On the Mathematical Structure of the B. C. S.-Model. II

W. Thirring*
Institute for Theoretical Physics, University of Vienna

Received November 1, 1967

Abstract

It is shown for the degenerate B.C.S.-model how in the limit of an infinite system the exact thermal Greens-functions approach a gauge invariant average of the one's calculated with the Bogoliubov-Haag method.

§ 1. Introduction

In a previous paper [1] it was studied in which sense the B.C.S.model is solved by the Bogoliubov-Haag [2] method in the infinite volume limit. We investigated how the B.C.S.-Hamiltonian $H_{\text {B.c.s. }}$ converges towards the Bogoliubov Hamiltonian H_{B} in the infinite tensor product representation of the field operators. It turned out that $H_{\text {B.c.s. }}$ converges only in the rather small subspace in which the gap equation holds. Only in this subspace H_{B} describes the time dependence correctly. In fact outside this subspace the time dependence is not described by a Hamiltonian at all for infinite volume since the corresponding unitary transformation is not weakly continuous. It should be stressed that this is not a mathematical pathology but corresponds to a physically completely sound situation. It is analogous to the Lamor-precession of infinitely many spins.

In this note we shall supplement these somewhat negative statements by a more useful result. We shall prove that the thermal Greens functions are correctly described by H_{B} or

$$
\begin{gather*}
\lim _{\Omega \rightarrow \infty} \operatorname{Tr} e^{-H_{\text {B.c.s. } / T}} e^{i t_{1} H_{\text {B.c.s. }} A\left(x_{1}\right) e^{-i t_{1} H_{\text {B.c.s. }}} \ldots} \\
\ldots e^{i t_{n} H_{\mathrm{B}, \text { c.s. }} A\left(x_{n}\right) e^{-i t_{n} H_{\mathrm{B} . \mathrm{c}, \mathrm{~s} .} / \operatorname{Tr}} e^{-H_{\text {B.c.s. } / T}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi} \tag{1}\\
\operatorname{Tr} e^{-H_{\mathrm{B}} / \mathrm{T}} e^{i t_{1} H_{\mathrm{B}}} A\left(x_{1}\right) e^{-i t_{1} H_{\mathrm{B}}} \ldots e^{i t_{n} H_{\mathrm{B}}} A\left(x_{n}\right) e^{-i t_{n} H_{\mathrm{B}}} / \operatorname{Tr} e^{-H_{\mathrm{B}} / \mathrm{T}}
\end{gather*}
$$

where Ω stands for the volume and the A 's are field operators. ϕ is a phase angle over which we have to average to make the procedure invariant. In other words the representation furnished by thermal expectation values is one of the good ones where H_{B} gives the correct time dependence.

[^0]For simplicity we shall use the quasi-spin formalism and consider the degenerate (strong coupling) case only. Our results strengthen previous findings [3] where it was shown that in a suitable perturbation expansion the difference of the two sides of (1) goes with $1 / \Omega$ in each order. To make this argument rigorous one would have to establish the uniformity of the convergence of the perturbation expansion for $\Omega \rightarrow \infty$. We shall not have this problem since we will calculate both sides of (1) exactly.

§ 2. The Formalism

With the quasi-spin formalism one can write the B.C.S.-Hamiltonian in the form:

$$
\begin{equation*}
H_{\mathrm{B.C.S}}=-\sum_{p=1}^{\Omega} \varepsilon \sigma_{p}^{(z)}-\frac{2 T_{0}}{\Omega} \sum_{p=1}^{\Omega} \sigma_{p}^{+} \sum_{p^{\prime}=1}^{\Omega} \sigma_{p^{\prime}}^{-} \tag{2}
\end{equation*}
$$

Here the $\boldsymbol{\sigma}_{p}$ are a set of Ω independent spin matrices ${ }^{1}$ and $\sigma^{ \pm}$the usual combinations $\frac{1}{2}\left(\sigma^{(x)} \pm i \sigma^{(y)}\right)$. In the degenerate model ε is independent of p. We are interested in a representation of the algebra of the σ 's which is furnished via the G-N-S-construction by the positive linear functional $\langle A\rangle_{\Omega}$ given by the thermal expectation value

$$
\begin{equation*}
\langle A\rangle_{\Omega}=\operatorname{Tr} e^{-\frac{1}{T} H_{\mathrm{B} . \mathrm{c.s.}}} A / \operatorname{Tr} e^{-\frac{1}{T} H_{\mathrm{B}, \mathrm{c}, \mathrm{~s} .}} \tag{3}
\end{equation*}
$$

Since $H_{\text {B.c.s. }}$ acts in a 2^{Ω} dimensional space there is no problem in defining Tr. A stands for any polynomial in the σ 's. The latter can be generated by

$$
\begin{equation*}
e^{i \sum_{p} \alpha_{p} \sigma_{p}^{(z)}} e^{i \sum_{p} \beta_{p} \sigma_{p}^{(\nu)}} e^{i \sum_{p} \gamma_{p} \sigma_{\mathcal{p}}^{(\lambda)}}=A \tag{4}
\end{equation*}
$$

