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Abstract. The Bogoliubov approximation for many boson systems consists in
replacing the field operators α0

 and αj by c-nτιmbers, to be determined by an
extremum condition. Here we formulate the approximation in terms of coherent
states of the condensed particles, and prove that for reasonable interactions it gives
the exact values of the thermodynamical functions in the infinite volume limit.

Introduction

The standard procedure to describe a many boson system in thermal
equilibrium, exhibiting Bose Einstein condensation, is the Bogoliubov
approximation (hereafter called B.A.), which was proposed as early as
1947, [1]. One takes advantage of the macroscopic occupation of the
zero momentum one particle state to replace the corresponding creation
and annihilation operators α0 and α+ by c-numbers. The replacement is
supposed to be exact in the infinite volume limit. The validity of the
B.A., however, has not been rigorously proved, and has even been
questioned [2]. Arguments to support it have been given in the case of
the ground state energy, with special types of interactions [3, 4]. In the
present paper, we want to make a first step towards a general proof of its
asymptotic exactness in the limit of infinite systems.

In order to show how the present work fits into the general scheme,
we first review the latter briefly and qualitatively, following BOGOLIUBOV
[5] and HAAO [6]. We consider a many boson system in equilibrium, at
a given non-zero temperature T (β = l/k T), a given chemical potential μ,
and with given interactions. The system is described in the grand
canonical formalism (that this is at all possible will be shown in Sec. 1).
We are interested in the infinite volume limit, with possible occurrence
of Bose-Einstein condensation.
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(1) It has been argued by HAAG [6] in the case of the BCS model
that if one describes the state of the infinite system in an irreducible
representation of the algebra generated by the field operators (namely the
algebra of the canonical anticommutation relations in the case of the
BCS model), then the space average of any local quantity should be
represented by a constant. In the case of a boson system, the same argu-
ment applies to the operators F"1/2^ and F-1/2α^, which are the space
averages of the field operators a (x) and a+ (x) themselves. Therefore, in an
irreducible representation of the basic algebra (in this case the algebra of
the canonical commutation relations), these operators should also be
represented by c-numbers. This is the basis for the B.A. Notice that the
occurrence of Bose-Einstein condensation is not required in that argu-
ment.

(2) We now consider a finite system. The preceding argument
suggests replacing aQ and α+ by c-numbers C and ΰ. In the presence of
condensation, C should turn out to be of the order F1/2. As will be seen
in Section 3, this replacement can be made in several ways, two of which
are of special interest. The first consists in making the replacement in the
statistical operator W — exp(— βH), where H is the hamiltonian. H
contains a term — μN, since we are working in the grand canonical
formalism. One then obtains an approximate operator W0(0) and an
approximate expression for the grand canonical pressure

βp0(C)=V-nog[TrW0(C)]. (1)

The second way consists in performing the replacement in H itself,
as was proposed originally by BOGOLIUBOV [1]. It gives an approximate
hamiltonian HQ (C) and an approximate pressure :

β P0 (C) = V- 1 log Tr exp [- βH0 (C)] . (2)

In both cases, the B.A. has to be supplemented with some prescription
to determine G.

(3) We shall then prove that :

PO(C) £ Po(C) £ p (3)
where

(4)

One should therefore determine C in both cases by the condition that the
approximate pressure be maximal. Furthermore, as a justification of
the B.A., we shall prove that both Sup^0((7) and Snpp^G) tend to the

c G
same limit p as p when the system becomes infinite.

(4) We return to the maximum problem. In the second case (B.A. in
H), it leads immediately to an equation for (7, which may be called the
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condensate equation [5]. This equation stands in close analogy with the
gap equation of the B.C.S. model. It shares with the latter the property
that it always has the trivial solution 0 = 0.

(5) In the case where the maximum problem leads to a non-zero
value of G, it determines only \G\, but not the argument of C. This
corresponds to the case where condensation actually occurs. The state
of the system obtained by the standard limiting procedure starting from
W is then expected to exhibit a degeneracy under gauge transformations
and to be decomposable as a convex combination of non-gauge invariant
states. A possible way to obtain these non-invariant states directly is to
add to the hamiltonian an infinitesimal source term —γV(va+ + vaQ),
where v is a complex parameter which eventually goes to zero after the
infinite volume limit has been taken.

(6) The same procedure as described under (2) and (3) can be repeated
with this term added to the hamiltonian. The inequality (3) still holds, as
well as the asymptotic equality of the various pressures. The maximum
problem then determines the argument of G as being equal to that of v.
The source term plays the same role as an infinitesimal magnetic field
orienting a ferromagnet.

In the present paper, as a first step toward proving the asymptotic
exactness of the B.A., we shall prove the statements relative to the
thermodynamical functions, listed under (3), both for v = 0 and v φ 0.

More interesting, would be to prove the results concerning the state
of the system, as listed under (5). This is however a much more difficult
problem. The existence of the infinite volume limit itself has been
established only in very restrictive cases, where fugacity expansions
could be used, and therefore in a range of the parameters where conden-
sation certainly does not occur. We shall therefore not consider this
problem, except for a few trivial remarks.

Before going to the details of the proof, we would like to insist on the
following point. The asymptotic exactness of the B.A. is a general
property which holds irrespective of the dimension of the space, the
values of β and μ, and, within reasonable limits, of the details of the
interactions. It does not depend on the presence or absence of condensa-
tion. Whether there is condensation or not is a more delicate question
(somewhat analogous to that of finding non-trivial solutions to the gap
equation of the BCS model), which requires separate investigation and
can be formulated within the B.A. Needless to say, however, the B.A. has
practical interest only if condensation occurs.

This paper is divided as follows. In Section 1, we describe the con-
ditions imposed on the interactions and deduce from them some useful
bounds for the pressure. We then state the relevant theorems [7, 8] on
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the existence of the infinite volume limit for the pressure, both for
v — 0 and v φ 0, as well as some properties of the limiting functions.
In Section 2, we state some operator relations [5, 9] which will be used
in Section 5, and some of their consequences. Both Sections 1 and 2 are
rather technical and can be skipped by the reader who wants to get quickly
to the main point. In Section 3, we gjive a convenient definition of the
B.A. and apply it to the statistical operator W. We then prove the
results relative to pQ(C). In Section4, we make a few remarks on the
state of the system, but do not attempt to take the infinite volume limit.
In Section 5, we apply the B.A. to the hamiltonian, and prove the results
relative to pβ(C). Section 6 summarizes the results, and contains some
additional remarks.

