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Abstract. We study states on Clifford algebras from the point of view of C*-
algebras. A criterium is given under which the odd-point functions vanish. A
particular set of states, called quasi-free states is extensively studied and explicit
representations are given; as an application we give an approximate calculation
of the ground state of a Fermion system.

I. Introduction

Recently quantum field theory and statistical mechanics have been
studied from the point of view of C*-algebras. The key idea is the
following. The set of quasi-local observables of a physical system forms a
C*-algebra, and the physical states of the system correspond to the
states (positive linear functionals) on the O'-algebra.

The C*-algebra formed by the field variables of a Bose field is studied
by D. KASTLER [1] and D. W. ROBINSON [2].

In this paper we study states on the Clifford algebra formed by the
field varables of a Fermion field.

In section II, containing the definition of a C*-Clifford algebra and
several relevant notions originating from physical considerations we
prove that the odd-point functions vanish for states invariant under a
locally compact group, a property which was known for relativistic field
theories.

In section III we give a definition of a particular class of states,
called quasi-free states. This notion has been introduced by D. W. ROBIN-
SON [2] for Bose systems. Here we define such states for Fermion fields.
It is proved that the set of quasi-free states can be described by means
of the set of pairs (B, 8) of operators on the test function space (see
theorem 2) gauge invariant quasi-free states are characterized by S — 0
and translation invariant quasi-free states by convolution operators R
and 8 defined by distributions whose Fourier transforms are essentially
bounded.
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In section IV the translation invariant states are studied in detail,
in particular an explicit construction is given for their representations
in terms of Fock representation. In section V the method is applied to
states, described by invertible operators E and S. In this way we extend
the works of AKAKI and WYSS [3], and SHALE and STINESPRING [4] on
representations of anticommutation relations.

Finally, we apply the theory of quasi-free states to a Fermion model.
The ground states of this thermodynamical system are found by a
variational procedure. An integral equation analogous to the one found
for the Bardeen-Cooper-Schriefer model is obtained.

Representations of the anticommutation relations have been studied
by other methods using infinite tensor products. We give the main
reference to this approach in [6].

II. Properties of Clifford Algebras

Let 221 be a prehilbert space with inner product (. , .), and let 911 = 3?
be the completion of 221. To every element f ζ& there corresponds an
element /* in the dual Jf * of ffl defined by the mapping g £ 3? ->

-> (/, £7) = /* (g) Let 2K* = {/* 6 Jf*lf ζ 9R}.
Definition 1. 21(921), the Clifford algebra over 921, is the algebra genera-

ted by the monomials [h^ . . . [hn], ht ξ 921 \j 9]]*, 1 ̂  i < n, and the
unit element 1, such that for /, g ξ 921:

[[/], fo]]+ = 0, [[/],&*]]+- (9, /)1 = 0
and

cj/] + c2[g] - [CJ + c2g] = 0 .

The involution on 21(921) is defined by 1* = 1 and

<* = Σ c* [M . . . [hn(λ}λ] -> α* - cλ [λ*(λ)] . . . [hfλ]
λ

and
[h]** = h h ζ <%> \j je* .

Since the Fock representation of 21(921) (i.e. the representation by crea-
tion and annihilation operators on Fock space) is faithful (in fact all
representations are faithful because the algebra 21(911) is simple [4]) it
induces a norm || . || on 21(921), such that the closure of 21 (9K) under this
norm is a C*-algebra 2ί. We call 21 the C*-Clifford algebra over 3?.

Definition 2. The monomials of even order generate a subalgebra 2t even
of 21. Moreover let us denote by 2ίodd the subspace generated by the
monomials of odd order.

States of physical fermion systems are now represented by states on
the C*-algebra 2ί. In general a symmetry group is related to the algebra
2ί, i.e. there is given a locally compact group © and a continuous homo-
morphism τ of © into the *- automorphisms of 2ί, mapping g ζ © into τg and
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we suppose that τg maps monomials into monomials of the same order.
Let 21' be the dual space of 21 with the weak* -topology and let 2Γ+ g 21'
be the (compact) set of states on 2ί. Furthermore 2l©~ = {ρ ζ 2ί' + | ρ (τg2l)
= ρ ( A ) , for every (7 £ ©, J. ζ 21} is the set of ©-invariant states on 21.

According to the well known GeΓfand-Segal construction there
corresponds to every state ρ a representation πQ of 21 on a Hubert space
ξ>0 with cyclic vector Ωρ such that

ρ(A) = (Ωt,πβ(A)Ωt) for A 6 21 .

If ρ £2l©~j there exists a unique unitary representation Uρ of © on £jρ,
such that

for all gr £ ©

for all y ς ©, A ζ 21 .

Finally, let Pρ be the projection operator on the subspace of ξjρ invariant
under the group © (i.e. UQ(g) PQξ)ρ = Pρ§ρ for g ξ ©).

In the following definition we formulate the principle of locality for
fermion systems with respect to the group ©.

Definition 3. The algebra 2ί is called ©-local if

[PQπQ(Am) Pρ, PρπQ(Bn) Pρ]+ = 0 if m and w are odd

[Pρίτρ(4TO) Pρ, PeπQ(Bn) Pρ]_ = 0 if m and (or) w are even

where Am and 5n are monomials of order m and n respectively.
The following proposition may be used to give another formulation

of locality with respect to a group ©. The proof of this proposition can
be given along the same lines as the proof of theorem 2.3 of reference [7].

