (2.5)
Further, for n = 2N + 1 we have
I'Myp, =iNI'Y . (2.6)

With the help of these pseudo-tensors we construct the invariants of
SO (n):
1

6) - ) )
D® = CETeY TE ity i TPt i (2.7)

The summation extends over lower indices alone. In particular,
DM = (1/2) X4 32 4 5. These invariants are also invariants of O (n). For
n=2N+1,D®, 1< k< N, are all the invariants of SO (n). On the
other hand, for n = 2N, we have only N — 1 invariants of the type
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D®,1 < k =< N — 1. The remaining invariant is a pseudo-scalar:
D® =™ = (1/2) X, g TPV . (2.8)
ForiS 0 (n) we introduce, on substituting J 4 g = x Pp— 2504 + 2 4 5>

(
HI?Az “Ap_or-1 " 1/2) JBCH%IGC}{ZAZ"

An-2k-1
= (1/2) ZBCH.(l?k(;izAg"'An-Qk‘l (29)
= ﬁk)A “An_or_-1BPB -
Here
P ay o= (12) 4,4, a, s8c0IB0PD (2.10)
= (1/6) €4, 4,---4,_sBcDPBCD 5 ’
and
Pygo=245Pc+ 2pcPa+ Zoals- (2.11)
The N + 1 invariants of iSO (n) are one pseudo-scalar
oM =1rMp, for n=2N-+1,
cd) = (N—2) (2.12)
HAAAaPA1AzAs for n=2N,
and N scalars:
4= )
P4Pa (2.13)
ngik)Az An—2k—1ﬂl(4kl)Az"'An~2k-l (I= k= N— I).

Obviously all C® and 4 commute with J 5 and p,.

3. Second Order Field Equations

Each irreducible representation of iSO(n) is characterized by
N + 1 numbers 4 =dI and C® = c®]. Thus the carrier space
satisfies N + 1 equations

Ap=dy,

C® = c®yp. (3-1)

The particular representation d = c(*) = Q satisfies first order equations,
as we shall see in the next section. For n even, all of Egs. (3.1) are of the
second degree in p4. On the other hand, for n odd, N of them are of the
second degree, while £ = N is linear. For example, for n = 3 we have two
equations

Zepy=cy,

Py =dy,

where 2’ is the spin vector. HAMMER-GooD’s theory [16] of massless
particles is a special case of Egs. (3.2), with d = ¢ and ¢ = p, is the
energy of the particle. Eqgs. (3.1) are the generalization of WIGNER’s
equations [3] for the Poincaré group.

(3.2)
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The physically interesting groups are those which contain SO (3, 1)
as subgroup. Thus we concentrate on the groups SO(g,, ¢,) with ¢; = 3
and g, = 1. Let p,, p, and p, be the hermitian cartesian components of the
physical momentum p. Let, further ,p, = ip,, where p, is the hermitian
energy operator of the particle. The mass m of the particle is given by

m?=pj—p>=M*—d, (3.3)
where
n

M= 3 p%. (3.4)

M is invariant under the subgroup SO(g; — 3, ¢, — 1). M? and m? are
both real. The components p4 characterize the particular representation.
In space-time, Eqs. (3.1) become field equationsif p, ~ —i9,, u =1,2,3,4,
and the other momentum components are kept constant:

Pirga=m;, 1=1=n—4. (3.5)

¢, — 3 of the m;’s are real and the other ¢, — 1 are imaginary. However,
we can consider the symmetry group as an arbitrary pseudo-orthogonal
group, such that the components m; may be complex. If some of the
m,’s are set equal to zero, the field equations become invariant under the
corresponding subgroup. For example, if all m; = 0 and d = 0, the field
equations are invariant under SO(q, — 3, ¢, — 1). This subgroup may
serve as an internal symmetry subgroup. On the other hand, the non-
vanishing of some of the ‘“mass-components” m; introduces more than
one fundamental length in the theory. One could perhaps distinguish
between strong and other interactions of the hadrons in this way. How-
ever, we shall not discuss this possibility here.