1. Conditions on the Potential and Infinite Volume Limit

We consider a system of identical bosons in r0 dimensional euclidean
space, enclosed in a box A of volume F, which is a bounded open con-
nected subset of Rv°. We take the common mass of the particles equal to
one, and ft=l. Let λ=(2πβ)^2 be the thermal wavelength. The
particles interact through a two body potential φ satisfying the following
conditions [7, 8]:

(A) φ is a real even function of the difference of the positions of the
two interacting particles, φ may have a hard core, φ is locally square
integrable on the complement of the closure of the hard core if there is
any, and on the complement of the origin, if not.

(B) φ is superstable, by which we mean that there exist two real
constants B ^ 0 and A1 > 0 such that, for any family (α ,̂ . . ., xn) of n
points such that the associated hard cores do not overlap, the following
inequality holds:

Σ Φ(*t - *i) - U(xly ...,Xn)^-nB + A^Γ" (1.1)
i<j

where
ξ = max|#ι — x3 \ . (1.2)

Condition (B) is slightly stronger than the usual stability condition
[8,10] under which the existence of the infinite volume limit for the
thermodynamical functions is proved. However, almost all known
interesting examples of stable potentials are of the form φ = φ1 + φz

where φl is a positive function and φ2 a positive type function [7,11,12].
For such potentials, one can show by a slight modification of the argu-
ments in [11] that if φz Φ 0, then condition (B) is satisfied. Therefore
(B) is reasonable. An important exception is the case of free particules,
where φ = 0 is stable, but not superstable. From the point of view of
condition (B), the free case is a pathological limiting case. This is reflected
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most clearly by the inadequacy of the grand canonical formalism to
describe free bosons undergoing condensation: the chemical potential
remains constant as soon as condensation occurs. On the contrary, the
same formalism will be seen to be adequate for superstable bosons,
regardless of possible condensation.

It follows immediately from (B) that for any box A, there exists a
constant A > 0 such that for any family (xv ..., xn) of points in A:

U(xl9...9xn)^ -nB + An*V-*. (1.3)
A is volume independent for a given shape, but may be shape dependent.
Therefore, when considering the infinite volume limit, we shall restrict
our attention to families of boxes A that satisfy the following condition:

(F) There exists a constant α > 1 such that for any A in the family:

F-^ ^α (1.4)

where I is the diameter of Λt i.e. the maximum distance of two points
of A

(F) implies that for all A in the family, (1.3) holds with the same
constant A = Al α"1.

We need a third condition on φ:
(C) φ is weakly tempered [8], i.e. there exist real constants E > 0,

φo ̂  0 and ε > 0 such that for [r| Ξ= r ̂  E:

φ(?) ^ ψ0r-tv + ) . (l δ)
A fourth condition will be needed and introduced in Section 5.

We now deduce from (B) upper bounds for the grand canonical
pressure and density. Let 3? be the Fock space of the system, i.e. the
symmetric tensor algebra constructed on the one particle space L2(A).
The hamiltonian of the system is:

H = T - μN - W*(vaQ + va+) + U (1.6)

where T is the kinetic energy, N the particle number operator, U the
potential energy as defined in (1.1), v any complex number, and

a0 = V-1/* f a(x) dx , (1.7)
Λ

where a(x) is the boson field operator. ~ means complex conjugation.
H can be defined as a self-adjoint operator by the extension method of
FBIEDBIOHS [13], using arguments similar to those in ref. [7], hereafter
referred to as E. We shall need some lemmas from R, as well as the
following results:

Lemma 1. Let X and U be a positive hermitian and a unitary matrix
respectively. Then:

\Tτ(Σϋ)^+1\ ^ Tΐ(XUXU+)*» , (1.8)

Tr (X UX U+)*»+1 ^ Tr (Z2 UX* U+)*» , (1.9)

(1.10)
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The proof will be omitted. It rests on the use of the inequality
|Tr^[2| ^ TτA+A, and on the cyclic property of the trace operation.
(1.10) is a special case of a result due to WEYL [14].

Lemma 2. Let F and G be hermitian matrices. Then:

iG)\ < Tr exp.*7 . (1.11)

Proof. The lemma follows immediately from the relation [15] :

exp(JF + iff) = Πm [exp(2-»jF) exp(ί2-» (?)]«* (1.12)
p— >oo

and from (1.10) with X = exp(2-^jP) and U = exp(i2-*>G).
Lemma 3. Let F and G be symmetric operators in#F with common dense

domain. Let t± and £2 be real numbers, t± < t2. Let F + tG be semi-bounded
from below for t = ̂  and t = t2, and therefore also for t± ^ t ̂  £2. Let
(F + tG)f be its Friedrichs extension and suppose that Tr exp[ — (F + £$(?)/]
is finite for i = 1, 2. Then:

(I) Tr exp [ — (F + tG)f] exists and is a logarithmically convex function
of t for t real, ίx ̂  t ̂  t%.

(II) This function can be continued to an analytic function f(t) in the
domain 2 defined by

f 2 . (1.13)

/ is uniformly bounded in 2. For t real, its derivative is given by:

-gf « - TrG exp [ - (JF + tG)f] . (1.14)

Proof. Part I is already contained in Lemmas R2 and R4. It will be
proved here in a slightly different way.

Let P be a finite dimensional projection operator and let:

fp(t) = TrP exp[- P(F + tG)] . (1.15)

Then fp is an entire function of t. As a particular case of a subsequent
result, (2.11), which obviously applies to the finite dimensional case, we
have: d2 log/P/d£2 ̂  0, so that log/P is convex on the real t axis. From
Lemma E»2, Lemma 2, and logarithmic convexity for real t, it follows
that fp(t) is bounded uniformly for ̂  ̂  Reί ̂  £2 by:

\fp(t)\ ^ max Tr exp[- (F + ̂ G),] . (1.16)

For t real, it follows from Lemma E/ 1 that fp (t) is an increasing function
of P. Let Pn be a sequence of projectors which increases to the unit
operator, and let fPn = fn. Then for ία ij t < t& fn converges to a limit as
n-+oo. It then follows from Vitali's theorem [16] that as n-+oo, fn(t)
converges to an analytic function f(t) in the domain 2. The convergence
is uniform on the compact sets in ̂ . It follows from (1.16) that f(t) is
uniformly bounded in 2. For t real, t± ^ t ̂  t%, it follows from Lemma B2
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that the limiting function is Tr exp[— (F + tG)f], which is therefore a
bounded logarithmically convex function of t in the same interval.

