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Abstract. It is shown that the *-algebra R of test-functions for a quantum field
is reduced, i. e. for each b £ R, b Φ 0, there exists a positive continuous linear
functional W(a) on R with W (b) Φ 0 .

I. Introduction

In the Wightman axiomatical approach a quantum field is defined by
a continuous representation of a *-algebra of test-functions in an algebra
of (unbounded) operators in a Hubert space with the same invariant
domain and a cyclic vector (vacuum). By the Gelfand-Segal-Theorem a
continuous cyclic representation of a *-algebra is given by a continuous
linear positive functional W(a) on R, i.e. a continuous linear functional
for which W(a*a) JΞ> 0, a ζR, holds. For a quantum field the positive
functional W satisfies certain further conditions, i.e. Lorentz in variance,
spectrality and locality. Such a functional is called Wightman-functional

[1], [2]
The mathematical structure of such a *-algebra is described in the

following section.
In this paper it is proved that there exists a set F of positive continu-

ous functionals on R, which all are bounded by one continuous norm on
(the linear space) R so that for every b ζR, b φ 0, there exists a W ζF
with W(b) φ 0 and consequently, the algebra R is reduced [3].

It is not proved that there exist "sufficient many" Wightman-
functionals, but one may hope that the proved result is a step to the
solution of this problem.
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II. The *-algebra R

Let M be a topological space {M is the Minkowski space or the mass
shell, for example) and M<n) = Mx . . . xM the Cartesian product of n
copies of M. C(M^) is the normed linear space of the continuous com-
plex-valued bounded functions an(xv . . ., xn) xί ζM, on M^ with the
norm | |αn | | 0 = sup \an(xv . . .,xn)\. Let Robe the complex field C and for

Xχ,...,xn£M

n = 1, 2, . . . Rn a locally convex linear topological space (over the
complex field) of continuous complex-valued bounded functions on M^
with a stronger topology as is determined by the norm || ||0, i.e. | |αn | |0,
an £ Rn, is a continuous function on the topological space Rn.

Furthermore we assume that for an (xv . . ., xn) ζ Rn, bm (xv . . . , xm) ζ Rm

an(xn, . . ., Xj) is an element of Rn and

is an element of Rn+m and that the so defined mappings from Rn onto
i?n resp. from Rn x i?m into Rn+m are continuous.

The algebra R is the linear space
oo

R = Q) Rn (topological direct sum [4]) . (1)
w = 0

Consequently, every element a ξ_ R has the form a = JJ an

an = an(x1} . . ., xn) ζRn and only for a finite number of indices is an

different from zero. an is called the homogeneous component of the degree
n of a.

The multiplication for two elements a, b ζ R is defined by

( a b ) n ( x v . . . , x n ) = Σ a A x i > ' - . , % k ) 1>ι{xk+1, . . ., x n ) ( 2 )

(the product on the right-hand side is the usual product of functions) and
the *-operation is defined by

(«*)n (Xl> ' ' ' > Xn) = Un (Xn, . . ., Xj) (3)

(the bar on the right-hand side labels the complex conjugate function).
In [1], [2] is Rn = @(MW) resp. &>(M^) the well known Schwartz'

spaces of test-functions, but other spaces are regarded in the quantum
field theory, too [5]. Here M is the Minkowski space.

Let Ko be the algebraical convex cover of the set of elements a* a,
a ζR. Each element k ζ KQ has the form

N
a(ί) £E

Ko is a convex cone, i.e.
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a) for k, k' ζK0 and two arbitrary positive numbers s, t is sk-{-
+ tk' ζ Z o a n d

b) if k ζ Ko, H O , then -k $KQ.
The statement a) follows directly from the definition of Ko and the

statement b) holds, because for each g ζ Ko

i) the homogeneous component gr of g with the smallest
degree, which does not vanish identically, has an even degree, i.e.,

9r = 92s

π) gr = g2s(xv . . ., x2s) is nonnegative on the set

-* 2s = = \X = \Xl> ' J X2s) > Xl = = ^2s> ^2 = = ^ 2 s - l > * > Xn = = ^ w + l J \^/

iii) for at least one x ζ Γ2s we have g2s(%i> ? ̂ 2s) > ^
Now we define for k ζK0

ln = sup ( |α^| 2 + + l ^ l 2 ) 1 / 2 , w = 0, 1, 2, . . . -1 (6)
xlt...,xneM

Lemma 1. For an arbitrary k ζK0 the following relations hold (kn is
the homogeneous component of the degree n of k):

\\Σ afaf\0 < l,lq (7)

\\Σaf*a\X=ll (8)

