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Abstract. The concept of partial weak clustering in the mean is defined for states
on physical systems which admit amenable (semi-)groups of symmetries. The
properties of partial weak clustering states are studied and the relations between
these states and (extremal) invariant (partial) states are considered. As an applica-
tion we discuss the zero field magnetization in the two-dimensional Ising model.

1. Introduction

In a previous paper [1] we started an investigation of the properties
of partial invariant states. We proved that a partial potentially invariant
(resp. extremal invariant) state, defined on some appropriate subs face of a
(7*-algebra can always be extended to an invariant (resp. extremal
invariant) state on the whole algebra. Possible applications of the results
to statistical mechanics were indicated.

In the present paper we consider weakly clustering partial states,
instead of extremal invariant partial states. Our principal motivation in
expanding our previous work in the present direction is that "partial
weak clustering" seems to be a more appropriate condition than "extre-
mal invariance of partial states" when one wants to select possible
candidates for partial states that could be extended into extremal
invariant states on the whole algebra. Our interest in this type of exten-
sion is, on the one hand, that in concrete applications "partial weak
clustering" is much easier to prove than extremal (potential) invariance
of partial states. On the other hand, extremal invariant states on the
whole algebra have been proposed to be identified with pure thermo-
dynamieal phases; this proposal has the advantage to give a clear mathe-
matical definition of the latter physical concept. The appropriateness of
this definition will be illustrated in the application to the Ising (lattice
gas) model which closes this paper. One appealing and general reason for
this association between pure thermodynamical phases and extremal
invariant states is the following: for asymptotically abelian algebras,
it is known that on states on the whole algebra, the condition of extremal
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invariance is equivalent to the condition of weak clustering and, there-
fore, implies that the corresponding partial states are also weakly
clustering. However the former condition does not imply that these
partial states are extremal invariant. In fact, the condition of extremal
(potential) invariance for partial states seems to be to drastic a require-
ment for physical purposes. All of these facts seem then to justify the
terms in which we state the extension problem in this paper.

We first collect in Section 2 some of the basic facts pertinent to the
study of physical systems which admit amenable symmetry (semi-)
groups. The definition of partial η-weakly clustering states is opening
Section 3 which is devoted to their study. We prove that the decomposi-
tion of an invariant state into states that are only weakly clustering on a
subspace is unique. We next show that for each invariant state φ, weakly
clustering on a separable self-adjoint subspace 271 of an asymptotically
abelian algebra 21, there exists at least one state φf, weakly clustering
on the whole algebra 21 and which coincides with φ on 9R. In order to
illustrate the abstract theory developed so far, we propose in Section 4
an application to the two dimensional Ising model. The spontaneous
magnetization, defined originally as the residual magnetization in zero
magnetic field, has been obtained by indirect computations in essentially
three different ways [2, 3, 4]. It has been shown by SML [4] that all
three of these derivations are equivalent to each other. SML further
indicate that they are equivalent to the original definition only if one
assumes that the probability density distribution of the magnetization
is very sharply peaked around the values ±M0 when the thermo-
dynamical limit is approached. Working on the properly infinite system,
we take advantage of the general theory developed in Section 3 to argue
that the agreement between the usual derivations and the original
definition is indeed to be expected from the coexistence of two pure
thermodynamical phases below the critical temperature.

2. Invariant Means and Amenable (Semi-)groups

This section is meant to serve the purpose of introducing the notation
and directing the reader's attention to some facts pertinent to our study.

The notion of amenable (semi-)groups was formally introduced by
DAY [5], although similar ideas were already latent in such earlier works
as VON NEUMANN'S [6]. We call mean over a (semi-)group G, a positive,
linear, normalized functional on the space S (G) of all bounded, complex
valued functions on G. The (semi-)group G is said to be amenable if there
exists a mean over G which is invariant under all right and left transla-
tions by elements of G. If G is furthermore equipped with a topology
which makes it to be a topological (semi-)group, we impose in the
21 Commun. math. Phys., VoJ. 8
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definition above a further condition on &{G), namely, that its elements
are continuous on G. I t might incidentally be noted that the amenability
of a (semi-)group depends in an essential way on its topology. Also, it
should be noticed that we do not take for (ί(G) neither the space of
almost periodic nor of ergodic functions since in this latter cases there
always exists an invariant mean and, therefore, our definition of amenable
(semi-)groups would then become redundant. For a general discussion
of the properties of amenable groups, semi-groups and topological
(semi-)groups, see, for instance, respectively, VON NEUMANN [6],
DAY [7], and DIXMIER [8], and, for later developments, PIER [9]. The

relevance of the notion of amenability for systems occurring in Statistical
Mechanics has been emphasized recently by DOPLICHER, KADISON,
KASTLER and ROBINSON [10] (we shall use in the sequel the notation

of [1]). We might mention here again that the translation group, the
rotation group and the euclidian group in Rn, equipped with their usual
topologies, are amenable. For the translation group in R3 the invariant
mean is nothing but the so-called Wiener mean