Since the mass of the particle is the physically interesting quantity,
we classify the different theories according to the values of m? and M2
The classification of the inequivalent theories reduces to that of the
little group. The latter is the maximal symmetry subgroup which leaves
a minimal number of p, invariant, subject to the conditions m? = cst.
and M2 = cst. It depends on the signs of m? and M2. For example, if m
is real and m, M = 0; then we can choose all p4 = 0 except p, = tem and
P = nM, where ¢, y = 4 1. The little group is SO(¢; —1,¢9,— 1) if M
is real, and SO (g, g, — 2) if M is pure imaginary. In the Table we give
the different little groups of SO(g;, ¢,) for different signs of m? and M2.
The original symmetry S0 (n) reduces to SO(n— 2) if m2, M2+ 0 or
m? = M2 = 0. On the other hand, if either m or M vanishes, but not
both, the little group is SO(n— 1). The case m = M = d = 0 will be
discussed in detail in the next section.
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Table. Different litile groups of SO(qy, q2)

The little group

signm? sign M? nonvanishing p, components SO0(qy, — 1y, g3 — 7))
n, Ny
+ + Py = /’"8 m, Pn= n M 1 1
+ — P4=i€ma pn‘—‘“?lMl 0 2
— + pr=¢lm|, p.=nM 2 0
- - p1=8|m‘9 Pn=“7|M‘ 1 1
0 + Pp=nM 1 0
0 — pn=1tn|M| 0 1
+ 0 Py=1tem 0 1
— 0 Py = ¢ |m)| 1 0
0 0 Pn=K, pn—1=i77K 1 1

4. The Associated Lie Algebra

In order to construct the irreducible representations of i80 (n), it is
sufficient to study the Lie algebra generated by P, p¢, given by (2.11),
over the field of complex numbers and py. In fact, P, o generate a
finite-dimensional Lie algebra:

[Pypes Pagel

= 6AA'XBB'CC' + OppXooaa + 5CC'XAA'BB'

4.1)
+0s0xcnBar+ ScaXanpe + Oup Yo e
+ Opafopac + OcpBaac + OpoXoaan
where
%4488 = PiapPp + PppaPa -
Introducing
Py=—iZ2,ppp, 4.2)
we find that
Xsp=—tP pcpc
=—iAX, g+ psPg—ppPy 4.3)
= [PA> PB] .
Also

[(Xum> Papcl=04u4Fppo+ 0ppFanc+ 0paFopa
+ 04 Foap+ OcaFapp+ dopFpaa,
[Xap Xppl=A{044Xpp + 0ppXaa— s Xup

—OupXpa— P4 Ppap + iZ’BPAA'B'} s
where

Fypgo=1ippXoa— AP pc-
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Further
[Pp, Papcl=04pXpo+ dcpXpa+ dppXac
— AMb4pZcp+ dcpZpa+ 05pLach,
[(Xam Pl =pcXps+ A{040Pp— 0pcPs—Pc24n}-

If 440, the Lie algebra {P4p¢} is semi-simple. The corresponding
realizations of .80 (n) are the solutions of Eq. (3.1). On the other hand,
it A=pyupy=0,then

[X4p, Xop] =0,
i[Papo, Xapl= Padap—Pposa) Xpo

+ (P4 0p —Pp0pa) Xoa+ (Padop — Prdoa) Xam,

[Py, Ppl= X4 p=psPp—ppPy, (4.4)
i[Pp, Papcel = 04pXop+ 0cpXpa+ 0ppXac,
[Po, Xapl=PcXap-

X 4 3 generate an abelian ideal, and the finite-dimensional Lie algebra
{P4pc} is not semi-simple. For the finite-dimensional irreducible re-
presentations, {P 4 z¢} should be semi-simple [17]. Thus these represen-
tations are characterized by X 4 5 = 0. Then

