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Abstract. In the present paper we continue investigating spaces of tempered
distributions in infinitely many dimensions. In particular, we prove that those
linear homogeneous transformations of the canonical pair of field operators, which
preserve the commutation relations, can be implemented by an essentially unique
intertwining operator. The dependence of this operator on the transformation is
studied.

1. Introduction

Summary of results

In two previous papers [6] and [7] (in the sequel quoted as I and II)

we have studied certain spaces of tempered distributions in infinitely

many dimensions, in particular the space @, which is essentially identical

with the space Σ considered by BOUCHERS [1].

In the present work we investigate linear homogeneous trans-

formations of the canonical pair of field operators; in particular linear

transformations induced by the real symplectic group Σ over Schwartz's

space S?1. This group we define as the family of all matrices

with matrix elements in L{$f, £f) r\ L(S?*, S?*) and satisfying

TJ*JU = U J U * = J , (1)
where

The linear transformation induced by II is then defined as the mapping

a(φ) — av(φ) ^ a{ϋ* φ) + a* {V* φ)

a*{φ)^a${φ)^a*(U* φ) + α(F* φ) .

1 In the study of spaces of type 0 in I and II we assumed Sf = ^(R1). In
case 6? = ^(R n ) , n > 1, spaces of type Θ should be modified in the obvious
way.
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In Section 3 we prove that such a linear transformation can be represent-
ed by an essentially unique operator jQ(U) ζ £ ( § , Θ*)5 which inter-
twines the pairs (a, a*) and (α u ? αj) in the sense that

if and only if the image £7* (£P) is dense in Sf (here — in contrast to
I and II — the bar denotes complex conjugation). The subset of Σ
having this property is denoted by Σo.

In Section 4 we prove that the suitably normalized operator Ω(\J),
U ζ Σo, is continuous and differentiable when considered as a function
of (V ϋ-1, U-1, F* C7*-1) ζ L{^, <f*Y into Z,(g, 6*).

Finally, in Section 5 we study the conditions under which the operator
Ω(U) can be extended to a unitary operator in the Fock-Cook Hubert
space D. These conditions are essentially well known and are for example
formulated in FRIEDRICHS [3]. A detailed proof has been given by
SHALE [8], who considers the Weyl operators as the basic objects. We
consider instead the creation- and annihilation-operators, and thus, our
line of reasoning is closer in spirit to that of FRIEDRICHS.

The quantization of certain differential equations

The results mentioned above have an application to the problem
of quantization of certain types of differential equations including linear
wave equations of the form

j ( t ) = 0 (2)

where Ho is a positive definite operator (e. g. Ho = (— A + m2)^), and
where B(t) is a real symmetric operator for each value of t. Both Ho

and B (t) are operators in some space of complex valued functions over Rn.
It is well known that if the Cauchy problem for (2) has a unique

solution then the propagation in time is given in terms of a two parameter
family of transformations U (t2, y satisfying

ϋfoyufe« = ufoϋ. (3)
The types of differential equations to which our results apply may

be obtained in the following way:
Let U (t2, t-jj, —oo<t2,t1< co, be a family of symplectic trans-

formations over £f} for which (3) is satisfied. If U( , tt) and F( , tr) are
differentiable from the real axis into L(£f, Sf) Γ\ L(S?*, £?*), then in
virtue of (3), U(ί, £x) satisfies an equation

t , h), (4)
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where A(£) is independent of tv Moreover, it follows from the real
symplectic character of U that A is of the form

Ά M (5)
ιb(t) —a(t)J v '

where a and b are in L(£P, £f) for each value of t, and where α* = a and

Hence it follows that if the Cauchy problem for the system

iv^^av-^ibw
. . . r _ (6)
% w ^= %b v — aw

has a unique solution, then U (t2, ίx) is the family of propagators associated
with the system. In (6) v and w denote functions of t with values in £f.

Consider again the wave equation (2). If the operators a and b of the
equation (6) can be represented in the form

ίΞot - \ u ~ ^ -ίHot

α (ί) = e Ho

 z B (t) Ho

 λ e

b(t) = — i e Ho

 λ B(t) HΌ

 λ β ,

and we define

« ( * ) = (2H0)* ( e i H o ί v(t) + enaw(t)),

then u(t) satisfies the wave equation (2) in an appropriate sense.
If the family U (ί2, tλ) is in Σo then Ω(ή — normalized as in Section 4 —

maps U (ί2, ί2) into a two parameter family

ίS(ί2,ί1) = β(ϋ( ί 2 ( ί 1 ) ) (7)

of elements of L(&, &*). In this context we call Ω(ή a quantization of
the family U(ί2, ία) or, alternatively, of the system of equations (6).