η(j) = lim — J f(χ) dzx ,

whenever this limit exists otherwise it is defined by extension.
In keeping with our previous paper [1] we say that a physical system

(21, Θ), consisting of a (7*-algebra 2ί and its set of states 0 , admits
( r a s a symmetry if for every element g in G we are given an affine w*-
unimorphism vg of @ onto itself such that the "expectation values"
(vg φ) (A) are continuous functions on G for all (A, φ) in (21, <S). This
requirement has an immediate physical meaning. In spite of its apparent
weakness, it is effectively a very strong one, as has been emphasized by
KADISON [11]. In particular it implies that for any element g of G there
exists a Jordan *- automorphism ocg of 2ί such that

(vg φ){A) = φ{ocgA) for all {A, φ) in (21, 6) .

[By a Jordan *- automorphism we mean a linear, *-preserving mapping α
of 21 onto itself such that oc(AB + BA) = oc(A) oc{B) + oc(B) oc(A) for
all A and B in 21.] This mapping ocg is evidently weakly continuous in g.
This establishes the equivalence between the Schrodinger picture and the
Heisenberg picture. The Heisenberg picture is sometimes presented in a
stronger form, namely one requires that the ocg are 0*-automorphisms
and not only Jordan *-automorphisms, i. e. that ccg(A B) = ocg (A) ocg{B).
In general this requirement is hardly justifiable from direct physical
arguments, but it might be of some convenience from the mathematical
point of view. Without further physical requirements than those we
imposed in our definition of vg there are however some interesting
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particular cases where this mathematical convenience is met anyhow,
e. g. when 21 is abelian or when G is connected. We shall not need more
on this equivalence in the sequel.

At this point it is useful to recall some results of KADISON [11] (§2)
and DIXMIER [12] (§ XII). The universal representation πu of 21 is defined
as the direct sum of all cyclic representations πψ of 2t. I t is faithful;
its weak closure πw(2l)" is called the enveloping von Neumann algebra of
21 and we shall denote it by 21". There exists an isometric isomorphism A
from 21'' onto the double dual 21** of 21. This isomorphism transforms
the weak-operator topology on 21" into the weak *-topology on 21**, and
A o πu is the canonical embedding of 21 into 21**. For any representation
π of 21 there exists an unique normal (and hence ultraweakly continuous)
representation π extending π from 2t to 21", and one has π(2Γ') = π(2l)'''.
If α is a Jordan *-automorphism (resp. a (7*-automorphism) of 2ί, its
(ultra) weakly continuous extension α to 21" is a Jordan *-automorphism
(resp. a (7*-automorphism) of 2ί" and one has A aA~τ = v*9 where v* is
the adjoint of v. Every state φ on 21 possesses a unique weakly continuous
extension φ to 21".

If η is a mean (resp. an invariant mean) over G, one verifies that for
every (A, φ) in (21, β)

η{(vgφ)(A)}=(ηφ){A)=φ(ηA) (1)

defines uniquely a state (resp. an invariant state) (η φ) in Θ, and an
element (resp. an invariant element) (η A) in 21**. Hence in the particular
case where 21 is the algebra of quasi-local observables on a physical sys-
tem, we have defined for every quasi-local observable A an "averaged
observable" η A with respect to the action g -> vg of the symmetry group
G. If for instance t -> vt is the prescription giving the evolution in time,
η A is what is traditionally meant by the "ergodic average" of A. In the
particular case considered as an application in section 4, if σf denotes the
spin attached to the site i of the lattice, and G is the discrete translation
group of the lattice, η σf gives a precise mathematical meaning to the
observable expected to describe the magnetization of the Ising lattice
considered.

