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Abstract. We consider a class of physical systems often encountered in such
theories as statistical mechanics, namely those which admit an amenable group as
a group of symmetries. We first establish the existence of invariant state(s) with
respect to the symmetry group considered. We next introduce the notion of (ex-
tremal) potentially invariant states for an reduced description of the physical
system considered; we then show that every such state can be extended to an
(extremal) invariant state corresponding to a complete description.

1. Introduction

SEGAL'S original proposition [1] to discuss in algebraic terms the
structure of physical theories has been considered with great details in
the recent years with the hope to bring at least some degree of order in
the confusing puzzles offered to physicists by theories dealing with in-
finite systems, such as quantum field theory [2] or statistical mechanics
[3].

Besides its formal achievements, the (7*-algebraic approach has been
successfully tested in statistical mechanics on some models as simple as
the ideal Bose- [4] and Fermi-gas [5]. Some success have also been
registered when dealing with some very particular types of interacting
systems, the most typical of which is the BCS-model [6]. These inter-
acting models can be characterized in mathematical terms by saying that
their equilibrium states are 'quasi-free states' [7]. In the every day
language of the physicist this means that some kind of 'mean free field'
approximation [9] (generalizing to other situations the Weiss' discussion
of ferromagnets) becomes exact in the thermodynamical limit. However
the 'mean free fields'-models are well known [10] to suffer from serious
draw-backs in the general case. In particular, the behaviour of some of
the thermodynamical functions is predicted quite wrongly by such
theories. Consequently the next step, that the algebraic approach has to
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make, is to escape from the frame of quasi-free states. In this respect,
ROBINSON [7] made a significant, but none the less exasperating, dis-
covery, namely that (for Boson-systems at least) there are only two
classes of states in (equilibrium) statistical mechanics: those for which
all truncated correlation functions of order n > 2 identically vanish, and
those for which there are always strictly non vanishing truncated func-
tions of order greater than any positive number N.

The first class is that of the quasi-free states, the second class is the
one we then would like to be able to deal with. In the face of the difficulty
to deal with an infinite number of non-vanishing truncated functions one
should ask what might be learned from the consideration of the first few
non-vanishing truncated functions, and in which sense it is in principle
possible to extend the information so gained to the unamputed states of
the system considered.

A similar question might be asked in terms of the relation between
states of macroscopic equilibrium and states of microscopic equilibrium.
The present note gives a partial answer to this type of questions.

More specifically the type of questions considered here can be
illustrated by the following example: Suppose that we are able, in one
way or another, to construct the two-body correlation function of an
infinite system. Suppose further that the correlation function so ob-
tained is invariant with respect to space translations. One would like to
know whether this correlation function can be considered as the re-
striction to two-particles observables of an homogeneous state of the
whole system under consideration. From the general considerations
presented in the next section we will see that not only the answer to this
type of questions is positive, but moreover that if the correlation function
is not only invariant, but 'extremal invariant' (in a sense which will be
made precise) then it is possible to extend it to a state on the whole
system, which satisfies again this same property.

2. Properties of Invariant States

Let us first express our physical problem in the proper mathematical
language.

We suppose that the physical system under consideration is described
(i) by a O*-algebra 21 (for instance, the O*-algebra of the quasi-local

observables, or the O*-algebra generated from the field operators) we
can suppose without loss of generality that 21 possesses an unit element,
which we denote by /

(ii) the convex set (2 of all states over 2ί, i.e.

6 = {<£62l* I φ(A) ^ 0 A ζ2l with A^O; φ(I) = 1};
l la
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we further equip 21* with the weak*-topology [11], i.e. the weakest
topology relative to which the mappings φ —> φ(A) are continuous for
each A in 21 (this topology is also called [12] the 2ί-topology on 21*) for
what follows, it is important that 0 is compact in this topology [13].
Following KADIS ON [14], we call physical system the couple (21, 0) of a
0*-algebra 21 and its set of states 0 , the latter being equipped with the
afore described topology. We find it more convenient for our purpose
to work systematically in the 'Schrόdinger picture'. Let us then make
precise this latter statement; we actually just use the generalisation to
an arbitrary topological group G, of the concept of 'dynamical system'
as given by KADISON [14]. Let (21, 0) be a physical system and stfut{f&)
be the set of all w*-continuous automorphisms of 0 , equipped with the
topology naturally induced on it by the w*-topology on 0 .