We assume now that the Cauchy problem for (6) has a unique solution,
so that U (t2, £x) exists. Consider the Feynmann boundary value problem

U)-
where φ ζ SP is given. It follows from the results of Section 3 that
U(£2> h) ί ^o '*£ a n ( ^ on^y ft (̂ ) n a s a solution (v^), w(t2)) ξ ^ θ £f for a
set of φ's which is dense in £P, or, equivalently, if and only if the homo-
geneous Feynmann problem (φ == 0) has only the null solution in ^ * θ
θ &*.

Assume that this condition is fulfilled for all t2,tv Then it follows from
the results of Section 4 that if the map (t2, tt) -> ϋ{t2, tj-1 ζ L(S?, 5?*)
is continuous, then the operators 8(t2> ^) given in (7) depend contin-
uously in L(€), Θ*) on t2, tv Also, if the limit U(oo, — oo) exists in Σo,
then the associated $-matrix 8(co, — oo) exists as the limit of 8(t2) tτ) in
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Let us remark that since Sf is a perfect space (bounded closed sets
are compact), the continuity of U(t2, ^i)"1 in L(£f, £?*) is equivalent to
the continuity of (99, U(t2, y - 1 ψ} for all fixed φ, ψ in Sf. A similar
remark applies to L(&, (§>*).

From the results of Section 5 it folloΛVS that S(oo, —00) is unitary if
and only if the map 2; (—00) ^ φ = U(cχ), — oc) v(— 00) defined by (8) is
norm bounded, and the map υ(— 00) s-^w(oo) = V{oo, —00) ?;(—00) is of
Hubert-Schmidt class.

As a further consequense of Section 4 we note: If U(t2,
is differentiable as a function of t2, so is /S(ί2? h

with Ή. a homogeneous polynomial of the second degree in a and α*
to be read off from Theorem 4. However, it is not always possible to
write (9) in the form of a Schrόdinger equation.

If the conventional quantization procedure is applicable then 8 (i2ί y
is the unitary transformation which in the interaction picture maps from
initial time tλ to t2. Since S(t2, t-^ is in general not unitary, jQ( ) is a
generalization of the conventional quantization scheme.

Notation

Our notation is that of I and II (cf. II, Section 2) except that
in this paper φ and not 95* denotes the complex conjugate of φ in ^
or in <$fn*. Further we shall make use of the notation A for the operator
denned by

A φ — A φ

and Aτ for the transpose of the operator A,

AΎ = A* .

For reference purposes we cite here a particular case of Schwartz'
nuclear theorem (cf. for instance, EHRENPREIS [2]).

Lemma 1. // γζL(^, £?*), then there exists a unique distribution
ΪK £ ^ 2 *> called the kernel of the operator γ, such that

for all ψ, ψ ζ £f.
If γ has the kernel γκ, then the kernel of γ is y κ and the kernel of γτ

is characterized by

(φ Θ ψ, (y τ)κ> = (w ® φ> rκ>
In particular, γ = γΎ if and only if y κ is symmetric, i. e. y κ ζ ^ 2

h * .
Continuous linear mappings U ζ L(<Sf*, £?*) are applied to distribu-

tions with values in an arbitrary space by duality in the usual way, i. e.
Λve define

ϋ a(φ) = a(ϋΎ ψ) φ ζ Sf .
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2. Gaussian Elements

Definition 1. // γζL(^, &**), then an element Γζ Θ* is called a
Gaussian element associated with γ if and only if

a(φ)r=a*(γ φ) Γ for all φ ζ <9* . (2.1)

If Γ is a Gaussian element associated with γ, then

a(φ) a{ψ)Γ= a{φ) α* {γ ψ) Γ = α* {γ ψ) a{φ) Γ + (φ, γ ψ) Γ

= α* (γ ψ) α* {γ φ) Γ + (φ, γ ψ) Γ

for all <p, ψ ζ £P9 and since [a(φ), a(ψ)] =• [a*(γ φ), a*(γ ψ)] — 0, we
have

(φ, γ ψ) Γ = (ψ, γ φ) Γ,

i. e. γ = γτ is a necessary condition for the existence of a non-zero
Gaussian element associated with γ.