The fact that η A belongs to 21** but not necessarily to 21 implies that
for a given representation π of 21, ηn (A) defined as π o A"1 o η(A) belongs
to τz(2l)" but in general not to π(2l). We notice that if πψ is the cyclic
representation generated from any state φ, and Ωψ the corresponding
cyclic vector, one has:

η{vg φ(A)} = ψ(ηA) = (Ωφ, ψφ(A) Ωφ) . (2)

21
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If moreover ocg is unitarily implemented by Uφ (g) in the representation
Uφ then ηφ(Λ) belongs to

but might still lay outside πφ (21) itself.
In closing this section we want to recall the following notion: a state

φ on 21 is said to be η-weakly clustering whenever:

φ{AηB) — φ(A) φ(ηB) = 0 for all A, B £21 (3)

where φ(AηB) is a short-hand notation for φ(πu(A) (Λ~λ o η) [B)).
Hence in the GNS representation generated by φ, (3) becomes:

ψφ, πφ(A) ψφ(B) Ωφ) = (Ωφ, πφ{A) Ωφ) (Ωφ, rfl(B) Ωφ) .

In the Heisenberg picture (3) takes the form:

η{φ(A«βB)}=φ(A)η{φ{«βB)}.

If φ is moreover invariant, formula (3) obviously reduces to

φ(Aη B) — φ{A)φ(B) = 0 for all A, B ζ 21 (4)

and implies that φ is extremal invariant. The converse is also true
(namely that extremal invariant states are ^-weakly clustering), provided
that the algebra 21 satisfies a property, called ^-asymptotic abelianness,
which amounts to say that

Λ'1 o η : 21-> nu(W)' (5)

and since we already know that the image of 21 through Λ~x o η is
contained in πw(2l)", (5) implies that Λ~λ o η maps 21 into the center of
21". The physical meaning of this condition becomes clearer when it is
realized that (5) is equivalent to:

η% : nφ (21) -> πφ (2ί)r for all states φ on 21 . (5')

Formula (4), which implies in particular the absence of long-range order,
is believed to be a characteristic of pure phases in this latter context it
might be appropriate to recall that every invariant state can be decom-
posed in a unique way into ^-clustering states.

For further details on the material reviewed in this section, the reader
is referred to [1, 10, 13, 14].

3. Partial Weakly Clustering States

The definition of partial potentially invariant states on a self-adjoint
subspace of a given algebra has been given in [1] where we indicated the
practical interest of gathering information about these states. We
concentrated, in that paper, on the concepts of invariance and extremal
invariance with the principal result of proving that there always exists
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an invariant (respectively extremal invariant) extension φ, to the whole
of 21, of any given potentially invariant (respectively extremal invariant)
partial state /, defined initially only on a self-adjoint, vectorial subspace
92ΐ of 21, containing the identity of 21.

We now intend to see whether it is possible to carry over a similar
program for the property of ^-weakly clustering, to establish its relation
to extremal potential invariance, and in general, to determine the extent
to which the results mentioned in Section 2 remain valid for partial
states as well.

Definition 1. Let 9R be a subset of a C*-algebra 2t. We say that a state
φ on 21 is η-weakly clustering on 921 whenever

φ (Mx ηMz) = φ (Jfx) φ {η M2) for all Mv M2 ζ 92ΐ . (6)

Lemma 1. Let G amenable be a symmetry for the physical system (21, <2),
η be an invariant mean over G, φ be G-invariant in 0, J4? be a Hilbert space,
Ω a vector in J f and πbea representation of 21 in the bounded operators of Jf,
such that

(β, π(A)Ω) = φ(A) for all A £21.

Then for any self-adjoint subspace 921 of 21 the following two conditions
are equivalent:

(i) φ is η-weakly clustering on 321-
(ii) Ω is an eigenvector of ηπ (M) for every M in 921.
//, furthermore, Ω is cyclic for π(2l) and 21 is η-asymptotically abelian,

condition (ii) above can be replaced by the equivalent condition.
(ii)' ηπ(M) is a c-number in &?.
Proof. Let us first prove (i) -> (ϋ). Since φ is invariant, we have

φ(Aη B) = φ{ηA η B)

Hence (i) is equivalent to

φ{ηM1 ηMz) = φ(ηM1)φ{ηM2) for all Mv M2 £ m . (8)

