A Note on the Decrease of Truncated Wightman Functions for Large Space-like Separation of the Arguments

K. Pohlmeyer
II. Institut für Theoretische Physik der Universität Hamburg

Received November 27, 1967

Abstract

The truncated Wightman functions cannot decrease arbitrarily fast for large space-like separation of the arguments. For certain configurations they can fall off at most exponentially.

Upper bounds on the decrease of truncated Wightman functions were established a long time ago [1-5]. For instance, for a relativistic quantum field theory of a self-interacting neutral, scalar field $A(x) \mathrm{H}$. Araki [2] (compare the footnote in [5]) proved the following theorem: Under the assumptions of a) Lorentz invariance, b) temperedness of the Wightman functions, c) the existence of a lowest non-zero mass, the truncated vacuum expectation value (TVEV)

$$
\left\langle A\left(x_{0}\right) \ldots A\left(x_{n}\right)\right\rangle^{T}
$$

vanishes at least exponentially for $x_{i-1}-x_{i}=\xi_{i}+\lambda \xi_{i}^{\prime} i=1, \ldots, n$ where $\xi_{i}+\lambda \xi_{i}^{\prime}$ should be a Jost point for sufficiently large λ and $\lambda \rightarrow+\infty, \xi_{i}, \xi_{i}^{\prime}$ fixed (with at least one $\xi_{i}^{\prime} \neq 0$).

Here we want to point out that a lower bound on the decrease of the TVEV for similar configurations can be obtained as well. We do not assume locality or the existence of a lowest non-zero mass.

To begin with, let us consider the 2 -point function. Lorentz invariance, temperedness and positive definiteness imply the well-known Källén-Lehmann representation

$$
\left\langle A\left(x_{0}\right) A\left(x_{1}\right)\right\rangle^{T}=\left\langle A\left(x_{0}\right) A\left(x_{1}\right)\right\rangle=i \int_{0}^{\infty} d \varrho(\mu) \Delta_{\mu}^{+}\left(x_{0}-x_{1}\right),
$$

$\varrho(\mu)$ a positive tempered measure

$$
\sim \frac{\text { const }}{-\left(x_{0}-x_{1}\right)^{2}}
$$

 ence of a lowest non-zero mass m in the theory).

Next, we turn to the 3-point function. It is analytic in the "extended tube" $\mathscr{T}_{0,1,2}^{\prime}$ the boundaries of which are explicitly known in terms of the invariants [6]. Consider

$$
W_{2}^{T}\left(x_{0}, x_{1}, x_{2}\right)=\left\langle A\left(x_{0}\right) A\left(x_{1}\right) A\left(x_{2}\right)\right\rangle^{T}
$$

for $x_{i-1}-x_{i}=\xi_{i}+\lambda \xi_{i}^{\prime} i=1,2$ with x_{0}, x_{1}, x_{2} totally space-like in the order $0,1,2$ for sufficiently large positive $\lambda, \xi_{i}, \xi_{i}^{\prime} i=1,2$ fixed, not both $\xi_{i}^{\prime}=0$.

Define

$$
w_{2}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right)=W_{2}^{T}\left(x_{0}, x_{1}, x_{2}\right)
$$

$w_{2}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right)$ is real-analytic for sufficiently large positive λ and can be analytically continued in λ into a wedge-shaped region with the following angle :

```
\(\pi-\operatorname{arctg} \sqrt{\frac{\xi_{1}^{\prime 2} \xi_{2}^{\prime 2}-\left(\xi_{1}^{\prime} \cdot \xi_{2}^{\prime}\right)^{2}}{\left(\xi_{1}^{\prime} \cdot \xi_{2}^{\prime}\right)^{2}}}\) if \(\quad \xi_{i}^{\prime} \cdot \xi_{j}^{\prime}<0 i, j=1,2, \xi_{1}^{\prime 2} \xi_{2}^{\prime 2}>\left(\xi_{1}^{\prime} \cdot \xi_{2}^{\prime}\right)^{2}\)
\(\pi\)
\(\operatorname{arctg} \sqrt{\frac{\xi_{1}^{\prime 2} \xi_{2}^{\prime 2}-\left(\xi_{1}^{\prime} \cdot \xi_{2}^{\prime}\right)^{2}}{\left(\xi_{1}^{\prime} \cdot \xi_{2}^{\prime}\right)^{2}}} \quad\) if \(\quad \xi_{1}^{\prime 2}<0, \xi_{2}^{\prime 2}<0, \quad \xi_{1}^{\prime} \cdot \xi_{2}^{\prime} \geqq 0\)
\(\pi\)
if \(\quad \xi_{1}^{\prime}=0, \xi_{2}^{\prime 2}<0, \xi_{1} \cdot \xi_{2}^{\prime}<0\)
    or \(\quad \xi_{1}^{\prime 2}<0, \xi_{2}^{\prime}=0, \xi_{1}^{\prime} \cdot \xi_{2}<0\)
\(2 \operatorname{arctg} \sqrt{\frac{\xi_{1}^{2} \xi_{2}^{\prime 2}-\left(\xi_{1} \cdot \xi_{2}^{\prime}\right)^{2}}{\left(\xi_{1} \cdot \xi_{2}^{\prime}\right)^{2}}}\) if \(\quad \xi_{1}^{\prime}=0, \xi_{2}^{\prime 2}<0, \xi_{1} \cdot \xi_{2}^{\prime}>0\)
\(2 \operatorname{arctg} \sqrt{\frac{\xi_{1}^{\prime 2} \xi_{2}^{2}-\left(\xi_{1}^{\prime} \cdot \xi_{2}\right)^{2}}{\left(\xi_{1}^{\prime} \cdot \xi_{2}\right)^{2}}} \quad\) if \(\quad \xi_{1}^{\prime 2}<0, \xi_{2}^{\prime}=0 \quad \xi_{1}^{\prime} \cdot \xi_{2}>0\).
```