However since $H_{\text {B.c.s. }}$ is invariant under any permutation of the σ_{p} it is clear that all information is already contained in ${ }^{2}$

$$
\begin{equation*}
A_{\Omega}(a, b, c)=e^{i \frac{a}{\Omega} \sum_{p}^{\Omega} \sigma_{p}^{(z)}} e^{i \frac{b}{\Omega} \sum_{p=1}^{\Omega} \sigma_{p}^{(\nu)}} e^{i \frac{c}{\Omega}} \sum_{p=1}^{\Omega} \sigma_{p}^{(z)} . \tag{5}
\end{equation*}
$$

For instance, $\left\langle\sigma_{p}^{(z)}\right\rangle$ is independent of p and therefore

$$
\begin{equation*}
\left\langle\sigma_{p}^{(z)}\right\rangle_{\Omega}=\left.\frac{\partial}{\partial i a}\left\langle A_{\Omega}\right\rangle_{\Omega}\right|_{a=b=c=0} \tag{6}
\end{equation*}
$$

Using $\left(\sigma_{p}^{(i)}\right)^{2}=1$ it is easy to show that the expectation value of any polynomial can be generated by derivatives of A.

[^1]In the Bogoliubov-Haag procedure the Hamiltonian is split into

$$
\begin{gather*}
H_{\text {B.C.s. }}=H_{B}+H^{\prime} \\
H_{B}=-\sum_{p=1}^{\Omega} \varepsilon \sigma_{p}^{(z)}-2 T_{c} \sum_{p=1}^{\Omega}\left(\sigma_{p}^{+}\left\langle\sigma^{-}\right\rangle_{B}+\sigma_{p}^{-}\left\langle\sigma^{+}\right\rangle_{B}\right) \tag{7}\\
H^{\prime}=-\frac{2 T_{c}}{\Omega} \sum_{p=1}^{\Omega}\left(\sigma_{p}^{+}-\left\langle\sigma^{+}\right\rangle_{B}\right) \sum_{p^{\prime}=1}^{\Omega}\left(\sigma_{p^{\prime}}^{-}-\left\langle\sigma^{-}\right\rangle_{B}\right)-2 T_{c} \Omega\left\langle\sigma^{+}\right\rangle_{B}\left\langle\sigma^{-}\right\rangle_{B}
\end{gather*}
$$

$\langle\sigma\rangle_{B}$ is the expectation value of σ_{p} with H_{B} which is again independent of p. Now H^{\prime} is dropped since its operator part is in some sense small and a c-number is irrelevant for expectation values. H_{B} can be written as

$$
\begin{equation*}
H_{B}=-T \omega \sum_{p} \sigma_{p} \mathrm{n} \tag{8}
\end{equation*}
$$

where the unit vector \mathbf{n} and the constant ω is determined by calculating the expectation value of $\boldsymbol{\sigma}$.

$$
\begin{equation*}
\langle\boldsymbol{\sigma}\rangle_{\mathrm{B}}=\operatorname{Tr} e^{-H_{B} / T} \boldsymbol{\sigma} / \operatorname{Tr} e^{-H_{B} / T}=\mathbf{n} \operatorname{Th} \omega . \tag{9}
\end{equation*}
$$

Comparing (7), (8) and (9) we find that ω and the angle θ between n and the z-axis are determined by

$$
\begin{equation*}
\omega=\frac{T_{c}}{T} \operatorname{Th} \omega \quad \cos \theta=\frac{\varepsilon}{T \omega} \tag{10}
\end{equation*}
$$

The azimuthal angle ϕ of \mathbf{n} remains arbitrary. This was to be anticipated since $H_{\text {B.c.s. }}$ is invariant under rotations around the z-axis. The latter corresponds to gauge transformations of the electron operators in the usual formalism. H_{B} is again invariant under permutations of the σ_{p} so that $\langle A(a, b, c)\rangle_{B}$ suffices to characterize the representation of the σ 's. However it is immediately clear that $\langle A\rangle_{\Omega} \neq\langle A\rangle_{B}$ since H_{B} and therefore $\left\rangle_{B}\right.$ is not gauge invariant. For instance, $\left\langle\sigma^{(x)}\right\rangle_{\Omega}=0$ but $\left\langle\sigma^{(x)}\right\rangle_{B}$ $=n^{(x)} \operatorname{Th} \omega \neq 0$ for $\phi \neq \pi / 2$. To make $\left\rangle_{B}\right.$ gauge invariant we have to average over ϕ and thus the best we can hope for is

$$
\begin{equation*}
\lim _{\Omega \rightarrow \infty}\left\langle A_{\Omega}\right\rangle_{\Omega}=\lim _{\Omega \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi\left\langle A_{\Omega}\right\rangle_{B} \tag{11}
\end{equation*}
$$

where $\left\rangle_{B}\right.$ is taken with a H_{B} where \mathbf{n} has the azimuthal angle ϕ. Since the spins are independent in H_{B} it is clear that $\left\rangle_{B}\right.$ becomes independent of Ω. The latter must be large enough that all σ 's in A are contained in the first Ω ones. Furthermore the limit $\Omega \rightarrow \infty$ should be attained such that all derivatives at $a=b=c=0$ are equal. We shall see that this is actually the case.