Passing now to the representation n, we recall that, as mentioned in
section 2, η(M) is represented in 93 (e^) by an element ηπ(M) of τr(2l)//.
Since 921 is self-adjoint, we can write in particular M1 = M = M* in (8),
which now implies in the representation considered:

||{)f (if) — (Ω, ηπ(M) Ω)} Ω\\ = 0 (9)

which is equivalent to (ii). The implication (ϋ) -> (i) is proved along the
same lines, using now that 9H is moreover a subspace of 21. The equi-
valence between (ii) and (ii)', in the case described in the statement of the
lemma is seen as follows. From (5) we have, in particular, that ηn{M)
commutes with π(A) for all M in 921 and all A in 2ί.
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Consequently,

π{A)Ω = π(A) ψ{M) Ω (10)

and, since π{A) Ω is dense in ffl, (10) leads directly to the proof of the
equivalence between (ii) and (ϋ)'. This achieves the proof of lemma 1.

Theorem 1. Let 0 amenable be a symmetry for (2ί, Θ), η be an invariant
mean over G, φ be G-invariant in © and Tube a self-adjoint subspace of 21.
If φ can be decomposed into a finite convex sum of invariant states φ{ which
are η-weakly clustering on 9Iΐ and such that their respective restrictions to
9H are distinct from one another, then this decomposition is unique.

Proof. In order to set up the proof we need some particular properties
of the assumed decomposition, which we want to prove first. Let us hence
suppose that there exists at least one decomposition of φ satisfying the
conditions of the theorem

= Σ

Let π be any representation of 21 where φ is a vector state, i. e. such that

φ(A) = (Ω, π{A) Ω) for all A £2ί . (12)

From (11) we have that α? φt is a positive linear form on 21 majorized by φ.
We can hence use Proposition 2.5.1 in DIXMIER [12] to assert the existence
of a self-adjoint operator Bt belonging to the commutant of π (21) and such
that:

φi{A) = (Bi Ω, π(A) Bi Ω) for all A ζ 21. (13)

Since φt is η-weakly clustering on 3K, we conclude from (13) and lemma 1
that Bi Ω is an eigenvector of ηn(M) for every M in 2K. Since further Bt

belongs to π(2l)' and ηπ(M) belongs to π(2ί)/;, Bt commutes with ηπ(M)
and, therefore, Bf Ω is also an eigenvector of ηn(M), corresponding to the
same eigenvalue as B{ Ω. Let λ^M) be this eigenvalue. Since the re-
strictions to QJl of the φ/s are distinct from one another by assumption,
we have for any pair (i, j) with i 4= j , at least one self-adjoint element Mij

in 9# such that

Since φi} φt are invariant, we have as well

φiiηMiJ^φjiηMit)
and, consequently,

{Bi Ω, ψ{Mu) Bt Ω) * (B, Ω, ψ{Mu) Bt Ω)

and, since B{ Ω is an eigenvector of ^(M^) with eigenvalue λz (ikf^),
we get:

λt{Mti) (B, Ω, B( Ω) Φ λi(Mit) {B, Ω, B} Ω)
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and hence:

λt(M{f) * MM,,)
since

1 = φ. (/) = (B{ Ω, Bt Ω) for all i.

Consequently, Bf Ω and Bf Ω are orthogonal to one another since they
belong to different eigenvalues of the self-adjoint operator ^π(7lfί:? ).
If now Ω is cyclic for π (e. g., if π is the GNS representation πψ),
then an immediate consequence of (11), (12), (13), and the above stated
result is that the following decomposition of Ω in orthogonal vectors
holds

= Σ oc.BfΩ. (14)Σ
By this argument we reduced our problem to the proof of the uniqueness
of the decomposition (14). Suppose then that we have another decomposi-
tion of φ:

M

Σ Ψ*, (16)
7 = 1

satisfying the same condition as the decomposition (11). Let

M

β= Σ βjΰfΩ (iβ)
7* = 1

be the corresponding decomposition of Ω. If on 2K all the ψ/s were
different from all the < '̂s, we would get by the same reasoning as before
that all the Bf Ω were orthogonal to all the Df Ω, which is impossible
since (14) and (16) are two decompositions in orthogonal vectors of the
same vector Ω. Hence at least one of the ψ/s, which we call ψv should
coincide on 92ΐ with one of the < /̂s, which we call φv And, then, since all
the <̂ /s are different from one another on 92Ϊ, we have