In particular, $w_{2}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right)$ can be analytically continued in λ into a half-plane for all $\left(\xi_{1}, \xi_{2}, \xi_{1}^{\prime}, \xi_{2}^{\prime}\right) \in S_{2}$:
$S_{2}=\left\{\left(\xi_{1}, \xi_{2}, \xi_{1}^{\prime}, \xi_{2}^{\prime}\right) \mid \xi_{1}^{\prime}, \xi_{2}^{\prime} \in\right.$ a plane that contains a time-like vector,

$$
\begin{aligned}
& \left.\xi_{i}^{\prime} \cdot \xi_{j}^{\prime}<0 \quad i, j=1,2\right\} \\
& \cup\left\{\left(\xi_{1}, \xi_{2}, \xi_{1}^{\prime}, \xi_{2}^{\prime}\right) / \xi_{1}^{\prime}=0, \quad \xi_{2}^{\prime 2}<0, \quad \xi_{1}^{2}<0, \quad \xi_{1} \xi_{2}^{\prime}<0\right\} \\
& \cup\left\{\left(\xi_{1}, \xi_{2}, \xi_{1}^{\prime}, \xi_{2}^{\prime}\right) / \xi_{1}^{\prime 2}<0, \quad \xi_{2}^{\prime}=0, \quad \xi_{2}^{2}<0, \quad \xi_{1}^{\prime} \cdot \xi_{2}<0\right\}
\end{aligned}
$$

This analyticity domain together with the temperedness implies according to theorem 5.1.12 [7] that $w_{2}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right)$ for $\left(\xi_{1}, \xi_{2}, \xi_{1}^{\prime}, \xi_{2}^{\prime}\right) \in S_{2}$ can decrease at most (linearly) exponentially, i.e.

$$
\lim _{\lambda \rightarrow+\infty} \frac{\operatorname{sug}}{} \frac{\left|w_{2}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right)\right|}{\lambda}=-M_{2}\left(\xi_{i}, \xi_{i}^{\prime}\right)>-\infty
$$

unless $w_{2}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right) \equiv 0$.
It is not difficult now to treat the general truncated n-point function by the same method. One considers

$$
W_{n}^{T}\left(x_{0}, \ldots, x_{n}\right)=\left\langle A\left(x_{0}\right) \ldots A\left(x_{n}\right)\right\rangle^{T}
$$