Proposition 1. In order that [PQπQ(A) Pe, PQπQ(B) Pρ]± = 0 for A,
B ζ 21 and A = A*\ B = B* it is necessary and sufficient that for every
ρ £ 21̂  inf |ρ([^4'; B]^}\ = 0 where A' runs over the convex hull of

{τgA\gtA}.
For relativistic Fermion fields it is well known [8] that odd-point

Wightman functions vanish. Here we give a more general but elementary
proof of this property. Another proof can be found in reference [9].
First we need

Definition 4. The algebra 21 is called ©-abelian if for all ρ ζ 2l@" the
von Neumann algebra generated by Pρπρ(2ί) Pρ is abelian.

Theorem 1. If Qi is © -local and ρ ζ 2ί@" then 21 is © -abelian and in

particular ρ(9ί0dd) = O
Proof1. From definition 3, it follows that it suffices to prove that

Pρπρ(2lodd) Pρ is abelian. For m = 0, 1, 2 ... we have

where
M = Peπβ(Aim+1) Pβ

1 We are indebted to D. W. ROBINSON for the first idea of this proof.



58 E. BALSLEV and A. VERBEURE :

M M* and M* M are positive operators, hence

MM* = M*M = 0 .

This implies M = PρπQ (A2m+l) Pρ = 0, therefore Pρπρ(2ίodd) PQ is

abelian and also

(βρ, Peπρμ2TO+1) PρΩρ) - ρμ2m+ι) - 0 q.e.d.

III. Quasi-free States

Let Jf7 be a separable Hubert space with elements f,g,..., inner

product (. , .) and conjugation ~Γ. We consider bounded linear operators

on ffl denoted by A, B, . . . There is a one-to-one correspondence be-

tween operators A and bounded sesqui-linear forms (/, Ag).

Definition 5. The transposed operator Af of an operator A is defined

by its sesquilinear form

the complex conjugate operator A is defined by

(/, Ag) = (/, AS) ,

the adjoint operator A* is given by

(f,A*g)=(Af,g).

For an integral operator K with kernel K(x, y), the operators Kf, K

and K* correspond to the kernels K(y, x), K(x, y), and K(y, x) respec-

tively.

One verifies the relations

A* = I"'- A'; A' = A* - A*-, A = A*' = A'*\ A = A" = A** = A\

(AB)' = BΆ' AB = AB .

We use the notation ηA = {/ ζ ^/Af = 0} 9v^ = {g = Af/f ζ Jf}. The

operator A~l is defined by §)^-ι = 9v^ and A~1Ag == </ for </ ξ 7^ j; . J. is

said to be invertible, if A ~1 is a bounded operator on ffl .

Now we define a particular class of states which we call quasi-free

states. We need first

Definition 6. Let ρ be a state on 21 such that ρ (2ίodd) = 0, so that ρ

is determined by its values on the even monomials. The truncated

functions or correlation functions ρτ of ρ are defined by the following

recursive formula

β(Qι On) = Σ(- i)weτ(α{l . . . ) . - . QT( Qΰ
where Qi = [/^], lιί ζ ffl \J ffl* ', the sum is over all possible partitions of

the Qί} the first factors in the brackets as well as the factors in each

bracket occur in natural order, and ηi is the sign of the permutation
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The state ρ is completely determined by its truncated functions ρτ.
Now we can give

Definition 7. A quasi-free state ρ on SI is a state which satisfies the
conditions :

£?(2ίodd) = 0; ρ f ( Q 1 . . . Q2n) = 0 for n>l.

Hence the quasi-free state ρ is completely determined by the follo-
wing pair of bounded sesqui-linear functional of / and g or by the
corresponding operators H and JS on ffl .

£([/*][£]) = έ?Γ([/*Πί7]) = (/,%) (1)

ρ([/][<7]) = ρr ([/][?])=(/,>%)• (2)

Now we give conditions on R and S in order that (1) and (2) define
a quasi-free state.

First we denote by Q — 5 the set of quasi-free states and by O the
set of parrs of operators (R, $), which define a state ρ ζ Q — 5 by (1)
and (2).

In order to obtain a manageable subset of Q — 5 we impose the
condition that either

(i') &R-IS* is dense in ffl
or

(i") ®(I—R>)-IS is dense in J^1.
We define

Oί - {(R, S) £ O I (i') holds}, Oi' = {(S, /S) ζ C | (i") holds} ,

Ox = Oί w Or , Q - 5ι = {ρ 6 Q - 5 1 (Λ, fif) 6 OJ .

Lemma 1. One has (E, 8} ζ O{ ί/ 9\β ^ closed (®R-IS* = ^) or

9ίs* ^ rfosecί or [J?3 S]= [S, S*] = Q. Similarly, (R,S) ζC" if 9^_^, or
^^ is closed, or [R, S] - [S, S*] = 0.

Proof. It follows from (1) and (2) by Schwarz's inequality, that

and consequently ?y# g ηs and ^I_JR' S ηs* The rest follows by a simple
argument, using that 9v^* = η-^, and the fact that 9? .̂* is closed if 91̂
is closed.