[Py Ppl=psPp—ppPs=0, (4.5)
and
[Papo, Pp]l=0. (4.6)
In fact, for all £,
T4,y s> PB1 =10 (4.7)

This is proved most easily by induction: From (2.9) one proves that, if
(4.7) holds for £, it holds also for k£ + 1; but (4.6) implies that (4.7) holds
for k = 1. Hence it holds for all k. This proves that P, belong to the
centrum of the algebra. From (4.5) it follows that

Py=—12 ppp=AP4s (4.8)

where 4 is a characteristic number of the representation. We show in
what follows that A is the maximal (real positive) eigenvalue of 2, 5.
Eqgs. (4.8) were obtained recently by the author [10] for the de Sitter
group SO (4, 1).

5. First Order Field Equations

Let y be the carrier vector space of the preceding representation.
Then y satisfies

2 ABPY = 1AP4Y . (5.1)
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Since A = p,p4 = 0, these representations exist only for noncompact
groups 180 (n). In this case the mass is given by

n—4
m? = p§— p* =k21 mi . (5.2)

My, = Pp+4 are the “mass-components” of the “mass-vector” in an
euclidian (or pseudo-euclidian) (n — 4)-dimensional space, transforming
according to the subgroup SO(q; — 3, ¢, — 1).

If m? 4= 0, we can choose p,4 = 0 for all 4 except p, = m,_, = m and
p, = tem, where ¢ = + 1. Then (5.1) becomes

2oy =c¢cly,

5.3
(Zapt+teZi)p =0, k+4,n. (63)

w is an eigenfunction of X, , of eigenvalue ¢A. Since for the finite-
dimensional representations of AS0 (n), X', ; is hermitian, and A is real.
For each triad n, 4, k &+ n, 4,

21 = 2470 22 = ka 23 = Zm

are generators of SO(3). As is well-known from the theory of angular
momentum, if Xyy,, = edyp,,, then (2] + ie2,)p,; = 0 if and only if 2
is the maximal eigenvalue of ;. Eqgs. (5.3) show that A is the maximal
eigenvalue of X, , (for all » < 4). By arguments similar to those of
Hep~NER [18] for SO (5), it can be shown that for any SO (n), all generators
24 g have the same eigenvalues. Hence A is the maximal real positive
eigenvalue of X4 p in the representation.
If m = 0, we define the real “pseudo-mass™ K such that

K2= }) |myt= 3 mi, (5.4)
k=1 k

where m;, is pure imaginary for 1 < k < ¢,— 1, and real for ¢, < k
< n— 4. In this case we can choose p, 4 3 = m, _; = (e K, p,=m, ;= K,
and all other p4 = 0. We can prove in the same way that A is the maximal
real positive eigenvalue of X', 5. We note that, in any case, the little
group is SO (g; — 1, g, — 1). It is interesting to note that for theories of
massless particles (m = 0) with a nonvanishing pseudo-mass K, we can
define a rest-system in which the energy and the physical momentum
of the particle both vanish.

We remark that Eqgs. (5.1) are derivable from generalized Bargmann-
Wigner equations in n dimensions. Let %, k=1, 2, ..., 24, constitute
2 A commutative Clifford algebras in n dimensions:

YPVE + vEYP = 20451,

. 5.5
G 1g1=0 for ki, o
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A,B=1,2,...,n. Asis well-known, this Clifford algebra (for each k)
possesses one irreducible representation of 2¥ dimensions, if n = 2N.
If n=2N + 1, there are two inequivalent representations -y, of 2¥
dimensions. The generalized Bargmann-Wigner equations are

y®ppy =0, 1=k=21. (5.6)
w may be constructed as the direct product

22

Here ) is the carrier vector space in 2¥ dimensions, belonging to the
irreducible representation of y). It satisfies

YBppy® =0, 1=k=22. (5.8)
The matrices
Va= (1/2)k4=‘2?21 7P, (5.9)
Zyp=—1[y4 V8] (5.10)
= —(i/Z)ki‘zf1 VP Yy — 645 (5.10)

afford a generally reducible representation of SO (n + 1) with a maximal
eigenvalue A. X', p are also reducible representations of SO (n). Multi-
plying (5.6) by y®, and summing over all £ < 21, we arrive at Egs. (5.1).
The irreducible representations of the latter equations are obtained by
the full reduction of (5.10) under SO (n).