§ 3. The Right Hand Side of (11)

The evaluation of $\langle A\rangle_{B}$ is quite simple like the expectation value of spins in an external magnetic field in direction n. By an elementary
calculation we find for one spin

$$
\begin{align*}
\frac{1}{2} \operatorname{Sp} e^{i \alpha \sigma^{(z)}} e^{i \beta \sigma^{(\gamma)}} e^{i \gamma \sigma(z)} e^{\omega \mathbf{n} \boldsymbol{\sigma}}= & \text { Ch } \omega \cos \beta \cos (\alpha+\gamma)+ \\
& +i \operatorname{Sh} \omega(\cos \theta \cos \beta \sin (\alpha+\gamma)+ \tag{12}\\
& +\sin \theta \sin \beta(\cos \phi \sin (\alpha-\gamma)+ \\
& +\sin \phi \cos (\alpha-\gamma)))
\end{align*}
$$

For Ω spins we work in the tensor product and therefore we simply multiply the expressions (12) for the individual spins together. Thus we have

$$
\begin{align*}
\left\langle A_{\Omega}(a, b, c)\right\rangle_{B}= & \left\{\cos \frac{b}{\Omega} \cos \frac{a+c}{\Omega}+i \operatorname{Th} \omega\left(\cos \theta \cos \frac{b}{\Omega} \sin \frac{a+c}{\Omega}+\right.\right. \\
& \left.\left.+\sin \theta \sin \frac{b}{\Omega} \sin \left(\phi+\frac{a-c}{\Omega}\right)\right)\right\}^{\Omega} \tag{13}
\end{align*}
$$

In the limit $\Omega \rightarrow \infty$ this approaches

$$
\begin{equation*}
\left\langle A_{\Omega}(a, b, c)\right\rangle_{B} \rightarrow e^{i \operatorname{Th} \omega((a+c) \cos \theta+b \sin \theta \sin \phi)} \tag{14}
\end{equation*}
$$

uniformly for finite values of the argument. Furthermore the limits of the derivatives are the derivatives of the limit. The gauge-variant nature of this expectation value is exhibited by its ϕ-dependence which gives, f.i. $\left\langle\sigma^{(y)}\right\rangle_{B}=\operatorname{Th} \omega \sin \theta \sin \phi$. This vanishes on integrating over ϕ :

$$
\begin{align*}
\left\langle A_{\infty}(a, b, c)\right\rangle_{\bar{B}}= & \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi\left\langle A_{\infty}(a, b, c)\right\rangle_{B}=J_{0}(b \sin \theta \mathrm{Th} \omega) \times \tag{15}\\
& \times e^{i(a+c) \mathrm{Th} \omega \cos \theta} .
\end{align*}
$$

It should be noted that on averaging over ϕ correlations between the spins are introduced. They are not present in (14) since H_{B} is the sum of Hamiltonians for the individual spins. For instance we have

$$
\begin{gather*}
\left\langle\sigma_{p}^{(\nu)}\right\rangle_{\bar{B}}=0 \tag{16}\\
\left\langle\sigma_{p}^{(y)} \sigma_{p, p}^{(y)}\right\rangle_{\bar{B}}=\frac{\partial^{2}}{\partial(i b)^{2}}\langle A(a, b, c)\rangle_{\bar{B}} \neq 0=\left\langle\sigma_{p}^{(y)}\right\rangle_{\bar{B}}\left\langle\sigma_{p}^{(y)}\right\rangle_{\bar{B}} .
\end{gather*}
$$

It turns out that these are exactly the correlations created by $H_{\text {B.C.s. }}$ where the spins are coupled.