We characterize the set Ox in the following theorem.
Theorem 2. The pair of operators (R, 8) belongs to O{ (O") if and only

if it satisfies ϊ, ii', iϋ and iv (i/r, ϋ", iii αncί iv) where (ϊ) and (i") are as
above and one has

(ϋ') X - 1 - R' - SR-iS* ^ 0 on <ξ>Λ-ljS,

(ii") Γ = .# - S*(l - E7)"1^ ̂  0 o^ £>(1_p0-!<?

(iii) Λ = Λ*; 0 ̂  .R ^ 1

(iv) S'=-S.
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// either 9ΐ# and %lι-R> are dosed, or 31$ is closed, or [R, 8] = 0,
[$, S*] — 0, then (ii') and (ϋ") are equivalent.

Proof. Suppose that (E, 8) £ Or

Condition (iv) follows from (2) and the anticommutation relations.
According to a theorem of ROBINSON [2] the condition ρ ( A ) ^ 0

for A ζ 2ί, is equivalent to

ρ(([/*]+[0])([/]+I0*]))^0 for LgίJe. (3)

By (1) — (2) and the anticommutation relations (3) becomes

(f9Rf) + ( f 3 S * g ) + (g,Sf) + (g,(l-Bt)g)^Q for /, gr . (4)

For g = 0 we obtain E ^> 0; for / = 0 7? <^ 1, hence (iϋ). The inequality
(4) is equivalent to

f-J(ί)^° *<*f*9***e*. (5)
For / ζ Jf , gr ζ ©JR.! s* λve have

<«>
Set gl = B~l8*g, then (6) becomes

CO (s f- J (ί H c/ + fc •« </ + ft» + (ί z^) («')
From (6') follows

(ί) (f ΓΛ-I^) (ί) ̂  ° for/ζ^Λί/6^^ (7)
and the form is equal to zero for / = ~R-18*g.

For / ζ $>(I-R>)-IS> 9 ζ ̂  we nave

/ / \ /Λ S* \ / / \ / / \ /^(l-^)-1^ 8*\ ίf\ , ίf\ (Y 0\ / / \u u ι~Λ'j w = u i ^ I-Λ'J w + w (o oj y <8)
Let /!-(!- R')~l8f then (8) becomes

0 (f Γ- J Q = (A + * (1 - *') (/i + Λ) + (A y /) - (8')

From (8') follows

and this form is equal to zero for g = — (1 — R'^Sf.
It follows from (6) — (6') and (7) that

(g, Xg) ^ 0 for §>Λ-ι5 , hence (if) (10)

and from (8) — (8') and (9) that

(/, Γ / ) ^ 0 for / 6©(1_Λrl5, hence (ϋ") . (11)

Reversing the arguments it is easily checked that the conditions
(i'), (if), (iii), (iv) or (i"), (ii"), (iϋ), (iv) determine a quasi-free state

Q ζ Q ~ ffi
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In the following two lemmas we characterize states invariant under
translations.

Lemma 2. In order that the state ρ £ Q — 5 be invariant under the
transformations

[h]->eίx[h] hζje-, α ζ C

[A*]->e-<α[λ*]

it is necessary and sufficient that 8 = 0.
Proof. The proof of this Lemma is immediate.
Lemma 3. In order that the state ρ £ Q — ̂  is invariant under the

group Ev of translations it is necessary and sufficient that the operators R
and S on 3F = Lz (Rv) are convolution operators by distributions whose
Fourier transforms are L°°(RV) functions.

Proof. Suppose that the Clifford algebra 21 is built on jf = L2(RV).
By (1), (2) R and S are operators on L2t(Rv}. The symmetry group of the
system is © = Rv acting on 21 by the automorphisms τx defined by

τx[h] = [hx], h ζ3f,x ζRv

where hx is the translated function of h, i.e. hx(y) = h(y — x).
The quasi-free state ρ is invariant under Rv if and only if for every

xζRv

(fx, Rgx) = (/, Rg) (13)
and

(/«, Sgx) = (f, Sg) . (14)

The translated operator Ax of A is defined by

Axgx = A g for all x ζ Rv and g ζ L2 (jβ*)

and ^4 is called translation invariant if and only if

AX = A for all xζRv.

It is easy to verify that (13) and (14) are equivalent with Rx — R and
Sx = S or in other words that jR and S are translation invariant operators.
Such operators are characterized by HOBMANDER (cf. [10]) as follows.
A bounded operator on L*(RV) is translation invariant if and only if it
is a convolution operator by a distribution whose Fourier transform
belongs to L°° (Rv}> i.e. for R and 8

8 * f f o r /

where the Fourier transforms r and s of r and s are L°°(RV) functions.
In momentum space

B(ϊ) = ?'ϊ;8 (/) = *•/ for f
where

and S(f)='S(f).
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Corollary. // ρ is a translation invariant quasi-free state, then the cor-
responding pair of operators E and 8 commutes, and moreover 8 is a normal
operator.

The proof is an immediate consequence of Lemma 3.
We are interested in representations φ of the C*-Clifford algebra 2ί

induced by quasi-free states. The GeΓfand-Segal construction yields an
abstract characterization. Our aim is to obtain a more explicit represen-
tation in terms of creation and annihilation operators on Fock space.
We treat the cases X = 0 (or Y ΞΞ 0) and X Φ 0 (or Y 4= 0) separately.
It turns out, that these cases correspond to irreducible and reducible
representations or to pure states and mixtures, respectively.