Theorem 1. Let γ = γτ ζ L{£f, Sf*). Then every Gaussian element Γ
associated with γ is of the form Γ' = c Γ(γ), c ζ C, where

0 0 — i / /9ΊJ\ 1 \

Γ(y) = 2 1 ((2n)!) f «*2B® 8ym2-« ( Λ ' yRβ) ^o , (2.2)

α^^5 conversely, Γ(γ) is a Gaussian element associated with γ.
Proof. Assume that

CO _ _ 2

r= Σ (*!) ¥«"-®(A)ne@*

is a Gaussian element associated with y, and let φ ξ ^ . Then we get,
replacing 99 by φ> in Definition 1:

(* + 1)* <?9, Λ + 1 > ω = F sym(y 9J® Γ ^ j ) for k ^ 1 ,

and hence

)"1 < / + 1 > 0 Γ + > = F(fc+ I) 1

Since 99̂  ® span a dense subset of £f\ (II, Lemma 1) we get Γh = 0 for &
odd, while

( 2 J l ) ® ) for » = 1, 2, . . . ,

with c = Γo, so that in fact Γ = c Γ(γ).
On the other hand, straightforward computation shows that Γ(γ)

is a Gaussian element associated with γ, and the theorem is proved.
It is obvious that a necessary condition that Γ(γ) ζ § is that y κ ζ J^2

t

i. e. that the kernel of γ be a Hubert-Schmidt kernel. A necessary and
sufficient condition is given in Theorem 2, in the proof of which we need:
3 Commun. math. Phys., Vol. 6
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Lemma 2. // an element γ^ζM*2 is symmetric, then it has a representa-
tion of the form

where {φn} is an orthonormal system in 34? and γn ^ 0.

Proof. Assume that y κ ζ J#*2, and let γ be the Hubert-Schmidt
operator in Jf with kernel y κ . The symmetry of y κ is equivalent to the
equation y* = γ.

Since γ is compact, it has a representation of the form

γ = ΣγnPn,

where {γn} is the set of non-zero eigenvalues of \γ\ = (y* y)2 while Pn

is a partial isometry (elementary operator) with initial domain equal to
the eigenspace for \γ\ corresponding to the eigenvalue γn (cf. AL. GHIKA
[4] theoreme 4.2, see also HESTENES [5] Theorem 11.1).

We then have

where P * and Pn are again partial isometries. From the uniqueness of
the representation considered in [4] and [5] it follows that P* = Pn,
and in order to prove the result it is obviously sufficient to establish it
for each of the partial isometries Pn.

Thus, assume that P* = P for a partial isometry P of finite rank.
Let φ be any non-zero vector in the initial domain of P, and define
ψ = p φ = p* φ. Then φ = P ψ, and the two vectors χ = φ + ψ,
χ" = i(φ — ψ) are such that P χ = χ.

Since at least one of the vectors χ, χ" is non-zero, there exists a
normalized vector χ satisfying P χ = χ. Let Q be the operator with
kernel χ2 ® , then P = Q -j- E, where R* = R and R is a partial isometry
whose initial domain has smaller dimension than that of P. The proof is
completed by finite induction.

In order to compute the norm of Γ(γ), we first consider an operator
γ of finite rank with a kernel

r κ = Σ Viψf®,
? = 1

where {φv . . ., φk] are orthonormal and y3- ^ 0. For such a kernel we
have

Λ Θ = Σ '' Σ ΪH yin φf® ® ® € Θ

?! = 1 ί n = 1

Rearranging the tensor factors of each term according to the ordering
determined by the indices, and denoting the number of factors of the
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form γj φf® in a given term by Vj, we get

sym(yfc®) = Σ ^ ~ Γ 7 ^ yϊ' rΐ sy™(ΨlVί® ® ® $'*®)

where the sum is extended over the set of all representations of n in
the form n = v1 + ^2 + * * 4- ;̂c, where 1̂ , v2> •> ^ a r e non-negative
integers.