Ψi \m^ Φi\m f o r a 1 1 * =J= 1 >

and, consequently, D\Ω is orthogonal to all Bf Ω with i φ l . Upon
comparison of (14) and (16), we get that Ώ\ Ω is proportional to B\ Ω.
The proportionality constant is indeed 1 as one realizes immediately by
computing the value of φχ(I) and ψ1(I) using (13), (14) and (16). We get
α i = βi upon comparison of (14) and (16). We can then proceed by
successive iterations and prove in the same way

N = M α* = β{ φ{ = ψ{ for all i

which concludes the proof of the theorem.
We may notice that in the particular case where 911 coincides with 21

the uniqueness asserted in the above theorem has been established
earlier. Much more, indeed, is known in that special situation, as can be
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found for instance in [10, 15], and, for earlier results, in [13, 14], as well
as in [16, 17]. The aim pursued here is to see to which extent some of the
results previously obtained, can be generalized to partial states, that is,
when conditions such as ty-weak clustering are weakened so as to be
imposed only on a subspace 92ΐ rather than on the whole algebra 21. One
step in this direction is that, as the result of the preceding theorem,
we can generalize an assertion found, for instance, in [15], namely, that
the decomposition of invariant states into weakly clustering states, which
is interpreted as a decomposition of any equilibrium state into pure
thermodynamical phases, should be unique for physical reasons, and
actually is as has been proved, even if phases are identified through partial
??-weak clustering. In this connection one should notice that, whereas
7̂ -weak clustering on 2{ implies extremal invariance, this is no more
true for partial ?y-weak clustering on a subspace 971 only; this latter
property does not guarantee extremal invariance on 21 nor even on 971.
The best we will be able to say in this respect is that when φ is ^-weakly
clustering on 971, its restriction to 971 admits an extremal invariant exten-
sion to 21, provided that some further weak conditions on (21, Θ, vg) are
satisfied. This is actually the assertion of the next theorem. While we are
considering this type of question related to the connection between
extremal invariance and weak clustering, we might recall that for an
^-asymptotically abelian algebra 21, extremal invariance of a state
implies ?y-weak clustering, and, consequently, partial ?y-weak clustering
on any subspace 971 of 21.

Lemma 2. Let G amenable be a symmetry for (21, 6), η be an invariant
mean over G, φ and ψ be G-invariant in S> and 971 be a self-adjoint subspace
of 21. Suppose further that φ is η-weakly clustering on 971 and that ψ =g λ φ
for some positive real number λ. Then ψ is also η-weakly clustering on 971
and coincides with φ on 921.

Proof. Let π be a representation (e. g., the GNS representation) of 2t
for which φ is a vector state, i. e.,

φ(A) = (Ω,π(Λ)Ω).

From proposition 2.5.1 in DIXMIER [12], we know that there exists a (self-
adjoint, positive) element B in π(2l)' such that

ψ(A) = (BΩ,π(A)BΩ).

We first notice that | | i5β| | = 1 [since ψ(I) = 1], that B commutes also
with ηπ(A) for all A in 21 and that Ω is an eigenvector of ηπ (M) for all M
in 921 (by lemma 1). Consequently, B Ω is also an eigenvector of ηn(M),
corresponding to the same eigenvalue as Ω does. We have then

ψ{η M) = (B Ω, ηπ(M) B Ω)
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and since ψ and φ are invariant, this proves the second assertion of the
lemma. Furthermore, we see immediately, upon writing it in the re-
presentation space, that the following equality is true for any A in 21
and any M in 271:

ψ(AηM) = ψ(A)ψ(η M) (18)

which concludes the proof of the lemma. Incidentally, it follows from
lemma 1 that (18) is actually no more general than (6).

We now use the preceeding lemma to prove the following theorem
which might, actually, be stated in a more general way. To keep both the
proof and the technical requirements to a reasonable length, we however
chosed to compromize between the generality maintained throughout
this section and the more specific needs of the next section.

Theorem 2. Let G amenable be a symmetry for (21, Θ), η be an invariant
mean over G, 971 be a self-adjoint subspace of 2ί, and φ be G-invariant in <2
and ψweakly clustering on 9R. We suppose further that: (i) 21 is η-asymptoti-
cally abelian and G is connected, or (i') 21 is (weakly) asymptotically abelian;
(ϋ) vg is implemented by a homomorphism g -> ocg from G to the group of
C*-automorphisms of 2ί; and (iii) 21 is separable. Then, the restriction φ\^
of φ to ^ϊl admits an extremal G-invariant extension to 21.