In order to put (5.7) in the usual Bargmann-Wigner [19] form, take
p4 = 0for 4 > 5, and p; = m, and denote

P =SB =—GIh Z8 .

§2
It is easily verified that the complete set of Egs. (5.7) are obtained by
multiplying the Bargmann-Wigner equations
(Y pu+m)yp =0

by the different elements X'¢)%. The original Bargmann-Wigner equations
were derived for the case n = 5, where % are four-dimensional Dirac
matrices.

6. Observables and Auxiliary Equations

For convenience, we define S, 5= —(i/1) 245 such that the field
equations become

Payp=S8,4pPp%=Day, (6.1)
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where P 4 is redefined from now on as P4 = S, g pp. Relations (4.5) and

(4.7) are not satisfied automatically; they hold only when applied to the
state vector y:

[P4, Pply=0, (6.2)

(P, IIPy,...s, 0 Jw=0. (6.3)

The definition of an observable O should be modified. As usual, if y is a
solution of (6.1), then also Oy is a solution of the same equations. O
needs not commute with p, — P; it suffices that

[pa— P4, Olp=0. (6.4)

Hence P and IT{, ... 4, ,.  are observables of the theory. Also the total
angular momentum tensor J 4 p is observable. In fact,

i[Jam po— Pol = 0pc(pa— Pa) — d40(pp— Pp),
such that
[(Jap poc— Pely=0. (6.5)
We derive now auxiliary equations satisfied by the observables
IIP,.... 4, 4s..» Which are helpful in solving the field equations. Con-
tracting (2.4) with pp and using (6.1) we get
(1A + k) (b + 1)V ITPy g 1 ¥

:{%}' (—I)P pAlF*(‘ikzjsl')“An—u-l"/) . (6.6)

These equations hold for 1 £ k< N—1ifn=2N+1,and for1 < k
< N—2if n = 2N. Further, contracting (2.5) with p¢, using (6.1) we
get

—iNA+N—DIFVy=p, ™y (6.7)

for n=2N. Contracting (6.6) and (6.7) with the corresponding
OPy,....4,_ ., We arTive at
Chyp=0, 1<k<N—1. (6.8)

This is true for n odd or even. Further, contracting (2.6) with pp, and
using (6.1), we get for n = 2N + 1

Iy =My =0. (6.9)

Finally, for n = 2N, contracting (6.6) for £ = N — 2 with P, 4, 4,, We
obtain the similar equation (6.9). Hence, for the finite-dimensional
representations with 4 = 0, all invariants C*) = 0.

7. Generalized Stepanovskii Equations
In the case of the Poincaré group SO(3, 1), Egs. (6.1) become

Poy=8,py=09 1=p=4, (7.1)
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such that p,p,p = 0. These are the minimal linear field equations for
massless particles. These equations hold for any irreducible representa-
tion D(s;, s,) of the generators S,, of the homogeneous Lorentz group.
In this case, there is only one auxiliary equation (6.7), which may be
written in the form

BuvDutp = vsDup - (7.2)
Here S, = (1/2) €,,4, S, is the dual of S,,, and
vs = 2y oA (A4 1) (7.3)

is the chirality operator. As is well-known [20], in the finite-dimensional
representation D (s, 8,), the spin s is restricted by the condition

[87— 8] = 8= 8+ 8, (7.4)
A is the maximal value of s in this representation. Thus
A=38+s8,. (7.5)
The two invariants of D (s, s,) are