We denote by ψ (/) and 99* (/) the annihilation and creation operators
of the Fock representation nF on Fock space HF with cyclic element
(vacuum state) ΩF defined by

φ(f)ΩF = 0 for all / ζ j f ;

φ(If) = πχ[μ/)*]); φ*(Bf) = πF([Bf]} .

We shall use the following notation; where Φ is the representation
associated with the quasi-free state ρ.

if h = fζ^

i f h* = f £ j e .
It is clear, that φ0 and φ^ determine completely the representation φ.
In what follows, we consider the case X ^ 0 the case Y ^ 0 is analogous.

IV. Translation Invariant States

In section II we proved that if ρ is a quasi-free invariant state, the
corresponding operators E and 8 commute and 8 is a normal operator.
In this section we want to study the representations of states for which
E and S have these properties. We call them in general commutative.
This class of states contains at least the translation invariant states.

Let S — W\8\ be the polar decomposition of 8. Because 8 is normal,
it follows [11] that W may be taken unitary and such that W and 8
commute with each other and with all operators that commute with 8
and S*. Therefore

W \S\ = \S\ W (15)

EW=WE (16)

\8\E = E\8\. (17)

From (iv) and (15) it follows that

\S\' = \8\ and2 W may be chosen satisfying W' = - W . (18)

We remark that for the class of states for which [J?, $] = [$,$*] = 0,
the set ©#-!£* is always dense.

2 Notice that this is possible only if dim ηs is even or infinite.
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A. The case X = 0

First we analyze the relevant pairs of operators (R, S) which satisfy
(iii), (iv) and X = 0 in the commutative case.

From X = 0 on ©R-IS*, it follows that X can be extended to a
bounded operator on Jtf '; using the commutativity of R and S we have

or
[R, E'] = 0 .

Also X' — 0, and this yields
R - Rr (19)

and immediately
|S| - [R(l - R)]1/2 . (20)

We summarize the result in
Lemma 4. The solution of (iii), (iv) and X = 0 m ίΛβ commutative

case is the set of pairs (R} S — W \S\) such that

E = E*;0 ^ JR ^
If IF* = IF* ψ _ !

- R W .

In the next Lemma, we propose an explicit representation of the
quasi-free state ρ on HF via certain operators A and B on Jtif. After-
wards Λve show that such a representation is actually possible by finding
A and B in terms of R and /S. Now, we look for a representation of the
quasi-free state ρ on HF by making the following Ansatz.

Let A and B be operators on J^7 and set for / ζ Jf

(21)

(22)

It is easy to verify, that (21) and (22) generate a representation ^
of 31 if A and 5 satisfy

A*A + B*B=1 (23)

^.'J5+ J5'4 = 0 . (24)

A simple calculation shows that if A and B satisfy moreover

R==B*B (25)

S = A'B (26)

then ρ coincides on 2ί2 with the vector state associated with the cyclic
element ΩF and the representation φ, i.e.

ρ(A) = (ΩF,φ(A)ΩF),A^^2 (27)

where 2ί2 in generated by 1 and the monomials of order two.
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It follows from the properties of the Fock representation, that this
vector state is quasi-free, and hence the identity (27) holds for all A ζ 21.

We summarize this discussion in
Lemma 5. Let ρ be the quasi-free state defined by the pair of operators

(R, S) with X = 0, and let (A, B) be a solution of (23) —(26). Then ρ is
the vector state defined by (27) associated with the cyclic element Ωp and
the representation φ defined by (21) and (22).

We notice without going into details that certain additional condi-
tions on A and B are required in order that [E, S] = [S, S*] = 0, and
that ©R-IS* is dense if and only if §^4-15 is dense.

From Lemma 5 we see that if X = 0 and (R, S) ζ O', it suffices in
order to represent ρ on Fock space to solve the equetions (23) —(26) for
A and B. The solution is given in

Lemma 6. Suppose that (R, S) is a pair of operators satisfying (iii), (iv)
and X = 0. Then a solution of (23) —(26) is given by

A = -V*fW}/I- R (28)

B= V]/R (29)

where V is an arbitrary unitary operator.
Proof. First we notice that (24) follows from (26) and (iv).
Let us take first B = B* then (25) gives

B - ]/UΓ.

Then (15)-(20) and (iv) yield for (26)

}/RA = -W yR(ΐ~-^R)

and (16) assures us that A = — W\/l — Ris a particular solution of (26).
Multiplying B = }/R by an arbitrary unitary operator V we obtain a
class of solutions given by (28) and (29).

As a consequence of Lemmas 4—6 we obtain the following result.
We omit the proof of the last statement, which follows from the ana-
logous property of the Fock representation.

Theorem 3. Let ρ be a quasi-free state on 21 corresponding to the opera-
tors (R, S) defined in Theorem 2, such that X = 0, [S, S*] — 0, ana
[E, S] = 0. Then ρ corresponds to a representation φ of 21 on Fock space
Hp where φ is defined by

-- φ (- W ]/l-Rf] -f φ* (γE~f) if h = f ζ J^

i.e. ρ (A) = (ΩF, φ (A) βr) for allAζ 21.
The representation φ is irreducible.
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B. The case X ^ 0, X φ 0

In analogy with the case X = 0, we start writing down a possible
candidate for a representation of 21 associated with the quasi-free state ρ.
Afterwards we prove that it can be realized.

