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The Interpretation of Some Spheroidal Metrics

W. B. BONNOR and A. SACKFIELD

Queen Elizabeth College, London

Abstract. ZIPOY recently studied some static gravitational fields in spheroidal
coordinates, and endowed them with unfamiliar topologies. We examine three of
these fields and show" that they can also be interpreted as fields in space of Euclidean
topology.

§ 1. Introduction

D. M. ZIΓOY [7] has presented some static, axially symmetric solu-

tions in spheroidal coordinates of EINSTEIN'S equations for empty space

Bik = 0. (1.1)

He endoΛved them with rather terrifying topological properties.

In this paper we examine three of these solutions and show that they

can in fact be interpreted quite naturally as gravitational fields in space

of Euclidean topology.

§ 2. The Weyl Solutions

All solutions studied are members of the Weyl static axially sym-

metric class [4]. The line element in pseudo cylindrical polar coordinates is

(— « D < 2 < C X ) , 0 ^ ρ < o o , 0 ^ ^ 2 π, — oo < t < oo) ,

where λ and a are functions of z and ρ. Following Z I P O Y , we transform

to pseudo oblate spheroidal coordinates by putting

z = a s inh^ sinθ, ρ = a cosh u cos θ, φ = φ, t ~ t , (2.2)

a being a constant; (2.1) then becomes

ds2 = — a2e*(λ-σ) (sinrA + sin2θ) (du2 + dθ2)

— a2e~2σ cosh2u cos2θ dφ2 + e2σ dt2 . (2.3)

ZIPOY takes the ranges of the coordinates as follows

0^U<oo, - y ^ θ ^ y , 0<φ^2π, —oo<t<oo. (2.4)

As is well known, if (2.1) is a solution of (1.1) σ has to satisfy LAPLACE'S

equation; for example in the coordinates of (2.3) a must satisfy

d2σ . d2σ , da _ da _ ._ _
~ϊ~i + Toί + tanrm ^—- — t a n σ -^K- = 0 . (2.5)
du2 dθ2 du dθ v ;
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λ is then completely determined up to an additive constant. (2.5) ensures
that there is a 1-1 correspondence between WEYL'S solutions and those
of Newtonian theory. We shall exploit this fact in the following sections.

§ 3. The Monopole Solution

ZIPOY'S monopole solution comes by choosing

σ = — β tan" 1 (cosechw), 0 fj tan" 1 (cosechu) ^ π , (3.1)

1
= TΓ β2 log(sinh2^ + sin2θ) — β2 log cosh% , (3.Σ

where β is a constant, and where, if β2 is not integral, the positive value
of e2λ is to be taken. As shown by ZTPOY, this tends to the isotropic
Schwarzschild solution as u tends to infinity, the radial coordinate r and
the mass m being given by

r = a sinhw, m •= aβ . (3.3)

We conclude that (3.1) and (3.2) represent the field of an isolated mass
system.

Θ=CONSTANT(Θ>0)

U = CONSTANT

Fig. 1

The ranges for u and θ being chosen as in (2.4), we must, like ZIPOY,
choose the connectivity of u and θ as shown in Fig. 1. It will be noticed
that θ is discontinuous as lines θ = const, cross u = 0. Zipoy calculates
the force Z1 on a stationary unit mass held on the z axis, namely

μ (3.4)
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where x1 = z, x^ = t refer to metric (2.1). He finds that it suffers a dis-
continuity as the unit mass crosses z — 0 because

μ (

/o+ ^ > /o- + ( .̂5)

He therefore allows the coordinate r (or it) to assume the range

— oo < r < oo , (3.6)

and introduces a two-sheeted topology to interpret the solution.
However, there is a different, and much simpler, interpretation. Let

us take σ as the Newtonian gravitational potential in view of (2.5). On
z = 0, ρ < a the derivative dajdz is discontinuous, and according to
elementary potential theory we must take this discontinuity to mean the
presence of a surface monopole layer of density q given by

taking the gravitational constant as unity. From this we find

q = β{2πa sinO)"1-, 0 ^ θ ^ π/2 . (3.8)

We can now check that the source distribution (3.8) gives rise to the
Newtonian potential a in (3.1) (see Appendix I). This ensures that there
are no other sources, for example, multipole layers which would not be
revealed by the discontinuity (3.7).