2/”2/” = 4[81(81 + 1) + 82(82 + 1)] s

7.6
Zuvf,uv =4(s;—8,) (8, + s+ 1), (7.6)
where 2, = iA8,,. Hence
Vs = (83— 89)[(81 + ) - (7.7)
2s, and 2s, are two nonnegative integers.
Denoting
1 ~ ~
Sffz =9 (S,uu + S,uv) = ngz ’
; (7.8)
SE?)} = ?(S;w - Syv) = —ng‘z s
Egs. (7.1), (7.2) and (7.7) lead to
S
SEpy = Py (7.9)
8
S0Py = Py - (7.10)

Each set of these equations is covariant under the proper Lorentz group.
Under spatial inversion, the two sets transform into each other. For
8; = s and s, = 0, Eqgs. (7.9) become just STEPANOVSEIT's [13] equations.
Drrac [20] had derived the same equations from his spinor theory
rather intuitively. Our Eqs. (7.9) and (7.10) are more general, and apply
to all realizations of the Poincaré group with m = 0. The corresponding
realizations for arbitrary m were studied by SHaw [5].
The decomposition [21]

2 =28+ 2@ (7.11)
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corresponds to the decomposition 0(4) =0(3) x 0(3). In fact,
[Z6), X@] = 0. Let

nvs
Zlf:sl) = ‘_‘isl 8kln0§11): Zislg = z“91 0(1)’
. . (7.12)
ZI%) = —@stkmag), 2&«1,3 = —”20'%2),
where k, I, n = 1, 2, 3 (spatial components).
The total spin is
2 =s506M0+ 5,69, (7.13)
and
¢® - ¢M = (s, + 1)/sy,
1+ Dl (7.14)
6 - 6@ = (s, + 1)/s,.
With this notation, Eqs. (7.9) become
6@ py =Py, (7.15a)
(a(l)po + 16D A p)qp =Py, (715b)
and
—0® -py =Py, (7.16a)
(—6®@p,+i6® Np)y=Dpy. (7.16b)

Egs. (7.15a) and (7.16a) are HaMMER-GooD’s equations [16] with
opposite chiralities. Eqs. (7.15b) and (7.16b) give the additional supple-
mentary conditions, which ensure that p,p,y = 0. Actually, the Hammer-
Good theory corresponds to the choice s; = s and s, = 0. The general
theory with s;, s, &= 0 is of rather theoretical significance. In fact, the
two known massless particles, the neutrino and the photon correspond to
s =s8=1/2,1and s,=0, or s, =0 and s, = s =1/2, 1. The two con-
jugate representations (under spatial inversion) D (s, 0) and D(0, s) may
be used to define particles with opposite chiralities. In this case the
original equations (6.1) should be used. For the neutrino this affords a
possible unified description of the two neutrinos associated with the
electron and the muon [22]. The similar possibility of two photons with
opposite chiralities has been discussed recently [23].

8. One Mass-component Theories

If p;=m and py = 0 for all 4 > 5, the dynamical symmetry group
reduces to the inhomogeneous de Sitter group. This gives rise to an
internal symmetry subgroup SO (¢, — 4, ¢, — 1), which commutes with
the de Sitter group. Denoting

Vu=Sus ﬂgc)zsu,kﬂ’

8.1
P =S85 l=p=4, 1=k=n—5, oy
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Eqgs. (6.1) reduce to

P,uw = (Syvpv +m )’y)w = PuY (82)
(Yupu +m)py =0, (8.3)
(B 9+ m fP)p = 0. (5.4

Since P4 g, given by (2.11), are observables of the dynamical equations,
we see that

Prve= 18,05 Wp (8.5)
and
Psxis,005=mZ45,045, (1 =k1=n—35), (8.6)
are observables.
Wy =—([2) erupPrup (8.7)

is the Pauli-Lubanski pseudo-vector. The Lorentz invariant
W, W,=m?s(s+ 1) (8.8)

characterizes the spin s of the particle [3]. 2., ;+5 are the generators
of the internal symmetry subgroup SO(¢; —4, g¢,—1). Thus the
spin and the internal symmetries are observables.