for $x_{i-1}-x_{i}=\xi_{i}+\lambda \xi_{i}^{\prime} i=1, \ldots, n$ with x_{0}, \ldots, x_{n} totally space-like in the order $0,1, \ldots, n-1, n$ for sufficiently large positive λ, ξ_{i} and ξ_{i}^{\prime} fixed, not all $\xi_{i}^{\prime}=0$.
$w_{n}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right)=W_{n}^{T}\left(x_{0}, \ldots, x_{n}\right)$ is real-analytic for sufficiently large positive λ and can be analytically continued in λ into a half-plane for all
$S_{n}=S_{n}^{(1)} \cup S_{n}^{(2)} \cup S_{n}^{(3)}$
$S_{n}^{(1)}=\left\{\left(\xi_{i_{i=1, \ldots, n},}, \xi_{i_{i=1, \ldots, n}^{\prime}}^{\prime}\right) / \xi_{i}^{\prime} \in\right.$ a plane that contains a time-like vector, $\xi_{i}^{\prime} \cdot \xi_{j}^{\prime}<0$ for all $\left.i, j \in(1, \ldots, n)\right\}$
$S_{n}^{(2)}=\left\{\left(\xi_{i_{i=1}, \ldots, n}, \xi_{i_{i=1, \ldots, n}^{\prime}}^{\prime}\right) / \xi_{i_{1}}^{\prime}=\cdots=\xi_{i_{t}}^{\prime}=0 \quad t<n-1\right.$,
$\xi_{i \notin\left(i_{1}, \ldots, i_{t}\right)}^{\prime} \in$ a plane that contains a time-like vector, not all of the $\xi_{i_{i \notin\left(i_{1} \ldots, i_{t}\right)}^{\prime}}^{\prime}$ on a space-like line, $\xi_{i}^{\prime} \cdot \xi_{j}^{\prime}<0$ for all $i, j \notin\left(i_{1}, \ldots, i_{t}\right)$, $\xi_{i} \cdot \xi_{j}^{\prime}<0 \quad$ for all $i \in\left(i_{1}, \ldots, i_{t}\right), j \notin\left(i_{1}, \ldots, i_{t}\right),\left(\xi_{j}^{\prime}\left(\xi_{i}, \xi_{l}^{\prime}\right)\right.$ $\left.-\xi_{l}^{\prime}\left(\xi_{i}, \xi_{j}^{\prime}\right)\right)^{2}>0$ for all $i \in\left(i_{1}, \ldots, i_{t}\right)$ and for at least two linearly independent $\xi_{j}^{\prime}, \xi_{l}^{\prime} j, l \notin\left(i_{1}, \ldots, i_{t}\right), \xi_{i}^{2}<0$ for all $\left.i \in\left(i_{1}, \ldots, i_{t}\right)\right\}$,
$S_{n}^{(3)}=\left\{\left(\xi_{i_{i=1, \ldots, n}, \xi_{i=1, \ldots, n}}, \xi_{i_{i}}^{\prime}=\cdots=\xi_{i_{t}}^{\prime}=0 \quad t<n\right.\right.$,
with $\xi_{i_{i ₫\left(i_{1}, \ldots, i_{l}\right)}^{\prime}}$ on a space-like line, $\xi_{i}^{\prime} \cdot \xi_{j}^{\prime}<0$ for all $i, j \notin\left(i_{1}, \ldots, i_{t}\right), \xi_{i} \cdot \xi_{j}^{\prime}<0$ for all $i \in\left(i_{1}, \ldots, i_{t}\right), j \notin\left(i_{1}, \ldots, i_{t}\right)$, there exists a time-like vector $\eta, \eta^{0}>0$ such that $\left(\eta\left(\xi_{i}, \xi_{j}^{\prime}\right)\right.$ $\left.-\xi_{j}^{\prime}\left(\xi_{i}, \eta\right)\right)^{2}+\xi_{i}^{2}\left(\eta, \xi_{j}^{\prime}\right)^{2}>0$ for all $\left.i \in\left(i_{1}, \ldots, i_{t}\right), j \notin\left(i_{1}, \ldots, i_{t}\right)\right\}$.
Again we may invoke the theorem 5.1.12 of [7] and conclude that for all $\left(\xi_{i=1, \ldots, n}, \xi_{i_{i=1, \ldots, n}^{\prime}}^{\prime}\right) \in S_{n} w_{n}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right)$ can decrease at most (linearly) exponentially

$$
\limsup _{\lambda \rightarrow+\infty} \frac{\log \left|w_{n}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right)\right|}{\lambda}=-M_{n}\left(\xi_{i}, \xi_{i}^{\prime}\right)>-\infty
$$

unless $w_{n}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right) \equiv 0$.
More detailed information about the decrease of $w_{n}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right)$ for $\left(\xi_{i}, \xi_{i}^{\prime}\right) \in S_{n}$ is given by the following theorem 10.4.1 of [7]: For each positive ε and δ there is a sequence $\left\{\lambda_{n}\right\}, \lambda_{n} \rightarrow \infty$ and a positive η such that the subset of $\left(\lambda_{n}, \lambda_{n}+\delta \lambda_{n}\right)$ in which

$$
\lambda^{-1} \log \left|w_{n}^{T}\left(\lambda ; \xi_{i}, \xi_{i}^{\prime}\right)\right| \geqq M_{n}\left(\xi_{i}, \xi_{i}^{\prime}\right)-\varepsilon
$$

has measure $\geqq \eta \cdot \lambda_{n}$.

References

1. Dell'Antonio, G. F., and P. Gullimanelli: Nuovo Cimento 12, 38 (1959).
2. Araki, H.: Ann. Phys. 11, 260 (1960).
3. Jost, R., and K. Hepp: Helv. Phys. Acta 35, 34 (1962).
4. Ruelle, D.: Helv. Phys. Acta 35, 147 (1962).
5. Araki, H., K. Hepp, and D. Ruelle: Helv. Phys. Acta 35, 164 (1962).
6. Källén, G., and A. S. Wightman: Dan. Vid. Selsk. Mat. Fys. Skr. 1 nº6 (1958).
7. Boas, R. P.: Entire functions. New York: Academic Press Inc. 1954.

Dr. K. Pohlmeyer
II. Institut für Theoretische Physik der Universität
2000 Hamburg 50
Luruper Chaussee 149