Since the φs are orthonormal, we have

(φ\v*® ® <g> φf*®, sym < ^ l Θ Θ <^/*Θ> = 0

if (vv . . ., vk) φ (/ ,̂ . . ., μk), and

and since sym is an orthogonal projection in Jf2n, we obtain

Now let φv φ2, . . . be an orthonormal sequence in Jf7, let
00

? = 1

and define

Then 7K "^ 7κ ^n ^ 2 ' a n < ^ s m c e the mapping, which sends K ζ J4?2

into symX^^ ξ c ^ 2 n is continuous, we get

Since all terms are non-negative, it follows that the unordered
infinite sum

Σ ^ - π ^ ^ i |2*

is convergent and has the value |]sym(y^®)|]2. The summation is to be
extended over all sequences {vv v2, . . .} of non-negative integers with
Σ Vj = n, and hence, in particular, the product appearing in each term is
in reality finite, and, furthermore, the sum is extended over a countable
set. The convergence follows from the observation that the terms can be
ordered into a series in such a way that certain partial sums have the
values J|sym(yj^)nΘ|j2.

We shall now prove:
Theorem 2. Let γ = γΎ ζ L(Sf, Sf*). A necessary and sufficient

condition that the Gaussian element Γ{γ) belong to % is that γ be a Hilbert-
Schmidt operator in M^ and that lγ\\0Ί) < 1, ivhere \\γ\\ov denotes the operator
norm of γ in JT, i. e. \\γ\\oi> =-- sup{||y φ\\ | \\φ\\ ^ 1}.
3*



36 P. KRISTENSEN, L. MEJLBO and E. TH. POTJLSEN:

// these conditions are fulfilled, then \\\Γ{γ)\\\ = JJ(1 — yf)~τ, where

{γj} denotes the eigenvalues of \γ\ = (γ*
Proof. It has already been mentioned that a necessary condition in

order that Γ(γ) belong to $) is that γ be a Hubert-Schmidt operator.
Assume this to be the case, then, since

we get
oo

lll-^(y)lil2 = Σ

=}ϋΣΣnΠ{-f
CO CO

= ^ ΣQ r ΣQ •Π

where the multiple sum is only extended over sets {VJ} with finitely many
Vj different from 0. Since all terms are positive we get

which is infinite if \γ\ov = maxy^ ^ 1.
This proves the necessity of the conditions. Conversely, if these are

fulfilled, then

and the theorem follows.

3. Linear Transformations of Pairs of Field Operators

Definition 2. By a pair of field operators we understand a pair a = (a, a*)
of continuous linear mappings from £f into L ( β ? , <2?) (where & is a space
of type 0) such that α* (φ) and a (φ) are dual for all φ ζ £f, and the canonical
commutation relations hold.

Let (α, a*) be a pair of field operators and let ε, ωζL{£f, £?).
Consider the pair of operators av a* defined by

aλ (φ) = a (έ φ) + a* (ω φ)
\ )

a*(φ) = α*(ε φ) + a(ω φ) .

Straightforward computation shows that 2LX = (av a*) is a pair of field
operators iff

ωτ ε — ε τ ω = 0
(3.2)

ε* ε — ω* ω = 1 .
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Let in particular a be the canonical pair in L(&, ©). We then ask
whether there exists an intertwining operator Ω ζ L{€), Θ*) such that

aΛ (φ) Ω = Ω a(φ)
(3 3)

af(φ)Ω = Ωa*(φ)
for φ ζ ST.

If Ω is such an intertwining operator, and if we define

then obviously
a1{φ)Ψ1 = 0 for all φ ζ 3f .

Conversely, if Ψx ζ <S* satisfies a^iφ) Ψι = 0 for all φ ζ £P, and if we
define Ω by

flα*n®W ^Ό = «f n®(Vn) ^i> (3.4)

then it is easily verified that Ω is an intertwining operator. Here a*n®
is the unique continuous extension to £f\ of the mapping from £pκ®
into £ ( § * , Θ*) defined by αf *®(,p»®) = αf(φf (cf. I, p. 203). Thus, to
study existence and uniqueness of intertwining operators we need only
study the equations

a(eφ) Ψ= -a*(ω φ) Ψ, ψ^Sf. (3.5)

From (3.2) follows that

i l ^ ί l 2 - l | ω φ | | 2 + | | ^ | | 2

so that ε~ι exists from ε(5f) onto £f and ||ω φ\\ < \\s φ\\. Consequently
there exists a unique mapping y' on ε{Sf) such that

—ώ φ = γ' ε φ (3.6)

for φ ζ Sf. Since ||ω φ\\ < \\ε φ\\, the mapping y' has an extension to an
operator in Lffl, ffl) of norm at most 1. In particular y' has an extension
γ ζ L(<9*, S?*)} and it can be shown that it follows from (3.2) that γ
can be chosen so that γτ = γ.