Proof. Let πφ be the representation of 21 induced by φ, Ωφ be the
corresponding cyclic vector and #?φ be the representation space. Condi-
tion (ϋ) insures that there exists an unique continuous representation Uφ
of G such that

πφ(xg(A))=Vφ(g)πφ(A) Uφ(g)~A
ί ΛW n TT ( \ (Λ\n > for all 4 , £ in 2t, G. 19)

a,(A)) ^Φ = Uφ(9) πφ{A)ΩΦ j
Let Bφ be the von Neumann algebra generated in J^φ by πφ(Qί) and
Uφ(G). From either condition (i) or (ϊ) we can then conclude, using the
analysis of ref. [10], that Bφ C 7^(21)", and therefore that Bφ is the set
of all elements in the center of π^(2()// which commute with Uφ{g) for all
g in G. In particular this implies that Bφ is abelian. In the particular case
where Bφ is moreover generated by its minimal projections, we know [10]
that φ can be decomposed (in a unique way) into a convex sum of
extremal invariant (and hence ^-weakly clustering) states on 21. Each
of these states ψλ is majorized by φ (i. e. ψλ ^ pλ φ for some finite positive
number pλ). We can hence use our lemma 2 to conclude that the ψλ and φ
coincide on 2Ώ. This concludes the proof in this particular case. In the
more general case where Bφ is not necessarily generated by its minimal
projections, our assumption (iii) ensures that 3f φ is separable, and then
the above discrete sum becomes in general a "convex" integral of
extremal invariant states: H:

φ= fdμ(λ)ψλ (20)
Λ
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which means
φ(A) = fdμ(λ) ψλ{Λ) for all A in 21 (20')

Λ

and is unique (ϋ^ Q 7^(21)" is used in that part of the proof [10]). To
conclude the proof in the general case considered now, it remains to see
that at least one of the ψλ coincides with φ on 921. Let E be a measurable
subset of A and let us define the following invariant state on 21:

fdμ(λ) ψλ. (21)
E

ψE is majorized by φ and hence, by lemma 2 again, coincides with φ on 92ΐ.
Consequently for every measurable set E in A, we have:

f dμ(λ){ψλ(M)~- φ{M)} = 0 for all M in 921 (22)

which implies for each M separately:

ψλ (M) = φ (M) for //-almost all λ . (23)

Since 21 is separable, so is 971; hence the set

is of measure zero, i. e. ψλ coincides with φ on 22ΐ for μ-almost all λ. This
is all what is needed for the completion of the proof of the theorem.

4. The Spontaneous Magnetization of a Two-dimensional Ising-Model

We consider the usual two-dimensional Ising model for ferromag-
netism, which consists of a "rectangular" lattice

{(m, n)\ 1 < m < M; 1 < n < N}

of "classical spins" σ^>n interacting with their nearest neighbors and
with an external magnetic field tff so that the total hamiltonian of the
system is:

m,n

-JiΣ <»<44
m,n

-JzΣ <»<«

The spontaneous magnetization is defined as:

with

(26)

(24)
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where ( }βsj? denotes the canonical ensemble average in the magnetic
field yf and at the temperature T = (k β)~x. To date, the canonical
partition function, and hence the corresponding density matrix, have
escaped all attempts to an exact solution, except in the particular case
where ffi = 0. Since the two limits in (25) are not interchangeable, one
has to find some round-about way to compute an exact expression for

MONTROLL, POTTS and WARD [2] and YANG [3] have proposed two

different methods to accomplish this; they actually use alternative
definitions of 22lo(jS), namely1:

\ Km l jm <σ*, f „ σfn,M>A 0 } 1 / 2 , (27)

lim lim l M i ϊ ( ^ / ) . (28)
α->0+ M,N—>oo

tf = α/ilf

Both of these formulas, when worked out, give the same result, namely
that produced by ONSAGER [19]. SCHULTZ, MATTIS and LIEB [4] however

emphasized that neither (27) nor (28) were ever rigorously proven to be
equivalent to (25), as both MPW and Yang are forced to make extra
assumptions that have not been justified, yet, on purely statistical
mechanical grounds. SML show that these assumptions can be reduced
to the supposition that the function PMt N (9ft) (which is the probalitity
density that the magnetization has the value 2ft in the absence of magnetic
field) is very sharply peaked around the values ±2fto(/?) in the thermo-
dynamical limit. With this assumption, they justify a third definition
of the spontaneous magnetization, which they prove to be equivalent
to (27) and (28). Their definition reduces to formula (33) below.