The derivative of fp (t) is

- - = Tr PGP exp [- P(^ + tβ)] . (1.17)

From Vitalfs theorem, it converges to df/dt for t ζ&. For £ real, if we
take for Pn an increasing sequence of spectral projections of (F + tG)f,
then fn(t) converges to TrG exp[— (F + t G ) f ] , which therefore exists
and is equal to df/dt. This concludes the proof of Lemma 3.

We now come back to our problem. Let:

TΓ = exp (-£#), (1.18)

Z = ΎrW, (1.19)

βp= F-MogZ. (1.20)

β will be considered a parameter throughout, p is a function of μ, v, and
depends also on Λ. Whenever a family of boxes is considered, it is under-
stood that they satisfy (F). We then prove the following result.

Lemma 4. (I) p is bounded uniformly with respect to V by a positive
function p(μ, v), independent of V, for V ^ v > 0.

(II) For fixed v, p is increasing and convex in μ on the real axis. It is
analytic in μ in a neighborhood of the real axis.

(III) We fix μ. Let v = reiω with r and ω real numbers. For fixed r, p
is independent of ω. p is real analytic in r, convex and increasing for r ̂  0
(p is an increasing function of \v\).

(IV) It follows from II, III, that p can be taken as an increasing convex
function of μ, and an increasing convex function of \v\.

Proof. We prove (I) in several steps:
(1) v=0,μ<-B.
It follows from (1.3) and Lemma R3 that:

Z ^ Tr[exp - β(T - (μ + B)N)] . (1.21)

The RHS is the free particle grand partition function at chemical
potential μ + B < 0. The corresponding p is bounded by its infinite
volume limit [17]

/?^Λ-^1 + Vo/2(e^+*>) (1.22)
where

9«(*)=Σ*1P* (L23)
ι>ι

In particular
βp£- λ-' log(l - e^+*>) . (1.24)

(2) v = 0, μ arbitrary.
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Let Hn = Tn + Un be the component of T + U in the n particle sub-
space of 3tf. Let

<2B = Trexp (-£#„). (1.25)

It follows from (1.3) and Lemma R3 that:

Qn < exp [β(nB - n*A F-1)]̂  (1.26)
where :

Using the expression (1.22) for the grand canonical pressure of free
bosons, we obtain, with ρ = n V-1 :

^ fl mm ι (- ρ logz + A-' Λ + ,./2 (z)) (1.28)

^ min (- ρ logz - λ~" log (1 - z)) (1.29)

= ρ log(ρλ" + l)lρλ» + λ~f log(l + ρλ") (1.30)

^ λ—> + ρ . (1.31)
Therefore

&°> £exp(Fλ-* + n). (1.32)

Substituting (1.26, 32) into:

2 = 2; enβμQn (1.33)
ίl

we obtain:

Z ^ Σ exp{Fλ-r» + Λ[! + jff (/« + B)] - 1̂ /S^F'1} (1.34)

+ [14- β(μ + B)}^A β)} {I + (2π VjA β)W} . (1.35)

Therefore
βp ^ λ-"° + [1 + β(μ + B)}*I±A β + ε(V) (1.36)

where ε(F) is bounded uniformly in F for F ̂  t? > 0. (1.24) and (1.36)
prove part (I) of Lemma 4 for v = 0. Anticipating (II), we apply (IV)
and take p(μ, 0) to be the convex envelope of the functions defined by
(1.24) and (1.36) (see Fig. 1).

(3) v Φ 0, μ arbitrary.
It follows from a+ a0 ^ N that :

+) ^ -2\v\ (NV)1/* ^ - \v\ (N + F) . (1.37)

Then, from Lemma B3 :

p(μ, v) ̂  \v\ + p(μ + H, 0) . (1.38)

(I) follows for arbitrary v, with:

\v\9ϋ). (1.39)
3 Commun.ιnath.Phys.,Vol.8
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We now come to (II). The properties stated are well known for
v = 0 [7, 8]. More generally, it follows from Lemma 3 that Z is an entire
function of μ, and from III that Z cannot be zero on the real μ axis.
Therefore p is analytic in μ in a neighborhood of the real axis. Convexity
of p follows from Lemma 3. That p is increasing follows from the relation:

dP _ T7-

dμ (1.40)

We now come to III. Independence of p on ω follows from gauge in-
variance:

Z = Tr W = ΎΐeixNWe-ixN . (1.41)

Real analyticity in r and convexity follow from Lemma 3. Monotony
will be proved in Section 2. This ends the proof of Lemma 4.

Pig. 1. Upper bounds for p: we have represented the bounds (1.24), (1.36) and their
convex envelope, ρ (μ) = slope of (T).

From the convexity of p as a function of μ and from the preceding
bounds, it follows that the density ρ = dpjdμ is bounded for any μ by
the slope of the tangent to the graph of p (μ) from the point (μ, 0) (see
Fig. 1). Let ρ(μ, v) or simply ρ be this bound. In particular, for μ suf-
ficiently large, it follows from (1.36) that:

B)]~l . (1.42)

This bound behaves as μ\A for μ -> + oo.
We now turn to the problem of the infinite volume limit for the

pressure, and quote the relevant result from ref. [8].
Theorem 1. Let φ satisfy (A), (B) and (C). Let p be defined by (1.20)

and let Λ$ be a sequence of boxes with volumes V$ increasing to infinity,
satisfying condition (F) and the uniform regularity condition of ref. [8].
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Then, asj->oo,p tends to a well defined limit p. For fixed v, p is a convex,
continuous and increasing function of μ. For fixed μ, it depends on v only
through r — \v\. p is a convex, continuous and increasing function of r.