Let us take two copies of Fock representation with creation and
annihilation operators φi9 φf(ί — 1,2), acting on Fock space HF.(ί =1,2)
with vacuum elements ΩF.(i = 1, 2) .

Let the quasi-free state ρ be defined by the pair (R, S) of commuting
operators, such that (B, S) ζ &[. If Aίt Bί(i =1,2) are commuting opera-
tors on J^, then we write the following operators on HFι 0 HFz .

where ̂  is an operator anticommuting with all creation and annihilation
operators 99* and φ± on HFι. It is easily checked that the operators (30)
and (31) generate a representation φ of 21 on HFι <g> HFo with cyclic
vector Ω12 — ΩFι ® ΩFz if the operators Aίy Bi(i =1,2) satisfy

AfA1+BfB1=l (32)

A[B1+B[Al = 0 (33)

AξA2 + B2B2= 1 (34)

A^B2+B^A2 = Q. (35)

The representation φ corresponds to the quasi-free state ρ if the opera-
tors Ai)Bi(ί = 1, 2) satisfy furthermore

B$B2) (36)

8 = ^(A{B1-^A^BZ). (37)

This can be seen as follows. It is easy to verify that

= (Si* Φ(ίf*1 m AO

for all /, g ζ & '. From the properties of Fock representation it follows
that the state induced by φ and Ω12 is quasi-free and hence it is equal
to ρ on all of 21 or

ρ ( A ) = (β12, φ (A) Ω12) for all A ζ 3ί .

The problem of representing the quasi-free state ρ in terms of Fock
representation is now reduced to proving that for every pair of operators
(R, 8) ξ €>! there exist operators Ai9 Bi(i =1,2) on ̂  , satisfying the
equations (32) — (37).
5 Commun. math. Phys., Vol. 7
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We add the following conditions on the operators Ait B^i = 1, 2)

&HΪIAI is dense in 3tf , (38 a)

®B?AI is dense in 3? . (38 b)

The unitary parts W1 and W2 of A[Bl and A!>B2 satisfy W\ = W\. (39)

This means that we look for a solution of the equations (32) — (37)
within the class of operators satisfying the conditions (38) and (39).
We proceed to analyze the problem, beginning with a simple transfor-
mation as given in

Lemma 7. Suppose that (E, S} is a pair of commuting operators satis-
fying (ϋ')5 (iii), and (iv). Then the problem of solving the equations (32) — (39)
is equivalent to the decoupled problem consisting in

1) -finding couples of pairs (ElίS1— W± 8^) and (J?2, $2 = W2\S2\)
such that
— each pair (Ri9 /Sy, (ί = 1, 2) satisfies the conditions of Lemma 4
— the unitary parts W1 and W2 of SI and S2 satisfy W\ — W\
— the following equations hold

R = ±(R1 + E,} (40)

S = \ (S, + S2) (41)

and
2) solving the equations (32) — (35), (38) together with

(42)

(43)

(44)

The proof of this Lemma is obvious.
The second problem in Lemma 7 is equivalent to solving the equa-

tions (32), (33), (38a), (42) (43) and (34), (35), (38b) (44), (45). The
solution of these two systems of equations is given by Lemma 6. Our
problem is therefore reduced to finding the solution of the first problem
of Lemma 7.

Making use of Lemma 4 and the polar decomposition S = W\8\ of S
we can write (41) as

2\S\ - Tf*Tf1J/S1(l - î) + W*W2yB^T^E^ ^ 0 .

First of all we suppose
W\ = Wl = W2 . (46)

It may be checked that this assumption does not restrict the class of
states we want to represent. It means that W = Wl == W2 on a certain
subspace of 3? and that W = ± W1 = =F W2 on the orthogonal com-
plement.
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It remains to solve the following equations for R± and JR2

Rf = fit; Rξ = R2 (47 a)

0 < Rl ^ l O ^ P2 ̂  1 (47 b)

2R = R1 + P2 (48)

2 \S\ = W * ̂  yΐ^Γ-E,) + W* W2 |/̂ 7(T -ly" (49)

where R^ and J?2 commute and the unitary operators W, Wτ and W2

satisfy (46).
We make the transformation

_ _
— 2 5 2 — 2

and obtain the following system of equations for E1 and E2 equivalent
to (46) -(49).

E% = EI\E$ = EZ (5i)
- l ^ E l ^ l - 9 - l ^ E 2 ^ l (52)

4R-2 = E1 + E2 (53)

4 |S| - if* if j J/Γ-l7f + PF* p72 |/ΓΓ" |̂- (54)

Set

ί7! - TΓ* JTj ]/Γ- I? + iEl F2= W* W2 }/Y-~Ej + ̂ 2 (55)

iΓ = 4|/S| + ^(4^- 2) . (56)

Then (53) and (54) can be written in the form

X = F1 + F2. (57)

Notice that from (46) it follows that F^ and F2 are unitary operators.
Let K = UP be the polar decomposition of the operator K (56). Since
R and S commute, the operator K is normal, hence U may be taken
unitary and such that U commutes with P and all operators commuting
with K and K*. The equation (57) is equivalent to

U^Fl + U*F2 - P (58)

where U*FI and U*F% are unitary operators.
Notice furthermore that

P2- (4P- 2)2-f (4|£|)2 (59)

valent to E =

position (40) and (41) is found to be

+ T ' l

(61)

and that P = 0 is equivalent to E = -^ , S = 0. In this case the decom-

o be

R = T ' ° + T ' l

In the general case 2/f = ̂ φ ^ff, where
We have ηp = ^ l ί S j n >/E_l Because [P, $] = 0, Jf^ is invariant under

2
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\S\,B and P and so its orthogonal complement ffl^. The positive operator
P has an inverse P~l on ̂ ^, defined on the dense subset &P where P~l

is not necessarily bounded. On «^f?