Our aim in this section is to illustrate the general results of the pre-
vious sections in providing further evidence that the actual spontaneous
magnetization (25) satisfies SML's definition and is hence given by
Onsager's famous formula [2, 3, 4].

Let QίM be the 0*-algebra generated by

R , n I 1 ^ m <S M}
in the Hubert space

m

where fflm>n is the two-dimensional space relative to the site (m,n).
(From now on, we shall drop the index n, being understood that every
statement made below is valid for any row.) The expectation value of any
element A in $ίM, calculated for the canonical distribution is given, when

^ ° b y

 M (29)
1 In this expression we use the equality between long-long range order and

short long range as proven by SML [4],
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with

where VM is the usual transfer matrix. Below the critical temperature, we
know from Onsager that a two-fold asymptotic degeneracy of the
maximum eigenvalue of VM appears as M -» oo. Let Ψ^ and ψ^ be the
two corresponding eigenvectors of VM. As a consequence of this degene-
racy, (29) becomes in the thermodynamical limit:

{ΨM(A) + ΨM(A)}
(A\ _ !

lim

with

(30)

(30')

(31)

in which the phases of Ψ^x and ΨM are chosen in such a way that

(Ψti km I ΨM} i s r e a l a n ( i positive.
Consider now the (7*-algebra 21 (obtained as the norm-closure of the

union of all %lM referring to the same row) and the states on SI defined by:

w± (A) = lim

φ±(A) = lim
M—>oo

(32)

From the well-known properties of the transfer matrix one has that the
states ψ^ and φ^ are invariant under the group Z of the discrete transla-
tions along the row considered; moreover the phase of the flip-flop
symmetry (reversing all spins) can be chosen in such a way that it
changes Ψ^ into respectively ± ψjjfe and consequently exchanges φ^
into one another. For completeness let us recall here the third alternative
form of the spontaneous magnetization (namely that of SML mentionned
above):

(33)

Let us now analyze the structure of the states so far obtained, in
relation with the previous sections. From the discussion of SML we learn
that:

y 1
M-»co\

l i m <

177 +
M

1
~ΰΣ σm
1 < ΨM]

177—V

>

lim
m' — m —>

lim
oo i l f-»cc

= lim
M—>oc

< •
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from which we conclude (using the above definitions and the symmetry
properties already mentioned):

lim |ffc (<4, (4) - 0± (σ*,,) 0± (<4) I = 0 (34)
w — in —» oo

and
^ + (<4) = -f" (<&) = ^ o M L (j8) * 0 . (35)

We then notice that φ+ and <̂Γ are clustering (and hence η-weakly
clustering) on 921, the subspace of all linear combinations of cr '̂s and /.
Moreover, when restricted to 921 these two states are different. Hence the
decomposition (30') satisfies the assumptions of Theorem 1 and is there-
fore unique of its kind in the sense of the theorem. Furthermore, by
theorem 2 we know that the states φ+\cm and φ~\<$ι can be extended to
extremal invariant states on 21, which are then interpreted as pure
phases since they do not exhibit "long-range order". Let us now define
the magnetization as the non-local observable:

From lemma 1, this is a c-number in the representation constructed on
either of these states, and from (35) we see that this c-number takes
precisely the value predicted by Onsager.

Hence the Onsager value for the spontaneous magnetization now
appears as (the absolute value of) the expectation value of a macroscopic,
intensive observable, the * 'magnetization" defined by (36), this expecta-
tion value being calculated on either of two extremal states, or pure
phases, which, when restricted to 921, decompose (see 30') the equilibrium
state ( )/3, defined by (30) and obtained by direct evaluation of the
canonical distribution in the absence of magnetic field. The relevance of
the existence and uniqueness of the decomposition (30') appears in an
even more familiar light when one considers the lattice-gas analog [20]
of the two-dimensional ϊsing model. In this lattice-gas model, the
decomposition (30') corresponds to the decomposition of a mixture state
(inside the coexistence region) into its pure phase components: the liquid
and the gas. Incidentally, the fact that φ+ and φ~~ are actually identified
as pure phases on 921 only (since we only established that they are η-
weakly clustering on 921) is in agreement with the fact that the "equation
of state" is actually a relation between the external contraints on the
system (temperature and magnetic field) and an internal macroscopic
observable in 921, namely the magnetization (36).
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