\\K\o < Σ ln-X (9)

ll-2Σl«+A-v^\\k2n\\0, » = 0 , l , 2 , . . . ( 1 ^ = 0 ) . (10)
v=l

Proof. (7) follows immediately from the Cauchy-Schwarz inequality
by the definitions (2) and (6). Furthermore, we have

\2u an an II0 ~ S U P \Jj a n \xn> •> ̂ ] j α?ι l^n+1? J ^2n/| =
i Xχ,...,x2n ί

^ sup |2^ α ^ (xl9 . . . , » „ ) α^°(^, . . ., α J = ξ

and from this, together with (7) for n = m, follows (8). (9) follows from
(7) by summing over all p, q, p + q — n. From the definition of kZn we
obtain

ΐ ί v = 0
Vφίl

and from this follows (10) by (7) and (8).
1 The application of this expression has been proposed by T. GORKETZ, Karl-

Marx-Universitat Leipzig.
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We need further a relation for a special infinite hermitian matrix H,
which is defined for a sequence α0, αx, . . . of positive numbers by

{— α r, if i φ j and i + j = 2r (11)

0, if i Φ 7 and ί + *̂ is an odd number "Lemma 2. ίΓΛerβ e mte <mcΛ α sequence α0, α l 5 . . . o/ positive numbers
that for an arbitrary infinite vector I — (i0, Zl5 . . .) /or which only a finite
number of components are not zero the relation

Σhihh^Σn (12)

holds.
Proof. We construct by induction a sequence of positive numbers

α0, α1? . . . such that
m m

Σhijlilj^cmΣll m = 0 , l , . . . (13)
ί,7 = 0 i = 0

holds, with certain numbers cm > 1.
For m = 0 we can set α0 = 2. Now we assume that (13) holds for

m = n — I and show that we can choose α0 so that (13) holds for n, too,
with a certain cw > 1. From the definition of H we obtain

n n—1

2J hijhh = 2J hijhh ~̂~ αn^?ι ~ % 2-1 (χn-v^rJ/n-Zv
i,7 = 0 i,j = 0 v ̂  1

The sum on the right-hand side runs over all ι> for which the other indices
are nonnegative.

From this and the induction assumption we obtain with an arbitrary
positive β

y h 7 7 > r V (7 > j 2 _ ι / r / _ _ l

n-1

4- I r /?2 V /v 2 1 V (1 \
r \Cn_χ — p 2J tti I ZJ \ln-2v)

\ /

Now we choose β such that cn_1 — β2 Σ α*2 > 1 a n c ^ tiien ^n such that

i = 0

1
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In this manner we have constructed an αn such that the relation (13)
holds for m — n, too.

Now let α0, α l 5 . . . be a sequence of positive numbers for which the
assertion of the preceding Lemma holds. Then we define for a ζ R

where || ||0 is the norm in G(M(2r)) and a2v is the homogeneous component
of the degree 2 v of a. \\ \\ ι is a continuous semi-norm on R which gives a

oo

continuous norm o n ^ j = (J) R2v (the topological direct sum).

Let || || M be another continuous semi-norm in R such that for each
a ζR and r = 0, 1, . . . | | # 2 r + 1 | | 0 ^ l^2r+i\\a\\u holds where a2r+1 is a
homogeneous component of a and μ2r+i a r e positive constants. Then

oo

I) ||u is a continuous norm in Ru = φ ^2v+

is a continuous norm in R. Beside the basic-topology we regard in R a
second topology which is determined by the norm || ||. This topology is
called the norm-topology or || ||-topology. With this topology is R a
(uncomplete) normed linear space, but not a normed algebra.

In the usual cases, where M is the Minkowski space and Rn = SP (M^)
or @(M(n))9 the Schwartz' spaces, the semi-norm || ||z is Lorentz invariant
and consequently, we can choose || ||u such that the norm || || is Lorentz
invariant, too.

Now we state and prove the main relation for the proofs of the
theorems:

Lemma 3. For every Jc ζK0 holds the relation

Σil^WHi (16)

ivhere ln are the expressions (6).

Proof. We obtain from (10)

Σ *A - 2 Σ Σ «Λ+, h-v < Σ ocn\\kin\\o

and in consequence of the definition (11) of H this is equivalent to

Σ M Λ ^ Σ KnWKΛo

From this the relation (16) follows, because α0, α l 5 . . . is a sequence for
which (12) holds.
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III. Main Theorems

After the preparations in the preceding section we state and prove
here the main theorems.

Theorem 1. The topologίcal closure K^ of Ko in B with the norm-
topology, which is determined by the norm (15), is a cone. Consequently,
the topological closure Ko of Ko in R with respect to the direct sum topology
is a cone, too, because KOQK^ JI.