The equation (3.5) can now be written

a(φ)Ψ^a*(γφ)ψ, (3.7)

for φζε(S?).
A Gaussian element associated with γ is of course a solution to these

equations. If ε(£f) is dense in <¥', then γ is unique, and a slight modifica-
tion of the proof of Theorem 1 shows that the complete solution to (3.5)
is c Γ(γ), c ζ C. In case ε(S^) is not dense in £?, it can be shown that the
manifold of solutions to (3.7) is infinite-dimensional.

Definition 3. The (real) symplectic group Σ over 6^ is the family of
matrices U of the form

u v

v ϋ
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such that U, V, ϋ*, F* ζ L(S?, &>) and

U*JU = U J U * = J (3.8)
where

J " \ 0 - 1 /

1 denoting the identity operator in £f', and

u* - Γ yΊ\
V ~ [v* uτ) '

In this definition, U* and F* denote ad joints of U and F. In the
sequel we also use the symbols U, F, £7*, F* to denote the unique
continuous extensions in £ ( ^ * , ^ * ) of U, V, U*,
Obviously ϋ ζ L{S?*, £?*) is the dual of U* ζ L{S?9 £?), etc.

To each element U of Σ we may associate the transformation

in the class of all pairs of field operators.
It is clear that this is a transformation of the type (3.1) with

£ = U*
(3.10)

CO = F* .

Moreover, Σ consists exactly of the invertible transformations (3.1).
Of particular interest is the case, where there exists a unique ray

of intertwining operators Ω = Ω(\J) ζ L(&, ©*) associated with U.
As remarked above, this is the case if and only if the range of e = U^
on £f is dense in Sf. Another case of interest (cf. § 5) is that, where U(£f)
and UΎ{Sf) are dense i n ^ .

Definition 4. The set of elements U ζ Σ, for which CJT\£f) is dense in £f
is denoted by Σo. The set of elements U ζ Σ, for ivhich U(£f) and UΎ(S?)
are dense in 34? is denoted by ΣΎ.

The following lemma contains a number of facts about transforma-
tions U ζ Σ.

Lemma 3. A necessary and sufficient condition in order that a trans-
formation

tvith ϋ, VζL(Sf, y ) n l ( y * , &*) belong to Σ is that the following
hold in £f (and then by continuity also in £f*):

U U* = 1 + F V*

C7* ϋ = 1 + F τ V

uvΎ^vuτ ( 3 'U )

U* V = VΎϋ ,
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and then
I JJ* _ TΓΓ\

ϋ- 1 = (-F uτ). (3.12)

The subsets Σo and Σλ of the group Σ satisfy

If VζΣ^ then V{^)^^ and ϋ* (tf) 7> Jf, and U~\ U*-1, γ
= — F τ UΎ~1, and γ1 = V U'1 are bounded operators in ffl satisfying
the relations

(3.13)

= y[
Proof. The relations (3.11) are merely the equation (3.8) spelled out

in detail, and (3.12) is equivalent with the equation

II- 1 = J U* J ,

which is still another formulation of (3.8).
To prove that Σ^1 CΣO (and hence =Σ0), assume that U ζ Σo. Then

by duality, U is one-to-one on £f*. Now consider an element / ζ 6f*
such that

£7* / = 0 .

From the third equation in (3.11) it follows that

U VTf= V UΎf= V(ϋ*f)- = 0,
and hence that

V*f= ( F τ / ) - = 0
since U is 1 — 1.

From the first equation in (3.11) it then follows that

/ = (ϋ U*- V F*)/ = 0,

and hence £7* is one-to-one on £?*. By duality once more, U(^) is dense
in 6^, and hence U"1 ζ Σo.

It is now trivial that ΣocΣv and in view of (3.12) it is clear that

Assume next that U ζ Σv From the second equation in (3.11) we get

Wψ\\^\\φ\\ (3.14)

for φζ£f. Now, for each / £ ^ f there exists a sequence {φn}C^ such
t h a t U ψn->f ΪΆJ#*. I n vieΛV of (3.14) the sequence {φn} converges i
and hence also in £f*, to some element gζ^, and since U ζ L{
it follows t h a t U φn-> U g in ^ * . Consequently, f=Ug for some
gζftf, so t h a t C 7 ( J f ) D ^ , and, by symmetry, also U* p f ) ~D3f. Since
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is dense i n ^ , it follows by duality that £7* is one-to-one as a
mapping of Jί? into £?*, and similarly for U. Thus, U~1 and C7*"1 are well-
defined as mappings of U {3d?) resp. U* {3d?) onto 3d?, and hence as mappings
of 3d? into 3tf.