The Newtonian interpretation of the potential σ in (3.1) is therefore
that it arises from a disc ρ 5̂  a, z = 0. We can adopt a similar physical
explanation of the relativistic solution (2.3), (2.4), (3.1), and (3.2). The
latter has no physical singularities except the disc, and there certain
first derivatives of the gik are discontinuous. We are therefore free to
interpret the solution as the βeld of an isolated monopole disc in space with
Euclidean topology.

ISRAEL [3] has recently examined monopole shells and postulates
that the second fundamental form is discontinuous across such shells.
We shall calculate the second fundamental tensor for our solution. We
use metric (2.1) instead of (2.3) because in the latter the normal to the
surface u = 0 is not uniquely defined. We continue to use (2.4), (3.1) and
(3.2), regarding u and 0 as parameters in terms of which z and ρ are
given by (2.2). The second fundamental tensor Ωμv is given by

^ dxa dxh

where a, b run from 1 to 4 and μ, v from 2 to 4, na is the unit normal to
the disc S: x1 = z = 0, x2 = ρ <ζ, a; the semi colon denotes covariant
differentiation with respect to the four-dimensional space. The vμ are
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coordinates on 8, namely v2 = ρ, vz = φ, t>4 = t. Then

na = , 0, 0, 0)

and a straightforward calculation leads to the following non-zero com-
ponents of Ωμv on 8:

Owing to the fact that sinθ changes sign as 8 is crossed these three com-
ponents are discontinuous, in agreement with the work of ISRAEL. The
discontinuities are finite except at the edge of the disc (θ = 0) where they
are infinite.

Following ISRAEL [3] we may introduce the surface energy tensor

y/'-(J{fy« (3.9)
where

y? = £{?(-) — £{?(+> , (3.10)

and Ωfl~\ Ωft+^ mean the values of Ωζ as z -> 0 from below or above,
indices here being raised b}̂  the gμv in the surface. It then turns out that
the only non-zero component of S$ is

8i = Y βiaπ)-1 \{coseGθ)βZ+1\ e-M* .

We may calculate the total mass of the disc by the integral

m = fS$\riVgdx*dx*, ( 3 . Π )

where 8 is the disc and Wg is the determinant of the metric on 8. We find

rn — βa

in agreement with (3.3).

Rather unexpectedly the stresses $ | a n ( ^ ^3 vanish. It turns out,
however, that there is a good physical reason for this: in the classical
problem of a disc with density (3.8) the material of the disc is in equi-
librium under its own gravitation so no stresses are required. (We are
indebted to Dr. P. T. SAUNDERS for suggesting this explanation.)
Incidentally, it is because the stresses vanish that (3.11) is equal to the
total gravitational mass. In the case of a static matter distribution of
finite density it is known from WHITTAKER'S theorem [5] that the
gravitational mass density is T\ — T\ — T\ — T%. For the surface distri-
bution this must be adapted to 8\ — 8\ —8\ since 8\ and 8\ vanish this
reduces simply to Sf.

One curious fact should be noted. The three invariants of the Rie-
mann tensor, given by ZΓPOY, become infinite on the edge ρ = a, z = 0,
but are bounded near the rest of the disc ρ < a — £,2 = 0. (On the
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disc itself they are not defined because of discontinuities in first

derivatives of gik.) This shows that for a physical singularity it is

not a necessary condition that these invariants become infinite.

It is hoped that this work will act as a corrective to the

commonly held belief that the invariants of the Riemann tensor neces-

sarily become infinite at physical singularities. As a further counter-

example to this view we may remind the reader that at the apex of an

ordinary cone the invariants of the Riemann tensor are perfectly well-

behaved (of course, they vanish). A result supporting our attitude to the

Riemann tensor has recently been given by GAUTREAU and ANDERSON [2].