Proof. We prove t h a t the relations (5) %)—iii) hold for a g ζKp,
g Φ 0, too.

m

Let g φ 0 be an element of K\\ |. Then we can write g = Σ 9n> where
n = 0

gn is the homogeneous component of the degree n of g, gn = 0 for n> m.
There has to exist a sequence hv ζ Ko, with \\kv - g\\ ^ 1 and \kv - g\\ -> 0
for v -> σo and consequently,

l l * ; - ^ n l o - > O f o r v - > o o , n = 0,l,... . (17)

Each lcv has the form kv = Σ α ( < )*α ( < ), α(<) 6 ^ Let Zj, w = 0, 1, 2, . . .,

be the numbers (6) of kv, then we obtain from (16)

and consequently, the sequence Vn, v = I, 2, . . ., is bounded for every n.
Because g Φ 0, there exists one s > 0 such that

lim Zj; = 0 for Q t£ n ^ s ~ I (18)
f —>O0

lv

s does not tend to zero for v -> oo.
Then follows from (9)

lim | | * J | l o = W o = O for 0 ^ w ^ 2β - 1 . (19)

Furthermore one has
lim | |&y 0 = \\g,s\\0 ψ 0 . (20)

If this is not true, i.e. lim ||jfc£β|| = 0 , then we obtain lim Z; = 0 by (10)
v—>oo v—>oo

and the first assertion of (18), which is in contradiction with the second
assertion of (18). (19) and (20) are the assertion (5) i). Finally it remains
to prove the statements ii) and iii) of (5).

From (17) and (18) we obtain
28

for v -> σo, i.e.

g2s(x1, . . . , % ) = lim
V—> OO

11 Commun. math. Phys., Vol. 7
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(in the || ||0-convergence) and consequently, g2s is nonnegative on Γ2s.
Because lv

s does not tend to zero, we obtain straight-forward from (21)
that g2s{x1, >#2s) i s n o ^ identically zero on Γ2s. Hence, assertion
(5) in) holds, too. KOCK\} holds, because the norm || || is continuous in
the basic-topology of R.

Theorem 2. For each b ζ K^ h b φ 0, there exists a positive continuous
linear functional Wb(a) on R with Wb{b) φ 0 and Wb(k) ^ 0 for k ϋ̂Γi; !;,
for which \Wb{a)\ ^ ||α||, aζR, holds. Consequently, the topological
*-algebra is reduced (see [3] p. 270).

Proof. Let be b £ K^ |, b Φ 0, then it is 0 $ b + K\\ p because K i{ ̂  is a
cone. Further let U = {u : \\u\\ < δ} be such a neighbourhood of the
origin, that U r\ (b + Kn ̂  = 0 holds. Now we define

L={i{k1-ki):k1,kaςiKn,P=-l}
and

Zi = {k + ^ b + s - u : k ζ iCi;;, s ^ 0, w ζ U} .

L is a reαZ linear space in i2 and KΎ a cone with the interior point b and
we find L r\ K1 = {0} (the origin). For if a = i(k1 — k2) = k + θ& +
-\- su ζL r\ Kly kv k2, k ξϋΓjj jj, u ζU, s ^ 0, it follows α* = — α, i.e.
A; -f 56 + s^* = — & — <sδ — su and finally ^ + sb — <$% = 0,

% = — "o" (^* + w) ί tΛ If 5 > 0, then it would be — -f b ζ C7 and this

is a contradiction to the construction of U. Therefore we have s = 0 and

consequently k = 0, too, i.e. α = 0.

Now we use

Lemma 4 (MAZUR, S.). £e£ K be a convex set with a interior point b in a
real locally convex space R and L a linear subspace of R, in which does not
lie an interior point of K. Then there exists a linear continuous functional
f(a) on R with f(k) ^ 0 for kζK, f(b) > 0 and f(a) = 0 for aζL [6].

If we regard the algebra R as a linear space over the real field, it
follows from Lemma 4 the existence of a real linear functional / (a) on
R with f(a) = 0 for a ζ L , f{k) ^ 0 for k ζK t and f(b) > 0. Then Wb(a)
= /(α) — if(ia) is a linear functional on the complex linear space i? with
Wb{b) Φ 0 and Wb{k) = f(k) - if(ik) = /(ft) ^ 0 for kζKuι> because
*& ζ £ . TΓb(α) is a positive functional on the algebra R. Evidently, we
can choose Wb(a) so that |TF6(α)| ^ ||α|| holds.

From the last property it follows that the set {Wb} is bounded in the
weak topology in Rr and consequently, by a well known theorem [4], we
obtain the

Corollary. The set {Wb} of all these positive linear functionals of
Theorem 2 is a relatively compact set in the weak topology in Rr (the dual
space of R).
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