1 the solution oί (40) and (41) is given
by (60) and (61). On jf £ the solution oί (58) is

(63)

where α is a constant such that α = ± 1 both values oί α give the
same solution, therefore from now on we put α = 1. Using the expres-
sion (59) it follows immediately from the positivity condition that

P2

l~^τ-> 0.4

From (50), (54), (55), (62) and (63) we obtain the final result for the
decomposition (40) and (41).

l) (64)

1) (65)

, = R + \S\ - (66)

= B - \ S \ ] = ~ (67)

If the operator P~l is not bounded on ̂ ι, it may however be shown
that the operators defined in (64) — (67) are bounded, therefore they are
defined on the wohle space by continuity. It remains to verify that
(64) — (67) actually satisfy (47) — (49).

The conditions (47 a), (48) and (49) are clearly satisfied; let us finally
verify the condition (47 b) we set

= - . (68)

Because R and S commute H ^ 0 and it remains to prove

R + H^l Q^R-H (69)
which is equivalent to

(1 - RΫ- H*^ 0;E 2 -# 2 ^ 0.

An elementary calculation shows

(1 - R)* - H* = ~ [2|£|2 -2R(l-R)+l- R]*

^2 „ #2 = J_ [2|£|2 _ 2(1 _ E) R + R]2 .

Therefore (69) and consequently (47 b) is true.
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As indicated above we use now the solution of the equations of
Lemma 6 to solve completely the problem of representing the state ρ
on HFι Θ HFa. We formulate the result in

Theorem 4. Suppose that (R, 8) is a commuting pair of operators satis-
fying the conditions of theorem 2 then the equations (32) — (39) have the
following solution

A1=-V*'W1 ]/F-ΊΓΓ£Γ (70)

B1=Vyit+lΓ (71)

A2 = - F* W2 l/Γ^RTff" (72)

^ΊΓ (73)

where H is given in (68), and V is an arbitrary unitary operator.
The quasi- free state ρ, defined by R and S corresponds to the represen-

tation φ on HFι ® HFz defined by (30) and (31) with the expressions (70) — (73)
substituted for Aλ, Blt A2 and B2. The representation φ is a cyclic and
reducible factor representation.

Proof. Everything has been proved, except the last statement. We
omit the standard proof of the fact, that φ is cyclic [3]. Let us prove
that φ is reducible. Let φ' be the representation of 21 on HFι ® HFz

defined by

Φόd) = -j§K<MΛ/) + ψf(B1f)) ® 02 + li ® ψ(ψM) + <p*(Btfi) Θ2

1 _ _ Q2 — —

ΦΌ* (/) = -ψ (<?ι (Bit) + ψf (A/)) βα ® θ* + li ® -ψ (ψ*(BJ) + ψξ (Atf) ) .

One verifies

[ψ0(f), Φό(ff)] = [ψ$(t)> Φό(g)] = ίΦ0(f), Φό*(g)} = [ΦSW, ΦΌ*(a)} = o .
Hence ^'(21) C [^(31)]' therefore the commutant [</>(2l)]' is not trivial,
and the representation φ is reducible.

Next we prove that φ is a factor representation, i.e. that the von
Neumann algebra L generated by φ (21) is a factor.

A simple calculation shows that3

where

= 1/

Let Q be an operator commuting with {L \j L'}" and let L^ and L2

be the von Neumann algebras generated by {^(/) ® 12? χ*(f) ® lg} an(^
{θj Θ ;fe(/)> î ® %*(/)} respectively. The subalgebra ^ is irreducible in

3 It should be verified that θί ® Θ2 ^ -̂  VJ i'.
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the first space HFι ~ HFι <g> ΩFί and therefore Q is of the form λl± <8> Qv

The subalgebra L2 is irreducible in the second space HFz ~ ΩFι ® HFt

and therefore Q is of the form Al x <g> 12. Consequently each operator
Q ζ(L \j L')' = L r\ Lf is oί the form λl or .L r\ L' = {€ 1} and L is a
factor.

V. The Case R, 1 — R and S Invertible

In this section we treat another class of quasi-free states. We do not
assume commutativity, but introduce another simplifying assumption,
that E, 1 — E and 8 are invertible. Let us introduce for simplicity the
following notation

Definition 8. Φl = {(E, S) ζOlJR- 1 , (1 - E)-1 and 8~l are bounded
operators on ffl}.

First we characterize the set Θl in the following Lemma.
Lemma 8. (E, 8) ζ ̂  if and only if
(ϋ) X = 1 - E' - 8E~1S* ^ 0
(ϋi) E = E*;Q < ε^ E ^ 1 - e, e > 0
(iv) S' = — S'y S is invertible.
Proof. We notice that jS^-i^* = ^(i—ir)-1^ = ̂  an(^ ^ne L^ninia

follows from Theorem 2. It can also be verified directly, that X ^ 0
if and only if 7 ^ 0.

A. The case X = 0

The set of pairs of operators (E, S) ζ Φl with X = 0 can be described
as follows.