The final statements of the lemma are now easily verified.

We now collect the main results of the above discussion in:

Theorem 3. // U ζ Σo, then there exists a unique ray Ω = c Ω(TJ) of

intertwining operators associated with U, i. e. satisfying (3.3), where

The operator Ω (U) is given by

® (3.16)

for all Ψ — {ψn} ζ 0, where the operator γ = γ(\J) associated with U is
defined by γ = - F τ ί/T-1.

4. Continuity and Diflerentiability of the Family of Intertwining Operators

In II we proved that the displacement operator D(f) ζ L(&, 0*)
is differentiable as a function of / ζ £?*. The object of this section is to
prove an analogous result for the intertwining operator Ω(U).

We start by evaluating the bilinear form((Φ, Ω !P))for Φ, ^belonging
to the summand spaces of Θ.

Lemma 4. Let U ζ Σo, and let Φ = α* [ψ)n Ψo, Ψ

V " l III,). IV. , τ y -, v «. \n / TΎ Λ \ τ / /TT\

== 2J 9P + a—i—i—Γ \7v^~ ) ψ> ψ) \ψi ^~ ψ) \ψ> y\\j)
2p + r = m P'Ί-
2q + r = n

Proof. With the notation of Theorem 3, we have

Since

we get

X (ψ, U F T ^ > S < ^ , ϋ φ)Ό a* {Vr ψy a*(ψ)v Ψo .
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Consider a term ((a*(VΎψY α*(φ)y Ψo, Γ(y)». For t + v odd it is
zero, and for t + v = 2w we get

sym ( ( F τ ^ ) ' ® ® <p"®) , 2—

2# + y = v

x (VΎψ® ψ,γκ}
v(ψ® ψ,γκ)

q

Thus

Σ
2s + u + 2x -{- y — m

2 + + 2

X < F T ^ ® Vτψ, γκ)
x (Vτψ® φ, γκ}

y (φ ® 99, y κ > 5 .

To complete the proof, observe first that in view of Lemma 3,

(U Vτψ, ψ} + (Vτψ Θ F τ ^ , yκ>

- ((ϋ VΊ +Vγ* VΎ)ψ,ψ)

and similarly,

(φ, U* ψ}+ (Vτψ ® 99, y κ ) = (99, U-1 ψ) .

Hence the result follows by summing first over all pairs (s, x) with
s + x = p and over all pairs (u, y) with u + y = r.

Corollary 1. If V ζ Σo, then «φ, β(U) ϊ 7 ) ) - ((^(U-1) Φ, ϊ 7)) /or all

We now define

for A:w+n ξ ^ w * ® ^ n * and A ζ i ( g , Θ*) by putting

: α *«® Θ αΛ® (/w® grj 4 : = α*w® (/J -4 αw® (gn) (4.1)

for / m ξ ̂ w* ? gnζ cfn* a n ( j extending linearly. It can be shown that

the mapping

is continuous when £?m * <g> Sfn * is provided with the topology of ^^m+w)*,
and since L(@, Θ*) is complete, this mapping has a unique continuous
extension to ^(w+n)^ \\re denote this extension by the same symbol.

The operator: (α*m® <g> an® (km+n))r A : is defined by induction as:
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Lemma 5. Let α, β, γ ζ £f2*. Then there exists a unique linear operator
Λ(oc, β, γ) ζ L{Θ, §*) such that

({Φ,Λ(*,β,y)Ψ)}

= Σ -^<ψ®ψ,κy<Ψ®ψ,βy<φ®φ,γy
 ( 4 2 )

/or αϊϊ Φ = α*(<p)n Ψo, ψ= a*(ψ)m Ψo. The mapping A is differentiate
from Sf2* e S?2* Θ S?2* into L{Θ, 6*) with the differential

dΛ=:(a® a(doc) + α* Θ α(dj8) + α* ® α*(ίZy))^l(α, β, y) : (4.3)

Proof. The uniqueness of /t(α, jS, γ) follows from the fact that linear
combinations of elements of the form α* (φ)n Ψo, φ ζ <$f, n = 0, 1, 2, . . .,
are dense in 0 (cf. II, Lemma 1). On the other hand, consider the
operator

A = exp(α* <g> α* (y)) : exp(α* <g> a(β)) P o : exp(α Θ α(α)) (4.4)

where
oo

exp(α <g> α(α)) = 2 ; ( ίp!)" 1 ^ ® α(α))» ζ L(Θ, Θ) ,
2? = 0

:exp(α* ® a(β)) Po:= Σ (^O' 1: (a* Θ
r = 0

Here P o denotes the projection

P0Ψ = ((Ψ0,Ψ))Ψ0.