§ 4. The Dipole Solution

ZIPOY also gives a solution consisting of metric (2.3), ranges (2.4)

and with

a = γ [] — sinhu tan~] (cosech^)] sinθ, 0 ^ tan-1(cosechu) ^ π , (4.1)

, Γsinh2^ + sin2θ"l~72

e2Λ = ΓΊJ exp {—

(4.2)

γ being a constant. Introducing r from (3.3) we find that for large r a is

the Newtonian potential of a dipole of moment -\--^-γa2. σ is discon-

tinuous when the disc z —- 0, ρ ^ a is crossed (because sin0 is discon-

tinuous) though its first normal derivative is continuous. ZIPOY again

introduces a two sheeted topology with r in the range (3.6), which leads

him into serious difficulty because his metric is then singular when

r -> — ex;.

Once again, however, there is a simple explanation with a classical

analogue. The properties of σ just mentioned suggest that it is the

potential of a sheet of dipoles. Indeed, we find for the magnitude of the

discontinuity across the disc z = 0, ρ ^ a,

σ+ — σ- - 2γ sinθ , 0 ^ θ < πβ , (4.3)

which corresponds to a dipole sheet of strength (ysin0)/2π. As in the

case of the monopole disc, we can show that this dipole sheet gives rise

to the potential (4.1), so it is the only source present.

There is nothing to stop us adopting a similar interpretation for the

relativistic solution (2.3), (2.4), (4.1), (4.2), ivhich we therefore take to refer

to a mass dipole sheet on z = 0, ρ < a in space ivith Euclidean topology.

The second fundamental tensor is discontinuous on the disc z = 0, ρ ^ a.

Calculations with ISRAEL'S surface energy tensor in this case give

unsatisfactory results: since the metric on the disc is not uniquely

defined, the integral (3.11) is ambiguous.
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ZIPOY gives a solution in which a is the sum of (3.1) and (4.1): λ is
then the sum of (3.2) and (4.2) with another term added. This too can
be interpreted in a space of Euclidean topology: it refers to a super-
position of the monopole and dipole discs discussed above, together with
a singularity along the axis ρ = 0, z < 0 which represents a stress holding
them in position.

§ 5. Conclusion

It is an empirical question whether ZIPOY's solutions represent ob-
jects with strange topology, or the simpler objects we have suggested.
Those of us who think that the universe is already complicated enough
must hope that the latter alternative is the correct one.

Appendix I

Derivation of potential (3.1) from source distribution (3.8)

Let the matter residing on the disc 2 = 0, ρ < a have density

q= β(2πasinθ)~1= β{4π2(α2 — ρ2)}-1^ , o < θ < π/2

from (2.2). On the 2-axis the Newtonian potential of this distribution is

dS

where dS is the element of area and S is the disc. Performing the inte-
gration Λve find

Φ = - β tan-i (j) . (I.I)

It may be shown [1] that if the potential on the 2-axis is F(z) then the
potential off the z-axis is:

π

1 Γ iρ cosα) da. . (1.2)

o

From (I.I) we see that in our case

hence from (1.2) the potential off the z-axis is

^ ~β Γ 1 ί a 1 7
Φ== / tan~x \—r~ (doc,

π J { z + iρ cosα J
0

which may be written
π

Φ = — ~ J Qo { a doc. (1.3)
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where Qo is the Legendre polynomial of the second kind and zero degree.

Transforming z and ρ to oblate spheroidal coordinates by (2.2) and

putting

u = i(j — η), 0 = γ-ξ, (1.4)

we have
i(z + iρ cosα) . .

^ — (cos^ cosf -f smη smξ cosα) .

Hence (1.3) may be written as

n

Φ= — / Qd(co$η cos^ + sin77 s i n | cosα) doc . (1.5)
0

Now the addition formula for QQ states that [6]

Q0(Go$η cosξ + sin?y s i n | cosα) = P 0(cos|)(3o( c o s^)
00

+ 2 Σ P™{cosξ) Q™(cosη) cosmα

integrating with respect to α between 0 and π we have

1 cosf + sin^ sin^ cosα) da. = πQ0(cos^)

= — π Qo (i sir
using (1.4). Hence from (1.5)

Φ = — βiQo{i sinhi^) = — β

This proves that the monopole disc of surface density (3.8) is the only

source for the Newtonian potential (3.1).
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