Proof. The proof goes as in [8], with two additional remarks.
(1) Condition (B) supplemented with (F) allows the use of the grand

canonical formalism from the beginning.
(2) If v Φ 0 the additional term

- fdx[va(x) + va+(x)] (1.43)
A

is an additive function of the box, and therefore does not cause any
difficulty.

The properties of the limiting p as a function of μ, v follow from the
existence of the limit and from Lemma 4.

2. Some Operator Eolations

We list here for later use some operator relations due to BOGOLIUBOV
[5] (see also ref. [9]). Let H be defined as in Section 1. Let A and B be
operators in^f, such that \A\ and \B\ are bounded by some power of N.
We define the following scalar product:

β
(A, B) = β-^Z-i f dλ Ίΐ(e-(P-λϊπA+e-λHB). (2.1)

o

It is positive semi-definite. Besides the usual relation (A, B) = (B, A),
it also satisfies the symmetry property :

(A9B) = (B+9 A+) (2.2)

where + means the adjoint operator. Furthermore :

(l,A) = <A}. (2.3)

If B is of the form B = [O, H], it is easily seen that :

(A,B) = β-i([C,A+}}. (2.4)

In particular, for any operator A,

<IA, [H, A+}}} = β([A, H], [A, H])^0. (2.5)

We now compare (A, A) with the anticommutator of A and A+. Intro-
ducing a spectral decomposition of H we obtain:

(A, A) = Z-ι Σ \Amn\*(e-f>E<» - e~f^)lβ(En - Em) . (2.6)
m,n

From the elementary inequality :

-L (e* -}- e^) - y |e«~ ef| = min (e", e«) ^ ̂ iγ ^ y (β35 + &) (2.7)

3*
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we deduce:

Ig—βEn g—βEm\

mi) n

Schwarz' inequality gives for the last term the following bound:

7j~*£n l^'""|a 6 β(E~-En) J (2.9)

5-1 Σ Mmnl2 (β-'* - e-βEm) β(Em ~ En)\vz.
m,n )

The last factor can be recombined to give (βdA^HyA*]]})1/2. Finally:

(A, A) ̂  γ<M, -4+]+> ̂  (A, A) +± {β(A, A) {[A, [H, -4+]])}1/2.

(2.10)
We now complete the proof of Lemma 4.

Suppose that H depends linearly on some parameter α. Let
H = H0 + ocA and suppose that A is sufficiently well behaved for p to
have a second derivative with respect to α. Then it can be shown [9]
that:

^jrssβV-i(A - {A),A- <^» ̂  0. (2.11)

Therefore p is a convex function of α. This applies in particular to μ and
r and proves the convexity properties stated in Lemma 4. We now prove
that p is an increasing function of r. From now on we set r = \v\ ̂  0.
Since p does not depend on the argument ω of v, we choose ω = 0.
Then

[H, N]=-r F1/2(α0 - a+). (2.12)

From <[#, N]^ = 0, it follows that <α0) = (α^) (for r = 0, both are zero,
because of gauge invariance), so that {α0} is real. Furthermore;

[N, [H, N]] = r W* K + α+). (2.13)

From (2.5) with A = N and from the reality of <α0), we conclude that
<«o> ̂  O Therefore:

/7/M

> + <α+» ^ 0 . (2.14)

Therefore 2> is an increasing function of r, which completes the proof of
Lemma 4.

3. The B.A. ϊor the Statistical Operator

In this section, we consider the B.A. for the statistical operator W
(1.8). We first give a more precise definition of the B.A. Let ψ0 be the one
particle constant wave function: ψQ(x) = F"1/2. ψϋ generates a one
dimensional subspace of the one particle space. Let^f 0 be the symmetric
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tensor algebra constructed on this subspace, and ^f" the symmetric
tensor algebra constructed on the orthogonal complement oί ψ0 in the
one particle space. Then the Fock space Jj? is isomorphic to the tensor
product :

^^^o®^'. (3.1)

We consider the coherent states in^Q, defined by [18] :

ll) (3.2)

where |/> £« 0̂ is the normalized I particle state, and C is any complex
number. The phases oί the states |Z) are chosen in such a way that:

α0|Z> = |/T|Z- 1). Then:
a0\Cy = C\Cy. (3.3)

We now define the B.A. as follows. To every operator A on3(? and any
complex number (7, we associate the operator AQ(C) onJtf" defined by:

A0(C) = (C\A\Cy (3.4)

provided it exists. More precisely, if ψΊ, ψzζ^'* then the vectors
<ψ[ <g) |<7> SΞ \φ( <g> cy and ψ% <8> |<7> = |y£ ® C7> lie in ^f, and:

<tf| Λ(<?) |γ£> = <γΐ ,® q 4 |yέ ® 0> . (3.5)

Intuitively, the transformation A->A0(C) consists in replacing α0

and a£ by (7 and Ό in ^4, after J. has been expanded as a normally
ordered polynomial or power series in aQ and α+. (3.4) is therefore a
reasonable definition of the B.A.

If A is bounded, then A0(C) exists and is bounded. In fact:

μβ(σ) |y'>] = μ \c ® Ψ'y\\ ^ \\A\\ \\Ψ'\\ . (3.6)
If A is positive, A0(C) is positive. If A is a positive trace class operator,
then AQ(C) has the same properties. In fact, |(7> can be taken as the
first vector of an orthonormal basis in Jtf?0: (u^ = |(7), . . ., un) . . .). Let
(vn) be an orthonormal basis in Jf". Then

Tr'Λ(C) = J? <̂ ι ® t>n| -4 1% ® vn> ̂  Tr^L (3.7)

where Tr' means trace
On the other hand, if A is unbounded, then \C ® y') may not be in

the domain of -4 for some or all C complex and ^/ ζ^f7', and AQ(C) may
not exist. This problem will arise in Section 5.

Let now H and W be defined by (1.6, 1.8). The B.A. transforms W
into a new operator W0(C) = (C\ W\Cy. We define:

Z0(C) = Tr'W0(C) (3.8)

βp*(C)=V-*logZ0(C). (3.9)

It follows immediately from (3.7) that Z0(C) ^ Z and ̂ 0(^) ̂  P
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The unit operator 10 in ^f0 has the integral representation [18]:

^-^rfdGdDlCy^l (3.10)

where dC dG = 2d(ReC) d(ImC). Therefore, for any trace class operator
A

(3.11)

Substituting (3.11) in the definition of Z, we obtain:

Z^TrW^Tr'-^fdCdDζC \W\Cy. (3.12)

Therefore :

(3.13)

(3.13) is the starting point both for proving the asymptotic exactness of
the B.A. and for some qualitative remarks which we present now. We
define a probability distribution in the complex plane w(C) dC dC by

Z0(C). (3.14)

Averages with respect to this distribution will be denoted by {{ )).