We now give for a symmetry group the following definition: we say
that a physical system (21, 0) admits the topological group 6r as a sym-
metry group if we are given a homomorphism v (in the sense of topological
groups) from G to stfut{&).

This means explicitely that (i) to each g in G we can attribute an
affine w*-unimorphism of 0 on to itself, and (ϋ) for each φ in 0 and each
A £ 21, (vg φ) {A) is a continuous function on G. We denote this situation by

We notice that the definition just given expresses all continuity conditions
in terms of expectation values. It seems therefore hardly possible to
weaken it anymore and still retain the essential features physically
expected from a symmetry group. We now want to specialise the theory to
the case where G is an amenable group. To our knowledge this notion was
used for the first time in physics by DOPLICHER, KADIS ON, KASTLER and

ROBINSON [15], who also refer to the thesis of PIER [16]. Let us briefly
recall what is meant by this notion which will play a central role in the
sequel, as conjectured already for a particular case by DOPLICHER,
KASTLER and ROBINSON [17].

Let G be a locally compact group. We denote by^(G) the C*-algebra,
the elements of which are the continuous functions γ from G to C
satisfying the condition:

| | | S | ( ) | < o o .

The addition, multiplication and involution in ίί (G) are defined as usual
for complex valued functions. In particular tf(G) possesses an identity
δ, namely the function which takes the value 1 for all g in G.

To each h in G we associate two continuous C*-automorphisms
h [ ] and [ ] h of *$ (G) defined respectively by:

g
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We further consider the convex set Σ(G) of all states ?] on the C*-algebra
& (G). The elements η ζ Σ(G) are also called 'mean over G\

To each h in 6r we associate two continuous *-unimorphisms h [ ] and
[ ]h of Σ(G) defined respectively by:

yζί f(G), η ζ Σ(β)

γ £V(G), η ζ Σ(G) .

A mean η over 6r is said to be left-invariant (resp. right-invariant) if
Λ [77] = 77 (resp. [η]h — η) for all h in 6r. I t is said to be (two-sided) in-
variant if it is both left- and right-invariant. One can prove that if G is a
locally compact group the three following conditions are equivalent:
(i) there exists at least one left-invariant mean over G, (ϋ) there exists
at least one right-invariant mean over G, and (in) there exists at least
one invariant mean over G. A locally compact group which satisfies any
one of the three above conditions is said to be amenable [16]. Let for
instance G be the additive group 1R of the real numbers (i.e. the 'trans-
lation group in one dimension'). ί f(R) is then the set of all complex-
valued, bounded, continuous functions of one real variable. The 'ergodic
mean' η defined by:

0

is an invariant mean over ΪR. We then conclude trivially that the trans-
lation group in one dimension is amenable. Similarly we have in fact that
every locally compact abelian group is amenable, and that every compact
group is amenable. Hence the following groups (which play an important
role in statistical mechanics) are all amenable: the translation group in any
number of dimensions, the gauge group, the rotation group in three
dimensions, etc. . . .

It is worth while noticing that the euclidean group in three dimensions
is amenable, whereas neither the Galilei nor the Lorentz group are
amenable.

Let now (21, Θ, v: G -> stfut(Q)} be a physical system admitting an
amenable group G as a symmetry group. For any state φ in <S and any
element A in 21 we consider the function (vgφ) {A) from G to C This
function is continuous in g by hypothesis. I t is also bounded since

s u p \ ( V g φ ) ( A ) \ £ s u p | M | |

Hence {vgφ) (A) belongs to ^(G). For any mean η over G let us form:

η(yβφ(A))

and let us consider it as a mapping η o φ from 21 to C From the linearity
of vgφ in A and the linearity of η, we conclude that η o φ is a linear form
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on 21. From the positivity of vg φ in A and the positivity of η, we conclude
that our form is positive. We further have (vgφ) {I) = 1 for all g in G.
Hence (vgφ) {I) is the unit element δ in &(G). Since η is normalised to
one, we have Yj(vgφ(I)) — 1. Hence from the facts that η is a state on
&(G) and <̂5 is a state on 21, we concluded that ^ o ^ is a state on 21. One
verifies easily that vh(ηoφ) = h[η]oφ for all h in G. Hence, if η is a
left-invariant mean over G (such a mean always exists when G is
amenable), η o φ is an invariant state on 21 whatever φ we chose in 0 .
We have then proved the following lemma:

Lemma 1. Let {21, 0, v : 6r-> J ^ / ( 0 ) } δe α physical system which
admits the amenable group G as a symmetry group. We have then: (i) if φ is
a state in 0 and η is a mean over G, then η o φ is a state in 0; (ii) if further-
more η is left-invariant, then η o φ is invariant with respect to G; and in
particular {Hi) there always exists at least one state in 0 which is invariant
under G.