Lemma 9. (E, S) ξ:0l and X = 0 if and only if

E = E* 0< s^E^l - ε (74)

W W*=W*W;W'=-W. (75)

WB = K'W (76)

\S\ = ]/E(l-^E] \S=W\S\. (77)

Proof. It is easy to verify, that if (E, S) satisfy (74) —(77), then
Sf = —S\ 8, E and 1 — E are invertible and X — 0. Suppose on the
other hand that E and 8 satisfy (iii), (iv) and X = 0 and (E, S) £ (9V

Introducing the polar decomposition 8= W\8\ of 8 in the equations
X = 0 and Jί' = 0, and setting Z = TF*^' TΓ, we arrive at the equations

1 - Z =

i - E-
The solution of these equations is

Z = Λ; |S| ==
hence

if 7? - E; W .
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From (iv) and this result follows finally

W = -W .

Lemma 5 holds for (R, S) ζ Ol with the only change, that the assump-
tion that @β-ι 2 is dense in ffl is replaced by the condition that A and B
be invertible.

Concerning the solution of equations (23) — (26) given in Lemma 6
we notice that the solution given by (28), (29) is complete for (R, S) ζ Φv

This can easily be verified by using the polar decompositions of A and B.
Consequently theorem 3 is valid for (R, S) ζ Θl and X = 0, and all

the representations of the form (21), (22) of a given state ρ ζ Q — ^r

I

are parametrized by the unitary operator V of Lemma 6.
Example. Let Jtf = J>^1 φ J>^2, and let J be a unitary operator from

*#*! to $P 2. Let R0 be a self -ad joint operator on 2tf 15 0 < ε ̂  R0 ^ 1 — ε,
and set

g) = Jί-lg® S f .

Then the pair of invertible operators (R, 8 — W\S\) satisfy X = 0,
(ϋi) and (iv). The solution of the equations (20) — (23) is given by

B. The case X ^ 0, X φ 0

First of all, we impose supplementary conditions on the states ρ
which are automatically satisfied when [R} S] = 0 and [$,$*] = 0. We
formulate these as the following conditions on R and S = W\S\

(v) W ' - - W
(vi) TΓJR = JB'TΓ
(vii) Tf|^l =\S\'W
(viii) 0 < β ^ E + ̂ ^ l ~ ε

0 < ε ^ R-H^ 1 - ε
where

(78)

and U and P are the unitary and positive part of the invertible operator

K = 4c\S\ + i(±R- 2) . (79)

We notice that in the commutative case (v) — (vii) are proved in (15),
(16), (18); the expression for H takes the simpler form given in (68)
and (viii) is proved in (69). It is likely, that (viii) can be proved also in
the present case, but (v) — (vii) have to be imposed as conditions.
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The representation of section IV. B given in (30), (31) is also valid
under the present conditions : (J^, S) ζ Φl and the condition (38) is
replaced by the requirement that Ai9 βi(i = 1,2) be invertible. Hence
in order to represent ρ on HFι <g> HFa it suffices to solve the equations
(32) — (37), (39) under these conditions. We transform this problem as
in Lemma 7, but with the present conditions, and the solution of the
equations is obtained by the same method. The possibility of applying
this method is based on the polar decomposition of the operators S and
K, and here it is essential, that W and U are unitary operators. In the
present case this follows from the assumption of invertibility. Also, the
assumptions (v) — (vϋi) are essential for the solution of (40) and (41).
The explicit solutions of these equations are in the non-commutative
case given by the expressions

51 = 8 + L

52 = S - L

R1 = S + H

R2 = S - H

where H is given by (78), (79) and

As a consequence of the predecing discussion, we conclude that theo-
rem 4 is valid under the assumptions (ϋ) — (viϋ) on the pair (R, 8) with
H defined in (78), (79).

Remark, It is possible to obtain a representation on HFι ® HFz of
quasi-free states ρ, which do not satisfy the condition of commutativity
or invertibility, by the method developed above.

Such states can, for example, be constructed as follows.
Suppose that (Ri9 SJ ζO(, Xt = 0, &R{ closed, Wt unitary ( i = I , 2 )

and set

then (JR, 8) £ C(, and X = 0 if and only if E^ = R2; 8l = 8Γ

Proof. It is clear that (R, S) satify (iϋ) and (iv). Moreover &R-ιS* = & \
and (R, S) ζ_ O{. If X = 0, then the form

(R s* \ ^ (R 8* \
(s I — RΊ~ (s SR-IS*)

is equal to zero on the pairs of vectors {(— R~1S*g, g) \g ζ <#?}. Because

IE 8* \ = J_ /Λi θ* \ , _L /Λ> 8$ \
\8 \~RfJ 2 \^ 81Rrί8ί) "^ 2 \S2 S2IfrlS*)

the two forms have to vanish on the same elements. It follows that
RϊlSf = R£lSξ hence W1 = W2, R1 = R2 and 8l - S2. Conversely, if
RI = R2, S1 — S2 then immediately X — 0.
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VI. An Application of Invariant Quasi-free States

In this section we give an application of invariant quasi-free states
of fermion systems with spin. Actually in the foregoing section we did
not introduce the spin. However all the results mentioned before can

be obtained if we consider spin -^ nonrelativistic particles.