§4. The Left Hand Side of (11)

The diagonalization of $H_{\text {B.C.s. }}$ simply amounts to diagonalizing S^{2} and S_{z} of the "total spin".

$$
\begin{equation*}
\mathbf{S}=\frac{1}{2} \sum_{p=1}^{\Omega} \boldsymbol{\sigma}_{p} \tag{17}
\end{equation*}
$$

Designating the eigenvalues by $S(S+1)$ and S_{z} resp. we have ${ }^{3}$ $-S \leqq S_{z} \leqq S, \quad 0 \leqq S \leqq \Omega / 2$. The multiplicity of the levels with (S, S_{z}) is found ${ }^{(4)}$ to be $\frac{\Omega!(2 S+1)}{(\Omega / 2-S)!(\Omega / 2+S+1)!}$. Thus we obtain

$$
\begin{align*}
& \operatorname{Tr} e^{-\frac{1}{T} H_{\text {B.C.s. }}} A_{\Omega}=\sum_{S=0}^{\Omega / 2} \sum_{S_{z}=-S}^{S} \frac{\Omega!(2 S+1)}{(\Omega / 2-S)!(\Omega / 2+S+1)!} \cdot \tag{18}\\
& \cdot e^{\frac{1}{T}\left(2 \varepsilon S_{z}+\frac{2 T_{c}}{\Omega}\left(S(S+1)-S_{z}\left(S_{z}+1\right)\right)\right.}\left(S, S_{z}\left|e^{\frac{2 i a}{\Omega} S_{z}} e^{\frac{2 i b}{\Omega} S_{y}} e^{\frac{2 i c}{\Omega} S_{z}}\right| S, S_{z}\right)
\end{align*}
$$

The matrix element of A_{Ω} occuring in (18) is well-known from the representations of the rotation group and expressible in terms of a hypergeometric function [5]:

$$
\begin{align*}
& G_{\Omega}\left(\frac{2 S}{\Omega}\right.\left., \frac{2 S_{z}}{\Omega} ; a, b, c\right)=\left(S, S_{z}\left|e^{\frac{2 i a}{\Omega} S_{z}} e^{\frac{2 i b}{\Omega} S_{y}} e^{\frac{2 i c}{\Omega} S_{z}}\right| S, S_{z}\right) \\
&\left.=\sum_{\chi}(-)^{\chi} \frac{\left(S+S_{z}\right)!\left(S-S_{z}\right)!e^{2 i S_{z} \frac{a+c}{\Omega}}}{\left(S+S_{z}-\chi\right)!\left(S-S_{z}\right.}-\chi\right)!(\chi!)^{2} \tag{19}\\
& \cos \frac{2 S_{b}}{\Omega} \operatorname{tg} \frac{2 \chi_{b}}{\Omega}
\end{align*}
$$

Dividing (18) by $\operatorname{Tr} e^{-\frac{1}{T} H_{\text {B.c.s. }}}$ we see that $\left\langle A_{\Omega}\right\rangle$ is the average of G taken with a certain probability measure. In statistical mechanics one usually replaces such a sum by its leading term. Since we want to establish our result with certainty we justify this procedure in the following way: To approach the limit $\Omega \rightarrow \infty$ we switch over to the intensive quantities

$$
\begin{equation*}
\eta=\frac{2 S}{\Omega}, \quad n=\frac{2 S_{z}}{\Omega}, \quad 0 \leqq \eta \leqq 1, \quad|n| \leqq \eta \tag{20}
\end{equation*}
$$

Giving unit measure to the unit area in the $\eta-n$-plane the probability measure is

$$
\begin{align*}
& P_{\Omega}(\eta, n)= \frac{\Omega!(2 S+1)}{(\Omega / 2-S)!(\Omega / 2+S+1)!} e^{\frac{1}{T}\left(2 \varepsilon S_{z}+\frac{2 T_{c}}{\Omega}\left(S(S+1)-S_{z}\left(S_{z}+1\right)\right)\right)} \\
&\left(\frac{2}{\Omega}\right)^{2} \sum_{S^{\prime}=0}^{\Omega / 2} \sum_{S_{z}^{\prime}=-S^{\prime}}^{S^{\prime}} \frac{\Omega!\left(2 S^{\prime}+1\right)}{\left(\Omega / 2-S^{\prime}\right)!\left(\Omega / 2+S^{\prime}+1\right)!} \times \\
& \times e^{\frac{1}{T}\left(2 \varepsilon S_{z}^{\prime}+\frac{2 T_{c}}{\Omega}\left(S^{\prime}\left(S^{\prime}+1\right)-S_{z}^{\prime}\left(S_{z}^{\prime}+1\right)\right)\right)} \tag{21}\\
&= \frac{e^{-\Omega\left(f\left(\eta_{0}\right)-f\left(\eta^{\prime}\right)+\frac{T_{c}}{2 T^{\prime}}\left(n^{\prime}-n_{0}\right)^{2}\right)} \phi_{\Omega}(\eta)}{\left(\frac{2}{\Omega}\right)^{2} \sum_{n^{\prime}, n} e^{-\Omega\left(f\left(\eta_{0}\right)-f\left(\eta^{\prime}\right)+\frac{T_{c}}{2 T}\left(n^{\prime}-n_{0}\right)\right)} \phi_{\Omega}\left(\eta^{\prime}\right)}
\end{align*}
$$