«/(£)»= /«>(<?) f(G) dCdO . (3.15)

For v = 0, it follows from gauge invariance that w depends only on
R = \C\, and therefore {{(7)) = 0. This is no longer true for v φ 0, but in
any case :

{aoy = Z-ιrΣΐ(a0W) = Z-l-^fdOdGTτ(C\ Wa0\Cy . (3.16)

Therefore :

<«*>=«<?»• (3-17)
Similarly

<αcα+> = Z~^f dC dO Tr' <(7| α+ W αβ|(7> . (3.18)

Therefore the fluctuation of G is closely related to that of a0:

<« - «» K - <«o»> = «|σ - «σ»| » - 1 - (3.19)
The presence or absence of condensation is expected to reflect itself

in the qualitative behavior of w(C). If condensation does not occur, w
should be strongly peaked near the origin, both for v = 0 and v φ 0.
«<7»and«|(7 - «0})|2» should be small (i.e. of the order of 1). If condensa-
tion occurs, for v = 0, w should be concentrated in a neighborhood of a
circle with radius of the order of F1/2. One should then get, besides
((£»= 0, «|<7 - ((C))!2)) of the order of V. If v φ 0, w should be strongly
peaked for |0| of the order of F1/2 and Arg(7« Argv. One should then
have «(?» of the order of F1/8, and «|<7 - «O»|2» small (i.e. of the order
oil).
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We now return to the comparison of p with Sup;p0((7). The problem
c

is similar to the comparison of the grand canonical ensemble with the
canonical one. In the latter case, we replace Σ by Sup. In the former,

n n
we want to replace (2π)~1 f dC dO by Sup. We now state the result.

c
Theorem 2.

Km SupuΛC') = lim p(= p). (3.20)
F->oo G F->oo

The proof is contained in Appendix A.
There is a great similarity between the B.A. and the a -ensemble de-
scription of many boson systems by LEE and YANG [19]. Let:

TΓ0 = Tr' W . (3.21)

Then W0 is a positive trace class operator in c*f0. Moreover

\\WQ\\^TτQWQ = Z (3.22)

where Tr0 means Trace in 3J?0. Then LEE and YANG'S proposal is to
replace:

Z = Σ<l\W0\iy (3.23)
I

by:

Zx = exp (- x F) Σ -̂  <Ί W0 |ϊ> . (3.24)

In the case where H commutes with the particle number operator, i.e.,
for v = 0, it is easily seen that ZΛ = Z0(C) for x = |0|2/F, so that LEE
and YANG'S proposal is identical with the B.A. (This is no longer true
for v Φ 0). Theorem 2 then asserts that:

lim suppa, = lim p = p . (3.25)
F->oo χ V—>oo

Notice however that this statement is weaker than those contained
in ref. [19], Appendix A.

4. The State of the System

We make only a few simple or qualitative remarks. We consider first
a finite system. The natural operator algebra associated with this system
is the algebra 21 of bounded operators in ̂ . Let 21' be the subalgebra of
bounded operators in«2f". The state of the system is the positive norma-
lized linear form ρ on 21 defined by:

e(A) = Z-iTr(AW) (4.1)

for any A ζ 21. Let ρ' be the restriction of ρ to 21'. Then for any A £ 2Γ,
we obtain, by use of (3.10):

(4.2)
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We first take v = 0. Let C = Eeiθ. Then Z0(C) depends only on R, but
not on θ. Therefore:

2π

7 2R dE Tr' (A WQ(R eiθ))

^ - . (4.3)
f2RdRTr'W0(R)

o

Otherwise stated:
2π

where ρΌ(A) is defined by the integrand in (4.3). This exhibits ρ' as a
convex combination (in fact an integral over the gauge group) of states
ρ'θ which are not gauge invariant, and can be obtained from one of them
by gauge transformations. If A is gauge invariant, then ρ' (A) = ρe(A)
for any θ. If A belongs to an irreducible non-trivial representation of
the gauge group, more precisely if :

ei*NA(,-i«N = ei«nA (45)

with n Φ 0, then ρ'(^L) = 0, whereas Q&(A) will not be zero in general.
In the infinite volume limit, one is faced with two problems.
(1) The problem of the exactness of the B.A. now consists in proving

that the state ρ'θ has the same limit as the state defined by the density
matrix Z0((7)~1ίΓ0((7), where G = Reiθ and E is determined by the
condition that Z0(C) = Z0(R) be maximum.

(2) The more interesting question is to decide whether there is con-
densation and breakdown of the gauge invariance or not. In the former
case, the common limit of ρ'θ and of its Bogoliubov approximation will
be non-gauge invariant and therefore will differ from the limit of ρ' itself.
In the latter case, both limits will coincide and therefore be gauge
invariant. In both cases, (4.4) will remain true in the limit. Such a
decomposition has been obtained in the case of the infinite free boson
system by ABAKI and WOODS [20].

We now consider the case v Φ 0. This was the original proposal of
BOGOLIUBOV to obtain directly the non-gauge invariant states by a
limiting process from ρ' itself. This gives rise to a second equivalence
problem, namely that of proving that the limit for v -> 0 (with v — reiθ,
θ fixed and r -> 0) of the infinite volume limit of the new ρ' coincides
with the infinite volume limit of the above ρ'θ. The preceding remarks
show however that this procedure is not the only possible one to obtain
the limiting non-gauge invariant states. It is moreover more natural to
start with ρ'Q (v = 0), for which the decomposition (4.4) exists already for
a finite system.
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We have restricted our attention to 21'. This restriction, however,
should be unimportant, because the B.A. which is expected to be exact
in the limit, consists precisely in eliminating ^f^, and therefore the
distinction between 21 and 21'.