The field equations (8.2) —(8.4) reduce actually to (8.2) of the de Sitter
group. In fact [10], (8.3) follows automatically from (8.2). We prove
now that (8.4) is satisfied automatically by the irreducible solutions of
(8.2). Decompose p into the direct sum of realizations of SO (4, 1):

y=2 0y ). (8.9)

Al 2

A = 23 = 0 characterize the irreducible representation R;(4,, 4,) of
SO(5). For the finite-dimensional representations, 4, and A, are both
integers (for bosons) or half-integers (for fermions) [24]. Each “de Sitter”
component y(4,, 4,) satisfies (8.2). As is well-known from the theory of
de Sitter-symmetric field equations [10], we should have 4, = 4. Further,
(4, 4,) satisfies

W, w(Ay, Ay) = m2Ay(Ay + 1) p(dy, Ay) . (8.10)

The spin of the particle is s = A,. The theory admits different (total)
spin states s < A. For a definite spin s,

W(lh 2'2) = 62116223@0(1’ ’5) . (811)

We are left with one nonvanishing de Sitter component for each spin s.

To prove that this solution satisfies (8.4) automatically, we turn to

the rest-system p, = tem, p; = p, = p, = 0. Then (8.3) and (8.4) become,
forany k' =k+ 5

2 =€elyp, (8.12)

Caw +ieZp)p=0. (8.13)
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As argued in Section 5, (8.13) follows from (8.12) automatically. Hence
(8.4) is satisfied by the solution (8.11).

Since the reduced dynamical symmetry is SO (4, 1), we can introduce
a mass-formula consistent with the dynamical equations of the form

M= A+ BDO 1 ¢D® . (8.14)

Here A, B and C are functions of the internal symmetry subgroup, and
D® and D® are the two invariants of SO (4, 1) (compare (2.7)). In the
finite-dimensional irreducible representation R (1, 4,), we have [25]

DO = (1/2) 2, , X0y = A (A +3) + A(A + 1), (8.15)
and [26]
D® =TT — 42,2+ 1) (4 +1) (A4 +2), (8.16)

where the summation extends over five dimensions. Since for the solution
{8.11), A, = A is a characteristic of the representations of the whole group
80(qy, ¢5), and 4, = s is the spin, we get

My={A"+ B's(s+ D}yp. (8.17)

Here A’ and B’ depend only on the internal symmetries and the in-
variants of the whole group. Whether M = m or m? remains arbitrary.
It is interesting that the dynamical symmetry leads unambiguously to
the spin dependence s(s + 1), irrespective of the type of the internal
symmetries. This is just the spin dependence of the S U (6)-symmetry [27].

We note that for the group SO (4, 4), the maximal internal symmetry
subgroup is SO(3). It can be related to the isospin group SU (2). How-
ever, its generators have the same eigenvalues as the dynamical spin X,
This would imply that bosons are isobosons and fermions are iso-
fermions. This is obviously an unphysical restriction.

The SU(3) internal symmetry may be embedded into SO(6), as
demonstrated by Harewacas [12] for SO (4, 2). In fact, SU(3) CSU (4)
and S8O(6) ~ SU (4)/Z,. The group S O(6) can be taken now unambiguous-
ly as an internal symmetry subgroup of an inhomogeneous SO (g;, q,)
group. We stress that this combined symmetry scheme is different from
that proposed by HarewacHs [12]. In fact, HaLBwAcHS defines the
hyperchange and the isospin in terms of the dynamical spin, while our
80(6) commutes with the whole dynamical group. The smallest group
of this type is SO(10, 1). However, in order to establish the connection
with the 8U(6)-symmetry, it is more tempting to try SO(10,2) or
80(11,1). The dynamical subgroup may be taken as SO(4,2) or
80(5,1). The reduction of this dynamical symmetry into the de Sitter
symmetry would follow if we assume a mass formula of the form (8.14).
Similarly, the SU (4) internal symmetry may be broken in an SU(3)
symmetric way.
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