[^2]with
\[

$$
\begin{gathered}
f(\eta)=\frac{2 T_{c}}{T} \eta^{2}-\frac{1-\eta}{2} \ln (1-\eta)-\frac{1+\eta}{2} \ln (1+\eta) \\
f^{\prime}\left(\eta_{0}\right)=0, \quad \eta_{0}=\operatorname{Th} \frac{T_{c}}{T} \eta_{0}, \quad n_{0}=\frac{\varepsilon}{T_{c}}-\frac{1}{\Omega} \\
\phi_{\Omega}^{2}(\eta)=\frac{\left.2(\eta+1 / \Omega)^{2} e^{\eta \frac{T_{c}}{T}}-\int_{0}^{\infty} \frac{d t 2}{e^{2 \pi l-1}} \operatorname{arctg} \frac{t}{\Omega / 2(1+\eta)+2}+\operatorname{arctg} \frac{t}{\Omega / 2(1-\eta)+1}\right)}{\left(1-\eta+\frac{2}{\Omega}\right)\left(1+\eta+\frac{4}{\Omega}\right)^{3} \times} \\
\times\left(1+\frac{2}{\Omega(1-\eta)}\right)^{\Omega(1-\eta)}\left(1+\frac{4}{\Omega(1+\eta)}\right)^{\Omega(1+\eta)}
\end{gathered}
$$
\]

To obtain these expressions we have used Binets second formula [6] for $\Gamma(z)$. The function ϕ converges for $\Omega \rightarrow \infty$ to the harmless expression

$$
\begin{equation*}
\phi_{\infty}^{2}(\eta)=\frac{\eta^{2} e^{2 \eta \frac{T_{c}}{T}}}{\left(1-\eta^{2}\right)(1+\eta)^{2} e^{6}} \tag{22}
\end{equation*}
$$

so that the essential Ω-dependence of (21) is in the exponent. Since f has for $0 \leqq \eta \leqq 1,|n| \leqq \eta$ one absolute maximum at $\left(\eta_{0}, n_{0}\right)$ if $T<T_{c^{\prime}}|n|_{0} \leqq \eta_{0}$ we expect that P goes to a δ-function: at the maximum it will behave like

$$
\left.e^{-\Omega\left(\left(\eta-\eta_{0}\right)^{\frac{f^{\prime \prime}}{}{ }^{\prime \prime}\left(\eta_{0}\right)}\right.} \frac{2}{2}+\left(n-n_{0}\right)^{2} \frac{T_{\mathrm{c}}}{2 T}\right)
$$

and thus become sharper and sharper for $\Omega \rightarrow \infty$. This intuitive argument is made rigorous by proving that the measure of any set not containing $\left(\eta_{0}, n_{0}\right)$ becomes zero for $\Omega \rightarrow \infty$. For this goal we shall use the inequalities

$$
\begin{equation*}
\left(\eta-\eta_{0}\right)^{2}\left|f^{\prime \prime}\left(\eta_{0}\right)\right| \geqq\left|f\left(\eta_{0}\right)-f(\eta)\right| \geqq \frac{\left(\eta-\eta_{0}\right)^{2}}{4}\left|f^{\prime \prime}\left(\eta_{0}\right)\right| \tag{23}
\end{equation*}
$$

valid in a neighbourhood of $\eta_{0},\left|\eta-\eta_{0}\right|<\delta$, for which

$$
\begin{equation*}
2 \inf _{\left|\eta-\eta_{0}\right|<\delta} f^{\prime \prime}(\eta) \geqq\left|f^{\prime \prime}\left(\eta_{0}\right)\right| \geqq \frac{1}{2} \sup _{\left|\eta-\eta_{0}\right|<\delta} f^{\prime \prime}(\eta) \tag{24}
\end{equation*}
$$

Summing only over the region where the exponent is >-1 we get (always assuming $T<T_{c},\left|n_{0}\right|<\eta_{0}$)

$$
\begin{equation*}
\left(\frac{2}{\Omega}\right)^{2} \sum_{\eta, n} e^{-\Omega\left(f\left(\eta_{0}\right)-j(\eta)+\frac{T_{c}}{2 T}\left(n-n_{0}\right)^{2}\right)} \phi(\eta) \geqq \frac{2^{5 / 2}}{e^{2} \Omega} \frac{\inf _{0}-\eta^{\prime} \mid<\delta_{\Omega}}{} \phi_{\Omega}\left(\eta^{\prime}\right) \tag{25}
\end{equation*}
$$

if $\delta_{\Omega}=\frac{1}{\sqrt{f^{\prime \prime} \Omega}}<\delta$. Thus we have