First we define the C* -Clifford algebra in this case
Definition 9. 2ls(32l), the Clifford algebra over 9H, is the algebra gene-

rated by the monomials [̂ ]Sι . . . [hn]8n\ hi ζ 321 \j 921*, 1 ̂  ί ^ n\
(sί = I or 2; ^ is the spin index), and the unit element 1, such that

= 0 /, 0 ζ 9R .

The involution on 2ls(32ϊ) is defined as in definition 1.
Fock representation of 2ls (321) again induces a norm || . (j on the algebra,

such that the closure 2ls of 2ls(3K) with respect to this norm is a C*-
algebra.

Now we proceed to analyse a particular class of quasi-free invariant
states on 2ίs. For reasons of technical convenience we introduce the field
variables as distributions φr(x) and ψ?(x), τ~ 1,2 with values in 2ls

defined by

Ψr(f) = f f(x) φr(x}dx

where x ζ E3.
Moreover we use the following notation
Definition 10. Let W be the set of invariant, quasi-free states ρ on

2ls, such that
ρ(φ?(x) φs(y)) = 0 for r^s

Q(ψi(x) Ψi(y)) = ° for i = ! 5 2 .

It is clear that W is a compact subset of 2ί̂ 3 in the weak * -topology.
The states ρ £ W are determined by pairs of convolution operators R

and S corresponding to distributions r and s defined by

r(x- y) = ρ (φf (x) φλ (y}} = ρ (φ* (x) φ2 (y}} (80)

8(x-y) = ρ(φl(x) φ2(y)) - ρ(φ2(x) φ^y)) . (81)

For simplicity we work in momentum space with the Fourier trans-
forms r(p) and s(p) of r and s.
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Suppose that the interaction between the Fermion particles is given
by the central symmetric two-body interaction potential V(x), where

V(x) ζL1^3). We assume as Hamiltonian density in the finite volume:

i = l T

The number density operator is
2

= Σ φf
i = 1

We define

Hc(VL)-±r f {^L(X}
VL

where μ is the chemical potential and c a real number. We assume,
that V (x) satisfies furthermore the condition that there exists a constant
c such that

ρ(Hc(VL)} ^ 0 for every 0<L<oo,ρ ζW .

This condition guarantees that for the finite system the spectrum of the
Hamiltonian is bounded from below.

Set

ρ(H) = lim ρ /JL [ {& (x) - μ^(x)}dx\ . (82)
L-^co \ JUύ J I

\ VL I

It follows from the assumption that V(x) ζLl(R3), that ρ(H) is a
well defined quantity for any ρ ζ W.

Definition 11. The ground state energy c0 of the infinite system is

and let M = {ρ ζ W ρ(H) = c0} be the set of ground states.
Since ρ (H) is a continuous function on the compact set W, it follows

that M is a non-empty compact set.
The particle density dQ in the state ρ £ W is defined as

VL

when the limit exists. We denote by M0 the set of states ρ £ M such that
dQ is defined. It is clear, that also MQ is a non-empty compact set. In
what follows we determine M0 by a variational procedure.

In momentum space (82) becomes

(83)
f f {V(0)r(q)r(p)+Ϋ(p-q)3*(p)s(q)}dqdp.



States on Clifford Algebras 75

The problem of minimizing ρ (H) over W is equivalent to the problem
of minimizing ρ(H) as given by (83) over the set of pairs ( r , s ) , such

that (r, s) ζ L°° (£3) and
0 < r (p} < 1 (84)

S(-p) = -S(p) (85)

τ2(p) = r(p) (1 - f (-?)) - \§(p)\* ^ 0 . (86)

It is convenient to perform the variation with respect to γr(p), τ(p)

and a(p), where oc(p) = i^arg s ( p ) .

This leads to the following system of equations

/(2F(0) r(q) + V (p - q) l^jjjϊL ** S* (p) $(q)}dq}= 0

V(P ~ q) Re ^(p) β(g) ^g = 0

/ V(p - q) Im s*(q) s(p) dq = 0 .

The analysis of this system of equations yields the following charac-
terization of the set M0 of ground states with well defined particle den-
sity.

The pair of functions r ( p ) ; s ( p ) satisfying (84) — (86) define a state
ρ ζ M0 if and only if

τ(p)* = f(p) (1 - f(p)) - \S(p)\* = 0 (87)

a(p) = -o-arg s ( p ) — oc = constant (88)

and the function

φx(p) = (2π)3 / V ( p - q) s(q) e**dq

satisfies the integral equation

(»\-*- ί V(P — P')<P«(P')dPf

ψ«(P) ~~2 J ί(p'*-μ>)* + |pα(p')|»]i/»
where

Equation (89) is an integral equation of the type found for the energy
gap in the Bardeen-Cooper-Schriefer model for superconductivity and
the constant μ is the chemical potential corrected by its first order
Born approximation.

If φ0 (p) is a solution of (89), one verifies that also φx(p) = eία^0(^)
is a solution and that the energy density CQ is the same for the whole

one-parameter manifold of solutions {φx(p) — eίcίφo(p) \ 0 ^ α < 2π} .
It follows from equation (87) that the ground states of the infinite

system, mediated by the two-body potential V(x), correspond to irre-
ducible representations.
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Finally let us remark that we do not claim to have obtained a very
good approximation for the ground state energy for the model treated
here, whereas for the B.C.S. model one may hope to find the exact solu-
tion within the class of quasi-free states.
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