5. The B.A. in the Hamiltonian

The original proposal of BOGOLIUBOV [1, 5] was to replace α0 and
«o" by (7-numbers in H itself, and not in W . We therefore tentatively
define :

(5.1)

(5.2)

(5.3)

(5.4)

We are faced however with the difficulty that H0(C) may not exist.
As a function of a0 and α+, H is a polynomial of second degree in each
of these operators. In particular it contains a term proportional to

a+2fψ(x-y)dxdya0* (5.5)

which becomes infinite if φ is not integrable when a0 and a+ are replaced
by c-numbers. In this entire section we therefore impose on the potential
<f>9 besides (A), (B) and (C) of Section 1, the additional condition (D):

(D) φ is absolutely integrable :

f\φ(x)\dx= Φ< +00 . (5.6)

Conditions (A) and (D) can be shown to be sufficient to define H0 (C) as a
self-adjoint operator in 3SF' . As compared with (B) and (C), condition (D)
is not substantially stronger as far as the behavior at large distances is
concerned. It is however a restriction on the behavior of φ at the origin.
For instance, it excludes hard cores. Intuitively, (D) implies that the
Born approximation to the scattering of particles in the zero momentum
one particle state is finite. By considering the operator WQ (C) instead of
W0(C), we are in fact considering the exponential of the Born approxima-
tion to this process, instead of the appropriate binary kernel [21], which
is well defined for potentials satisfying (A), (B) and (C).

We next prove the following result :
Lemma 5.

Proof. It follows from Lemma R2 that:

Zi(0) = Tr' exp[- βH0(C)] = Sup£ exp[- β(y{\ HQ(C) |yί>] (5.8)
{V'} i

where the Sup is taken over all possible orthonormal families of vectors
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in the domain of H0(C). Therefore:

Z{>(C) = Sup 2; exp{- β(C ® yί| H\C < (5.9)

Now for any self -adjoint operator A bounded from below and with
discrete spectrum, we have [22] :

Therefore:

W) ̂
(V'}

-< |̂ A\ψ)) ^ <y| exp(-^L)

ί I exp(-

(5.10)

(5.11)

The lemma follows immediately.
We now obtain further bounds for p'Q (C). Using again (5.10), we obtain,

for any ψf in the domain of H0(C):

(5.12)

(5.13)

Z'Q(C) ^ exp[~ β(C®y'\ H\C® γ'}]

We take ψf to be the zero particle state w.3%". Then:

In the (μ, )̂) plane, this is a straight line with positive slope. For v = 0,
it remains tangent to a fixed parabola as G varies (see Fig. 2).

An upper bound for p'Q (C) can be easily deduced from the stability
condition (B). By the same method as in Section 1, one obtains:

(5.14)

From the behavior of this bound as μ -> — oo and from the convexity
of PQ(C), one easily constructs an upper bound for PQ(C), represented in
the (μ, p) plane by the left part of the tangent with slope |(7|2/F to the

Fig. 2. Upper and lower bounds for p'0 (C) for fixed (7. ρ 0 \-y~» M = slope of (Tf)
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curve of p (μ) and the right part of the latter, left and right being defined
with respect to the contact point (Fig. 2). From the convexity of PQ(O)
and the lower bound (5.13), one obtains by the same construction as in

Section 1 an upper bound ρ0 I -Li- , μ\ for ρ'Q(C) = dp'0(C)/dμ. As a

ICI2

function of μ, ρ0 tends to -M- as μ -> — oo, and is smaller than ρ (μ) for

/*->+°o

It follows from Lemma 5 that p'Q (C) is a worse approximation to p
than p0(C). This was already expected from the need of the supple-
mentary condition (D) and its intuitive interpretation.

As previously, C should be chosen such that PQ(C) be maximum. If
v = 0, pr

0(C) depends only on E = \G\ because of gauge in variance, and
the maximum condition at most determines E. If v φ 0, it follows from
the relation :

Pro(C, v) = p'Q(G, 0) + V~W(ΰv + Cv) (5.15)

that the maximum condition determines the argument of C as being
equal to that of v. If we assume that p'Q (C) is a differentiable function of
(7, we obtain as a necessary condition for p to be maximum :

\
(5.16)V /

where U0(C) = <<7| U\Cy and the average is taken with the density
matrix ZQ (C)-1 W'Q (C). This equation, already considered by BOGOLIUBOV
[5] is the analog in the present problem of the gap equation of the
BCS model. If v = 0, then H0 (0) is gauge invariant whereas in E70 (C) the

term linear in C is not. Therefore \-JTT- _ / = 0 so that (5.16) for v = 0

always has the trivial solution (7 = 0. This is also in strong analogy with
the BCS gap equation. Notice finally that for free bosons, (5.16) takes the
degenerate form μC = 0. Condensation can occur only at μ = 0, and the
density \C\2/V of the condensate is not determined by the equation.
This again illustrates the pathology associated with free bosons.

We now compare p'Q (C) to p in the infinite volume limit.
Theorem 3.

lim Supp^(G)= lim p^p. (5.17)
F->oo £» F->oo

The remaining part of Section 5 is devoted to the proof of Theorem 3.
This proof is a transposition to the boson case of that of the corresponding
property for the BCS model, given in ref. [9]. It involves two steps. We
consider the function of r = \v\:

O. (5.18)
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In a first step, we obtain a bound for this function in terms of the
fluctuation of α0. In a second step, we relate this fluctuation to the second
derivative of p with respect to r, obtain bounds both for the derivative
of A with respect to r and its integral over r, and deduce therefrom
bounds for A itself. A number of formulas needed for the proof are
listed in Appendix B. In what follows, the notation (A}B means
Tr(Ae-βB)/Tΐ(e-βB). If the subscript B does not appear, it is under-
stood that B is H itself.

Let h0 be a positive operator in 3^Q, to be chosen later. In order to
compare PQ(C) with p, we introduce the interpolating function q(t):

βq(t) = F-1 log Tr exp(- βH(t)) (5.19)

where H (t) is the following operator in ^f :

H(t) = (l-t)(Hϋ(C) + h,) + tH. (5.20)
Then

lί(0) = P'o (G) + (β F)-1 log [Tr exp (- βh0)] .