$$
\begin{equation*}
P(\eta, n) \leqq e^{-\Omega\left(f\left(\eta_{0}\right)-f(\eta)+\frac{T_{c}}{2 T}\left(n-n_{0}\right)^{2}\right) \frac{\phi_{\Omega}(\eta) e^{2} \Omega \sqrt{t^{\prime \prime}\left(\eta_{0}\right) T_{0} / T}}{\inf ^{\prime} \phi_{0^{\prime}}\left(\eta^{\prime}\right) 2^{5 / 2}}} \tag{26}
\end{equation*}
$$

which goes to zero for all $(\eta, n) \neq\left(\eta_{0}, n_{0}\right)$.
Hence the average of G taken with P should just give G at η_{0}, n_{0}. There is still the slight complication that G is Ω-dependent. In fact, for $\Omega \rightarrow \infty$,
the hypergeometric function converges uniformly to a Bessel function:

$$
\begin{align*}
G_{\infty}(\eta, n ; a, b, c) & =\sum_{x=0}^{\infty}(-)^{x} \frac{\left(\eta^{2}-n^{2}\right)^{x}}{(\chi!)^{2}}\left(\frac{b}{2}\right)^{2 x} e^{\operatorname{in}(a+c)} \tag{27}\\
& =J_{0}\left(b \sqrt{\left.\eta^{2}-n^{2}\right)} e^{\operatorname{in}(a+c)}\right.
\end{align*}
$$

Thus we anticipate the equation

$$
\begin{equation*}
\lim _{\Omega \rightarrow \infty}\left\langle A_{\Omega}\right\rangle_{\Omega}=G_{\infty}\left(\eta_{0}, n_{0} ; a, b, c\right) \tag{28}
\end{equation*}
$$

To demonstrate this result one has to apply the usual tricks in ε-tik. $\left|\int d \eta d n P_{\Omega}(\eta, n) G_{\Omega}(\eta, n ; a, b, c)-G_{\infty}\left(\eta_{0}, n_{0} ; a, b, c\right)\right|$
$=\left|\int d \eta d n\left(P_{\Omega}(\eta, n) G_{\Omega}(\eta, n ; a, b, c)-P_{\infty}(\eta, n) G_{\infty}(\eta, n ; a, b, c)\right)\right| \leqq$
$\leqq\left|\int\left(G_{\Omega}-G_{\infty}\right) P_{\Omega} d \eta d n\right|+\left|\int G_{\infty}\left(P_{\Omega}-P_{\infty}\right) d \eta d n\right|$.
Here both terms on the right hand side can be made arbitrarily small; the first because $G_{\Omega} \rightarrow G_{\infty}$ uniformly and the second because G_{∞} is continuous and $P_{\Omega} \rightarrow P_{\infty}$ on all continuity sets. Again one sees in the same manner that all derivatives with respect to a, b, c approach the corresponding derivatives of G_{∞} in a neighbourhood of the origin.

There remains just some elementary algebra to establish the identity of (15) and (28). In fact

$$
\begin{gather*}
\cos \theta \operatorname{Th} \omega=\frac{\varepsilon}{T_{c}}=n_{0} \\
\sin \theta \operatorname{Th} \omega=\sqrt{\left(\frac{T \omega}{T_{c}}\right)^{2}-\frac{\varepsilon^{2}}{T_{c}^{2}}}=\sqrt{\eta_{0}^{2}-n^{2}} \tag{30}
\end{gather*}
$$

and thus

$$
\begin{equation*}
\lim _{\Omega \rightarrow \infty}\left\langle A_{\Omega}\right\rangle_{\Omega}=J_{0}(b \sin \theta \operatorname{Th} \omega) e^{i(a+c) \cos \theta \operatorname{Th} \omega}=\lim _{\Omega \rightarrow \infty}\left\langle A_{\Omega}\right\rangle_{\bar{B}} \tag{31}
\end{equation*}
$$

§5. The Time-Dependence

Our result (31) shows that the thermal expectation values of polynomials of the σ 's taken with $H_{\text {B.c.s. }}$ for $\Omega \rightarrow \infty$ or with H_{B} and averaged over ϕ agree. Speaking mathematically this means they define the same positive linear functional over the C^{*}-algebra. We shall now turn to (1) or the question whether they give the same time dependence. This warrants separate study in particular since for $\Omega \rightarrow \infty$ the time development leads out of the C^{*}-algebra. Indeed, calculating $i \dot{\sigma}=[\sigma, H]$ with $H_{\text {B.c.s. }}$ we find

$$
\begin{align*}
-i \dot{\sigma}^{+} & =2 T_{c} \sigma^{z} S_{\Omega}^{+}-2 \varepsilon \sigma^{+} \\
i \dot{\sigma}^{z} & =4 T_{c}\left(\sigma^{-} S_{\Omega}^{+}-S_{\Omega}^{-} \sigma^{+}\right) \tag{32}
\end{align*}
$$

where

$$
\begin{equation*}
\mathbf{S}_{\Omega}=\frac{1}{2 \Omega} \sum_{p=1}^{\Omega} \boldsymbol{\sigma}_{p}, \quad S_{\Omega}^{ \pm}=\frac{1}{2 \Omega} \sum_{p=1}^{\Omega}\left(\sigma^{x} \pm i \sigma^{y}\right) \tag{33}
\end{equation*}
$$