As noted in I (cf. Theorem 5.17) the convergence of the above series
follows from the special character of the topologies of 0 and β*.

Straightforward computation shows that the operator A satisfies
(4.2).

Let Φ, Ψbe of the form considered above, let α, β, γ, α l 5 βl9 yx ζ
and define

B = Λ(oc+ α l5 β + /Si, y -h yi) - /l(α, /?, y) -

- : (α® α(αα) 4- α* ® αίft) + α* ® α*(y1))/l(α, /?, y) :

Then, obviously, ((Φ, i^ !f)) is a finite linear combination of terms of
the form

{ψ ® γ;, α>s (99 ® ψ, βy (φ ® 99, y>w X

X <V ® ψ, ocλy (φ ® γ;, jSx)* <̂ 9 0 φ, yj)^
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with v -\- x -{- y ^ 2, and the differentiability of A follows by arguments
similar to those in II, Section 4. At the same time we have proved the
formulae (4.3) and (4.4).

As an immediate corollary to this result and Lemma 3 we have:
Theorem 4. Denote by σ0 the subset of a — L(Sf, ^ * ) 3 consisting

of all elements of the form (^(U" 1 ) , U'1, y(U)) where

V)fΣu - [v ]
Consider Ω (U) as a function defined on σ0. This function has a differentiate
extension from a into L(&, 0*). At elements of σ0 the differential of this
extension (which we also denote by Ω) is given by

idΩ= :dKΩ: ,
where

5. Intertwining Operators in $)

For the applications it is of particular importance to have a charac-
terization of those elements U ζ Σ, for which there exists an inter-
twining operator Ω, which can be extended to a unitary operator in the
Hubert space ξ) obtained by completing β in the norm 111 111.

For this discussion it is convenient to introduce some further notation.
We denote by ffl\ the completion of £f\ in the norm || ||, and by

oo

ξ) the direct sum § = JΓ ffl\ of these provided with the direct sum
n — 0

topology. Thus, S) is not a Hubert space. The dual space f)* of § can be
CO

identified with the product JJ3f\> which as a set is identical with the

subspace of 0* consisting of all elements T = {Tn}, for which Tn

for all n.
It is clear that

and that both § and §* are invariant under a(φ) and α* (φ) for φ ζ Sf.
Also, the mappings a andα* have unique continuous extensions fromJf7

into L($), §)) r\ ̂ (§*> §*), these extensions are given by the natural
formulae [cf. (2.3) in II], they satisfy the canonical coommutation
relations, and a(φ) [resp. a*(φ)] in L(ξ>, §) has the dual a*{φ) [resp.
a(φ)] in £(g*, §*) for all φ ζtf.

Assume now that the symplectic transformation U ζ Σ has an
associated intertwining operator Ω, which maps €> into f)* (this is in
particular the case if Ω is the restriction to Θ of a transformation in §).
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Exactly as in Section 3 we see that if Uτ(6?) is dense in 3>F, then the
family of intertwining operators with this property is at most one-
dimensional.

We shall only discuss the case XJ ζ Σ1 the general case seems to
involve considerable extra work of a rather technical nature, but we
believe that essentially the same results are valid (except the one-
dimensionality) .

The purpose of the present section is to prove the following results.
Theorem 5. Assume that U ζ Σv A necessary and sufficient condition

in order that the equations

av(φ)Ψ=0 Wφζ^ (5.1)

have a non-zero solution Ψ ζ § * is that γ (U) be of Hilbert-Schmidt class,
and then the space of solutions in § * to (5.1) is one-dimensional.

A necessary and sufficient condition in order that (5.1) have a non-zero
solution Ψ ζ $) ist that y(U) be of Hilbert-Schmidt class and ||y(U)||03) < 1,
or equivalently, that V be of Hilbert-Schmidt class and U be bounded as
operators in 3?.