We notice that this lemma not only asserts the existence of invariant
state(s) of a physical system which admits an amenable group G as a sym-
metry group, but that it also gives a way to construct them. Starting
from the Heisenberg picture, DOPLICHER [18] already established the
existence of invariant states when G is abelian, a fact which allowed him
to use Markov-Kakutani fixed point theorem [12]. A similar existence
theorem, valid for compact groups, was also indicated by RUELLE who
uses an averaging method akin to ours. Our lemma indeed holds for all
cases where an invariant mean exists on G, and it is then a natural
extension of RUELLE'S and DOPLICHER'S results. Incidentally we might
mention that for the euclidean group in three-dimensions, the existence
of invariant states could have been obtained by a combination of the
results of these two authors, since JS73 is a semi-direct product of an
abelian and a compact group. In closing this discussion of our lemma, we
notice that the fact that we worked in the Schrόdinger picture made our
continuity assumptions some what weaker [14] and easier to justify
from the physical point of view than those usually required when working
in the Heisenberg picture.

Let now (21, 0) be a physical system, 9ft be a self-adjoint, vectorial
subspace of 21, containing the unit element / of 21. For instance, 9ft could
be the subspace generated by all monomials in the fields, up to degree nf

or the subspace on which the n-body correlation functions are defined.
It is hence physically relevant to concentrate our attention to the case
where 9ft is just a subspace of 21 and not necessarily a subalgebra of 21.
We define a partial state / on 9ft as a linear form on 9ft which satisfies the
following conditions:

(i)



Partial States 169

(ϋ) / (M) ^ 0 M £ 921 r\ 3l+ where 3l+ is the set of all positive elements
of 31.

(iii) / ( / ) = 1 .
We say that a state φ on 31 extends a partial state / on 921 whenever φ,

restricted to 921, is equal to /. We have the following lemma:
Lemma 2. Let (21, 0) be a physical system, 921 be a self-adjoint vectorial

siώspace of 2t containing the unit element. Then any partial state on 921 can
be extended to a state on 31.

Proof. DIXMIER [13] (2.10.1).
Let us now consider a physical system {2ί, <2, v : G -> J/#/((S)} which

admits a topological group ( ? a s a symmetry group. Let further / be a
partial state on a self-adjoint vectorial subspace 921 of 5ί (with / ζ 921).
From lemma 2 we know that there exists some extension(s) φ of / to 31.
We say that / is potentially-invariant with respect to G if there exists
among its extensions to 31 at least one φ such that

At this point it is perhaps worth to comment briefly on some physical
aspects of this definition. As it is well-known from non-equilibrium
statistical mechanics, there is in general not enough information in, say,
the two-particles correlation function (at t = 0) to allow, from the
microscopic equation of the motion alone, the determination of the
evolution in time of this correlation function: there exists indeed in
general several states φ which extend a given partial state / and these
different states when propagated to t > 0 correspond in general to
different partial states. I t is therefore out of question to define (in general)
a strict notion of invariance of partial states, and the physical situation
is best described in term of 'potentially invariant' partial states. There is
however one particular case where the notion of potentially invariant
partial states reduces to that of invariant partial state. Consider namely
the case where 921 is stable with respect to G. If then / is potentially in-
variant on 921, all its extensions ψ to 31 satisfy the condition vgψ\®ι = /
for all g, and then in this particular case one can state that / is invariant
under G in the ordinary sense. This is however just a particular case and
we λvant to be able to treat more general situations.

We further say that a partial state over 921 is extremal-potentially -
invariant if it cannot be written as a convex sum of potentially-invariant
partial states on 921.

We now want to prove the following theorem:
Theorem 1. Let {31, @, v : G -> s/uΐ(&)} be a physical system which

admits an amenable group G as a symmetry group. Let 921 be a self-adjoint,
vectorial subspace of 91, containing the unit element of 31. Then (i) any
potentially-invariant partial state f on 921 can be extended to an invariant
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state φ on 21, and (ϋ) if f is moreover extremal-potentially-invariant, then
φ can always be chosen to be extremal invariant.