Now the operators S_{Ω} do not converge uniformly for $\Omega \rightarrow \infty$.

$$
\left(\text { f.i. }\left\|\mathrm{S}_{\Omega}-\mathrm{S}_{2 \Omega}\right\|=\left\|\frac{1}{4 \Omega} \sum_{p=1}^{\Omega} \boldsymbol{\sigma}_{p}-\frac{1}{4 \Omega} \sum_{p=\Omega+1}^{2 \Omega} \boldsymbol{\sigma}_{p}\right\|=\frac{1}{2} \text { for all } \Omega\right)
$$

They converge strongly in some infinite tensor product representations or in the representations given by the thermal functionals ("thermal representation'). Thus for $\Omega \rightarrow \infty \dot{\sigma}$ does not belong to the C^{*}-algebra. However for our purpose the existence of weak limits of S_{Ω} is sufficient to establish the analogue of (1) in the quasi-spin formalism. For this end consider the expectation value of \mathbf{S}_{Ω} and some polynomials of the σ 's.
$\lim _{\Omega \rightarrow \infty}\left\langle\sigma_{p_{1}} \ldots \sigma_{p_{k}} 2 S_{\Omega}^{\alpha} \sigma_{p_{k+1}} \ldots \sigma_{p_{m}}\right\rangle_{\Omega}=\lim _{\Omega \rightarrow \infty}\left(1-\frac{m}{\Omega}\right) \times$
$\times\left\langle\sigma_{p_{1}} \ldots \sigma_{p_{k}} \sigma_{p}^{\alpha} \sigma_{p_{k+1}} \ldots \sigma_{p_{m}}\right\rangle_{\Omega} \frac{1}{\Omega} \sum_{j=1}^{m}\left\langle\sigma_{p_{1}} \ldots \sigma_{p_{k}} \sigma_{p_{j}}^{\alpha} \sigma_{p_{k+1}} \ldots \sigma_{p_{m}}\right\rangle_{\Omega} \rightarrow$
$\rightarrow \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi\left\langle\sigma_{p_{1}} \ldots \sigma_{p_{k}} \sigma_{p}^{\alpha} \sigma_{p_{k+1}} \ldots \sigma_{p_{m}}\right\rangle_{B}$
$=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi\left\langle\sigma_{p_{1}} \ldots \sigma_{p_{k}} \frac{n^{\alpha}}{2} \operatorname{Th} \omega \sigma_{p_{k+1}} \ldots \sigma_{p_{m}}\right\rangle_{B}$.
Here p is different from the $p_{1} \ldots p_{m}$ and we have used our previous results. Thus in the limit S can be replaced by $\frac{\mathbf{n}}{2} \operatorname{Th} \omega$. In the thermal representation (which is reducible) the limit of S is not a c-number since n is integrated over. (e.g. $\left\langle S^{x}\right\rangle=0,\left\langle\left(S^{x}\right)^{2}\right\rangle \neq 0$). In the same fashion one finds that also in the expectation value of any (finite) polynomials in the σ 's and S's the latter can be replaced by $\frac{\mathbf{n}}{2} \mathrm{Th} \omega$. This result suggests that H_{B} will give the same time dependence since calculating $i \ddot{\sigma}=[\sigma, H]$ with H_{B} one has

$$
\begin{align*}
-i \dot{\sigma}^{+} & =2 T \omega\left(\sigma^{z} n^{+}-n^{z} \sigma^{-}\right) \\
i \dot{\sigma}^{z} & =4 T \omega\left(\sigma^{-} n^{-}-\sigma^{+} n^{-}\right) \tag{35}
\end{align*}
$$

This is identical with (32) if $\mathrm{S} \rightarrow \frac{\mathbf{n}}{2} \operatorname{Th} \omega$ since $n^{z}=\frac{\varepsilon}{\omega T}, n^{ \pm}=\frac{1}{2} \times$ $\times\left(n^{x} \pm i n^{y}\right) \rightarrow \frac{T_{c}}{T \omega} S^{ \pm}$. On iterating (32) and (35) one can generate the complete time dependence of the σ 's but one has to note that \mathbf{S} is timedependent whereas \mathbf{n} is, of course, not! In fact, from (32) follows

$$
\dot{S}_{\Omega}^{z}=0, \quad i \dot{S}_{\Omega}^{ \pm}=\left(2 \varepsilon-4 T_{c} S_{\Omega}^{z}\right) S_{\Omega}^{+}
$$

or

$$
S_{\Omega}^{z}=\mathrm{const}, \quad S_{\Omega}^{+}(t)=S_{\Omega}^{+}(0) e^{-i t\left(2 \varepsilon-4 T_{c} S_{\Omega}^{z}\right)}
$$