It follows from Lemma 3 in Section 1 that for any fixed Λy q(t) is an
analytic function of t for 0 < Reί < 1. For real t, (0 < t < 1) its derivative
is given by:

(5.22)

This quantity has well defined limits as t -> 0+ and t -> 1~~. We shall now
choose hQ such that dq/dt ^ 0 for t = 0. Then q(t) will be an increasing
function of t. Therefore :

^q (1) = p (5.23)
and:

q(l) - q(0) ^ dqldt\t = 1 . (5.24)

This provides a second proof of the inequality PQ(C) ^ p and an
upper bound to the major part of the difference p — PQ(C). The best
bound will be obtained for the smallest Λ0 for which dq/dt ^ 0 at t = 0.
We look for h0 in the form :

AO = K (α+ - D) K - C) + L (a+ - C)* (a0 - C)* (5.25)

with K and L positive constants. It follows from (5.25) that for n Φ p:

<(α+ - Or K - CY\0 = 0 . (5.26)

From a Taylor expansion of H near H0(0), we then obtain:
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Using (B.5), we make the last term vanish by choosing:

-y). (5.28)
A

L is bounded by Φ/2 F, because of condition (D). From (B.2), we obtain:

= <<7| K [H, «+]] |Cf> . (5.29)

Now, it follows from (B.3) that:

[α0) [H, α+ ]] =g 2 Φ V~ W - μ . (5.30)
Therefore :

On the other hand, we obtain from (2.5) and (5.30):

0 rg <[α0, [H, α+]]> ̂  2Φρ(μ) - μ . (5.32)
We then choose :

1 . (5.33)

It follows from (5.27, 28, 31, 33) that dq/dt ^ 0 at t = 0. Furthermore,
from (5.32), we know that K ^ 1. Therefore, the second term in the
RHS of (5.21) is smaller than:

(β F)-1 log Tr0 exp [- 0(α+ - ΰ) (a0 - C)]

' = -(/? F)-1 log (1-e-*). (5'34)

Therefore q(0) — PQ(C) tends to zero as F -> oo.
The next step in the proof is to obtain an upper bound for dq/dt at

t = 1 in terms of the fluctuation of aQ. We therefore consider H0(C) — H,
as given by (B.2). After some elementary manipulations, the terms of
first and second order can be combined to give :

-4 [A+A, [H, A+A]] + 2A+[A, [H, A+]]A-^A+[A,H]

3rπ A+ \A (5 35)
— -^\tl,A^\A

where
A = a0 - C . (5.36)

Because of (2.5), the average of the first term is negative and can be
dropped, since we are looking for an upper bound. Because of (5.30), the
second term, which is hermitian, is bounded by :

-2/φ+ - 0) K - G) + 4ΦF-Mα+ - D) N(a0 - C) . (5.37)

We consider the last two terms. Their averages do not depend on (7,
and are real and equal. We have:

[A, #]> - <[A+, [H, 4]]> + <[4+, [H, A]]+y . (5.38)
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The first term in the RHS is bounded by 2Φρ(μ) — μ. Using a spectral
decomposition of H, we write the second term as :

<[.4+ [B, A]]+y = Σ Mm«l2 (-»« - ^n) (Wn + Wm) (5.39)
m,n

where Wn = exp(— βEn). From (2.7), we then obtain:

|<μ+ [B, A]]+y\ ^ Σ \Amn\* \Em - En\ I Wn - Wm\

+ 2β-1Σ\Amn\*\wn-wm\
^ ([A, [H, A+Jiy + 2β-iQA, A+]+y (5.41)

The third and fourth order terms in HQ(C) + hQ — H are bounded by:

Φ V-i \C\* <(α+ - Ό) (a. - C)y . (5.42)

Collecting (5.25, 37, 38, 41, 42) we obtain finally:

<#0((7) + h0 - H} 5£ 3(2Φρ(μ) - μ) + 3 β~^[(a+ - C), (α0 - C)]+>

+ (JΓ - 2μ) <(α+ - CHao - 0)> + 4Φ F-1^ - C) N(a0 - 0)>

+ Φ F-1 10|2 <(α+ - C) (α0 - C)> . (5.43)

Now for given μ, the maximum of £>ό (#) wi^ certainly not occur for
values of (7 for which p'o(C) < 0. It follows from (5.14) that there exists ξ
such that p'o(C) < 0 for \C\2 > ξV. We therefore restrict our attention to
|<7|2 ^ ξ V. Then in (5.43), K and the coefficient V~l\C\* of the last term
in the RHS are bounded uniformly with respect to F. On the other hand,
it follows easily from the stability condition (B) and the bounds in
Section 1 and Appendix A that there exist positive constants u and v,
independent of F, such that :

F-ι<(α+ - ΰ) N(aQ -C)}^u + v((a+ - C) (α0 - 0)> . (5.44)

Therefore, it follows from (5.43) and (5.21) that for all G such that
|(7|2 < ξ V, there exist two positive constants γ and <5, independent of F,
such that

p - p'0(C) ^ V-^H.iC) + h0-Hy- β-i log(l - e-"))

/ δ \ (5 45)
< F-i (γ + J- <[(«+ - C), (a0 - C)]+>) .

The end of the proof of Theorem 3 is now very similar to that in ref . [9],
The best bound in (5.45) is obtained for C — {α0}. Therefore

(5 46)I δ
^ F-1 (γ + 1 <[« - «», K - <«

Using (2.10) and (5.32), we obtain:

Δ (r) ^ F-1 {γ+δ (α0 - <α0>, αc - <αc» + •£

• (2Φρ(μ) -
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We take v = v = r to be real positive. Now:

K - <αc>, «0 - <αc» = β-i-gfe = (4/ϊr)-^ (r-g ) . (5.48)

Multiplying (5.47) by r and integrating from rx to r2, we obtain:

(5-49)

Schwarz' inequality gives for the last integral the bound:

<«<"
Now:

-g- = ̂ f- <2ρ(μ, r)V* (S 20V*). (5.51)

Therefore :

j (0.04)

+ ^(2Φρ-t

From (5.51) and the fact that the maximum of p'0 (C) occurs for |<7|2 ̂  ξ V,
we deduce:

(5.53)dr
Therefore, for r > rx:

Δ (rj ^ Δ (r) + (r - rx) 2 (ρV2 + |i/2) . (5.54)

We multiply both sides by r and integrate over r:

Δ (fϊ) !:4: -̂ ̂  f rΔ(r)dr+2 (^ + ξW) ^~^~ (r, - ^)2 . (5.55)

We now compare (5.52) with (5.55) and replace ̂  by r and r2 by r + ε.
Then:

Zl (r) < (ρ

+ y (2 Φρ - ^)V2 £i/4 β-i/ J . (5.56)

The best choice of ε is ε & F"1/2, which gives

Zl (r) ̂  η F-V2 (5.57)

where η is independent of F and can be taken independent of r in any
bounded interval. Therefore A (r) -> 0 as F -> oo, and Theorem 3 is proved.
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6. Conclusion

We have proved the following results.
(1) For any potential φ satisfying (A), (B) and (C), p0(C) as defined

by (3.9) satisfies:

P> (6.1)

lim Ip - Supp0(<7)\ = 0 . (6.2)
F->oo\ c )

(2) For any potential satisfying (A), (B), (C) and (D), p'Q(C) as
defined by (5.4) satisfies:

p'o(C) < PQ(C) ^ p , (6.3)

lim (p-Svpp'Q(C)\ = Q. (6.4)

Therefore the B.A. in either of the two forms which we have con-
sidered, gives the correct pressure in the infinite volume limit.

Clearly the results of Section 3 can be extended to the case where
many body forces are present, provided they satisfy the appropriate
generalizations of conditions (A), (B) and (C). On the other hand, the
proof of Theorem 2 [i.e. of (6.4)], relies heavily on the pairwise additivity
of the forces. It is very likely that many body forces would not impair
the result, but the proof given here would rapidly become intractable.

We did not touch on the more interesting questions that arise for the
state of the system, as sketched in the Introduction and in Section 4.
This is certainly a much more difficult problem.
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Appendix A

We prove Theorem 1. The proof consists in getting an upper bound
for Z in terms of maxZ0((7) by showing that the main contribution to

c
the integral in (3.13) comes from a region of size \C\ <, F1/2. We therefore
show first that Z0(C) is small for large R = \C\. From (3.2), we have

Let IQ = αJ?2, where 0 < α < 1. We split the sums over I, Γ according
to the position of I and I' with respect to i0.

V I l'> l»

where the positive sum over I ^ 10, 1' ^ Z0 is counted twice. The sum of
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the first two terms recombines to :

lsίl° I A

where we have used Schwarz' inequality. Now

Σ \<c\ w0\ιy\* ^ <σ| w%\c} ^ \\w»\* ^ & . (A.4)

Combining (A.3, 4), we obtain for the first two terms in the RHS of
(A.2) the bound

2 Zoc1/* R exp [-^2(1 - α + α logα)/2] . (A.5)

We now turn to the last term in (A.2). From Schwarz' inequality:

Σ '' &{Σ^g<- *F{Σ\<r\w.\ι>ήw. (A.6)
1,1' >10 lU' l l l ' \l>lo )

l'>l»
The RHS is bounded by:

Σ <l\ WQ |ϊ> </Ί W0 |θ)1/2

 = Σ <ϊ| Wo |I> . (A.7)
, If>l0 )

Now a vector in £? representing a state where at least 10 particles are
in the one particle state ψQ, is certainly orthogonal to any vector in $f
representing a state with less than Z0 particles. Therefore, if Pn is the
projection operator on the subspace of ffl defined by N > n, then:

(A.8)

For v = 0, it follows from (1.34) that:

Tr(Plo W) ^ Σ exp{FA-'e + n[l + β(μ+ B)]- Aβn* V~*} . (A.9)
n > 10

For v Φ 0, there is no such simple bound available. One can nevertheless
prove by a more complicated argument that there exist constants M9 η
and δ > 0, such that for Z0 ̂  η F, one has

Tr Plo W g M exp(- δl0) . (A.10)

Z0(C) is then bounded by the sum of (A.5) and (A. 10).
We now turn to the proof of the theorem. We obtain from (3.13)

Z ^ E$ma,xZQ(C) + -±- f dC dC Z0(0) (A.ll)
C7 Aft J

\G\ > R0

where RQ is a positive number. The last term in the RHS of (A.ll) is
bounded by the sum of two terms, which are the contributions from
(A.5) and (A.10) to an upper bound for ZQ(C). The first term is the
4 Commun. math. Phys., Vol. 8
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contribution from (A.5) :

2 Zα1/2 f2W dR exp(-

exp (- sEl) (A.12)

where

ε = (1 - α + α logα)/2 > 0 . (A.13)

The second term is the contribution from (A.10). After an elementary
calculation, we obtain the following upper bound for this term:

where we have chosen αjR§ = η V.
Comparing (A.ll, 12, 14), we obtain:

^ El max Z0(C) + M(δx)-1 exp(-
c

As V-+OQ, the coefficient of Z in the LHS of (A. 15) tends to one, and
the remainder in the RHS is bounded uniformly with respect to F.

Theorem 2 follows immediately.

Appendix B

We list here some formulas which are needed for the proof of
Theorem 3. The hamiltonian H of the system is a normally ordered
polynomial in aQ and α^~, of second degree with respect to both variables.
We can express H0(G) by a Taylor expansion around α0. The derivatives
of H with respect to a0 and α+ are obtained most easily by commutators
with a£ and α0. The two operations commute, because of Jacobi's
identity and the relation [α0, a£] = 1. Then

H = T - μN - YV (vaQ + va+)

+ ^fφ(x - y) a+(x) α+(y) a(x) a(y) dxdy , (R1)

HQ(C) = H+(C-a+) K, H] + h.c. + | (ϋ - <)2 [α0, fa, H]]

+ h.c. + (Ό - α+) [α0[H, α+]] (0 - αβ) (B.2)

+ (σ - O2 [α0, K, [£ί «+]]] (0 - α0) + h.c.
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By order of a term in this expansion, we mean the total order of
derivation (i.e. of commutation). We need only the explicit expressions
of the higher order commutators, as listed below.

K[H,a+ n = -μ+ F-1 fφ(x-y)a+ (x) (a(x) + a(y))dxdy (B.3)
Λ

[α0, K, [H, a+]]] = 2 F-a / φ (x - y) dx dy aϋ . (B.4)
A

K, K, [[H, a+l α+]]] = 2V~*fφ(x-y) dx dy . (B.5)
Λ
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