Proof. Let / be a potentially invariant partial state on 92ΐ. From the
definition of / we know that there exists at least one state φ on 21 such
that vgφ, when restricted to 92ΐ, is equal to / for all g in G. For each M in
921 consider the function (vgφ) (M) = f(M). This is a multiple of the unit
element δ in Ή (G). Hence the state η o φ when restricted to 92ΐ is still
equal to /, whatever mean η over G we chose. If η is furthermore left-
invariant (such a invariant mean exists since G is amenable) η o φ is an
invariant state on 21 which extends /. This proves the first part of our
theorem. Let us now suppose that / is an extremal potentially invariant
partial state on 921. Let us denote by {G} the set of all states on 21 which
are invariant with respect to G, and by {/} the set of all states on 21 which
extend /. {G} r\ {/} is then the set of all 6r-in variant states on 21 which
extend /. I t is non-void as we just proved. I t is moreover convex, closed
in the w*-topology and bounded in the metric topology. I t is therefore
[12] a convex, w*-compact subset of the linear space 21* which is itself
locally convex for the w*-topology [12]. From Krein-Milman theorem
[12] we know then that {G} n {/} contains its extremal points. Let φ be
any of them. We want to show that φ is also an extremal point of {G}.
Suppose the contrary and write φ = ocφ1-{- (1 — oc)φ2 with 0 < α < 1
and φv φ2 ζ {6r}. By restricting this equality to 92ΐ we contradict the
assumption that / is extremal potentially invariant unless both φv and
φ2, when restricted to 921, are equal to /. Therefore both φv and φ2 have
to belong to {/} and therefore to {G} r\ {/} which contradicts our choice
of φ as an extremal invariant point of {G} n {/} unless φ1 = φ2= φ.
Consequently φ is an extremal point of {6r}. This achieves the proof of
our theorem.

We notice that this theorem is a generalisation of a theorem men-
tionned by DOPLICHER, KASTLER and ROBINSON [17]. Our generalisation

essentially consists in the fact we neither require that 921 is a sub algebra
of 2ί (so that we can consider states given by w-particles correlation
functions or π-points Wightman functions) or that 92ΐ is stable with
respect to G (so that we can consider 'ergodic states' for the time-evo-
lution of interacting systems).

We might also point out that the well-known Markov-Kakutani
fixed point theorem [12] can be used to produce an alternative proof of
the first part of our theorem in the particular case where G is abelian.
It is perhaps worth mentioning that this proof, in opposition to that
given above, does not need any assumption on the topological structure
of G. Let us then briefly sketch this alternative proof. Let / be any
potentially invariant partial state on 92ΐ and {/}' be the set of all states φ
in 0 which extend / and satisfy to vgφ\gn — f for all g in G. {/}' is non-
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void (since / is potentially invariant), convex, closed in the w*-topology
and bounded in the metric topology. I t is then a w*~compact, convex
subset of the linear space 21* which we now consider as equipped with
the w*-topology. {/}' is moreover stable with respect to G. We can there-
fore use Markov-Kakutani [12] theorem to conclude the existence of at
least one invariant state φ on 21, extending /. In the even more particular
case where we have further that 32) is stable with respect to G, one has in
the above proof {/}' = {/}.

3. Conclusion

The mathematical results of this note are expressed in the lemma 1 and
the theorem 1. The physical interpretations we give of these results is as
follows. Lemma 1 establishes the existence of invariant state(s) for a
class of groups wide enough for the purpose of statistical mechanics,
namely the class {G} of amenable groups. The connection between ergodic
theory (considered as an averaging procedure) and invariant states is
indicated. Theorem 1 shows that all (extremal) potentially invariant
partial states on certain subspaces 3K of a (7*-algebra 21 can be obtained
as restrictions to 271 of (extremal) invariant states on the whole of 21.
The theory is formulated in such a way as to cover the following particular
cases, which might be of interest to statistical mechanics. Firstly, the
algebra 21 can be taken as the algebra of quasi-local observables, or the
algebra of the quasi-local fields (either bosons or fermions). Secondly, G
can be chosen to be the translation group in time, the gauge group, the
translation group in three-dimensions, the rotation group in three
dimensions, the euclidean group in three-dimensions, etc. . . . Thirdly,
2H can be realised as the subspace generated by the monomials up to
order n in the one-particle observables or in the field operators. As a
particular case, 22ΐ can also be a subalgebra of 21, e.g. 221 could be the set
of all macroscopic intensive observables.
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