Thus on calculating the time dependence with $H_{\text {B.c.s. }}$ we obtain the one with H_{B} where $\frac{\mathbf{n}}{2} \mathrm{Th} \omega$ is replaced by S plus terms containing the time derivatives of \mathbf{S} :

$$
\begin{align*}
& e^{i t H_{B}} \boldsymbol{\sigma}_{p} e^{-i t H_{B}}=\sum_{n=0}^{\infty} t^{n} P_{n}\left(\boldsymbol{\sigma}_{p}, \frac{\mathbf{n}}{2} \operatorname{Th} \omega\right) \tag{37}\\
& e^{i t H_{\text {B.c..s. }}} \boldsymbol{\sigma}_{p} e^{-i t H_{\text {B.c. } .5}}=\sum_{n=0}^{\infty} t^{n}\left(P_{n}\left(\boldsymbol{\sigma}_{p}, \mathbf{S}_{\Omega}\right)+G_{n}(\dot{S})\right) .
\end{align*}
$$

Here P_{n} is a polynomial of n 'th order and G_{n} stands for the terms with the time derivatives of \mathbf{S}. From the above discussion it follows that $\lim _{\Omega \rightarrow \infty}\left\langle G_{n}\right\rangle_{\Omega}=0$ since in replacing S^{z} in \dot{S}^{+}by $\frac{n^{z}}{2}$ Th ω we get $\dot{S}^{+}=0$ and also all higher derivatives. Furthermore because of (34) the two kinds of expectation values of all P_{n} agree. Finally $\left\|P_{n}+C_{n}\right\| \leqq$ $\leqq \frac{(\text { const })^{n}}{n!}$ so that $\sum_{n=0}^{\infty}$ in (37) converges uniformly for all t in the operator norm. Hence we can safely conclude

$$
\begin{aligned}
& \lim _{\Omega \rightarrow \infty}\left\langle e^{i t_{1} H_{\text {B.c.s. }}} \sigma_{p_{1}} e^{-i t_{1} H_{\text {B.c.s. }}} \ldots e^{i t_{n} H_{\text {B.c.s. }}} \sigma_{p_{n}} e^{\left.-i t_{n} H_{\text {B.c.s. }}\right\rangle_{\Omega}}\right. \\
&=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi\left\langle e^{i t_{1} H_{B}} \sigma_{p_{1}} e^{-i t_{1} H_{B}} \ldots e^{i t_{n} H_{B}} \sigma_{p_{n}} e^{-i t_{n} H_{B}}\right\rangle_{B}
\end{aligned}
$$

Thus in particular for Greens-functions of gauge invariant expressions where no averaging over ϕ is necessary $H_{\text {B.c.s. }}$ is equivalent to any H_{B}.

The author is indebted for useful discussions to Prof. K. Baumann, who collaborated in earlier stages of this work, and to Prof. K. Schmetterer and Dr. A. Wehrl. Finally I want to thank Miss H. Narnhofer for checking some calculations.

References

1. Thirring, W., and A. Wehrl: Commun. Math. Phys. 4, 303 (1967); see also: Kato, Y.: Prog. Theor. Phys. 34, 734 (1965). Kato, Y., and N. Mugibayashi: Friedrichs-Berezin transformation and its application to the spectral analysis of the B.C.S. reduced hamiltonian, preprint 1967; Emch, G., and M. Guenin: J. Math. Phys. 7, 915 (1966).
2. Bogolubov, N. N.: J.E.T.P. 7, 41 (1958); Haag, R.: Nuovo Cimento 2ฮ̆, 287 (1962).
3. -, V. V. Tolmachev, and D. V. Shirkov: A new method in the theory of superconductivity, consultants bureau New York 1960.
4. Thouless, D. J.: Phys. Rev. 117, 1256 (1960).
5. Wigner, E. P.: Group theory, New York: Acadamic Press 1959.
6. Whittaker, E. T., and G. N. Watson: A course of modern analysis.
7. After this work was completed the author received a preprint Bogoliubov, N. N., jr.: The correlation functions in the theory of superconductivity. Kiew 1967 where similar results are derived.

Prof. W. Thirring
Institut für Theoretische Physik
Universität of Wien
A 1090 Wien
Boltzmanngasse 5

[^0]: * Work performed as consultant to General Atomic Europe.

[^1]: ${ }^{1}$ We shall henceforth simply call them spins although in this model they a different physical significance.
 ${ }^{2}$ For $\Omega=\infty$ there is a difficulty in generating $\sigma^{(x)}$ this way. In this case a less familiar parametrisation than the Euler angles has to be used (F. Jelinek, to be published).

[^2]: ${ }^{3}$ we shall take Ω to be even.