If Ψ ζ ξ) is a normalized solution to (5.1), then the operator Ω defined by
(3.4) is the restriction to 6> of a unitary operator in $).

Proof. The first two statements of the theorem are immediate conse-
quences of the arguments in Section 2 and 3 except for the equivalence of
the conditions

\\γ\\nn < 1 and

To prove this equivalence, assume first that \\γ\\oί) = c < 1. The first
relation in (3.13) then gives

for φ ζ Jf7, and in particular for φ ζ £7* ψ, where ^ ( ^ , whence

| | J7*v f l a ^( l-ca)- i | | y | | a

for ψζST.
It follows that the restriction of U* to Sf has a unique extension

to a bounded operator from 3^ into 3^, and since C7* is continuous from
y7* into £?*, this extension to^f coincides on Jf7 with U*.

Since the operators U on Sf and U* on ^ * are each other's dual,
it follows that

\(Uφ,f)\ = \(φ,U*fy\<\\φ\\\\U*\\oAf\\

for φζ6^ and fζ^, and hence that also U is a bounded operator of 34?
into 30*.

Conversely, if || U\\ov < oo, insertion of the inequality

in the first relation (3.13) proves that \\γ\\op < 1.
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Observe also that it follows from (3.13) that ]|7i||O3) = ||y||o3>
Assume now that Ψ is a normalized solution to (5.1), then a simple

formal argument yields

{{aUψ)m Ψ, aUψ)n Ψ))=m\ (φ, y >» δmn ,
whence the theorem would follow. However, the operators aξ(φ) and
aτj(ψ) a r e n o ^ known to be dual on Ω(\J) Θ', in fact, it is not yet proved
that ί2(U)Θ'C§ The following three lemmas are concerned with
problems related to the unboundedness of ct,jj(φ) and djj(φ) and contain
the remaining part of the proof of Theorem 5.

Lemma 6. Let U ζ Σ1 be such that U is bounded in ffi and V is of
Hubert-Schmidt class. Let Γ — {Γj} ζ § be the Gaussian element associated
with γ = γ(U), and put c = \\γ\\o:p. Define the projection pk in § * by

We then have

.. . { 5 2 )

for all φ ζ £f, all positive n and all h ^ 0. Here e = ε(n) is equal to 0 or 1
according to whether n is even or odd.

Proof. Define A% and B% by

1 Γ, a*(ψ) afjiφ)* Γ» .

Repeated application of the equations

afj(φ) = av(γ1 φ) + a*{U-1 φ) ,

a{φ) = aυ{ϋτ-1 φ) + α*(y φ) ,

and
av(φ)Γ=0

yields the inequality

A-liφ) = «P2*+β(«ϋ(yi φ) + ^(U-1 φ)) afjiφr-1 Γ, a%{φY>
= {n - 1) (γλ ψ, φ)((p%k+e a%(φ)«-2 Γ, ( α y ^ φ) +

)n-ι Γ, (av(UT-i C7"1 ψ) + a*(γ E7"1 φ)) a^ψY Γ))

\(γlΨ,φ)\ZAΓ2(φ) +

+ (n - 1) c \\φ\\* IBiZlw
i i ( ) + \Bt-i{φ\ Ύ
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In a similar way one proves that

\B%{ψ; ψ)\ <{n- If c \\W\\ \\ψψ AΓHψ) +

7-i φ)\

From these inequalities the estimate (5.2) and the estimate

MI 1 / . f o \ n - l
follow by induction.

Lemma 7. Ze£ U ζ 27X be such that U is bounded in Jti? and V is of
Hilbeή-Schmidt class. Then Ω(XJ) is a multiple of an isometry of Θ into $).
The unique extension of Ω(\J) to a continuous operator from 2) into $)
is also denoted Ω(V).

Proof. Let φ ξ £f ^ then it follows from Lemma 6 that

n-l + h-< (2n)l WcrP
- n\ I '^ ! l

c

oo

n = 0

"1

= 0 ?- 0

Ί)

and hence that β (U) α* n ® (φn ®) ψ0 ξ § . It then follows from II, Lemma 1
that Ω(V) maps & into § , and in order to prove the assertion concerning
the isometry on Θ it is sufficient to prove it on &. Since a^ and afj
satisfy the canonical commutation relations, the result follows by the
argument used in the proof of I, Theorem 3.14 provided we show that
aχj(ψ) arj-d a*Aψ) a r e adjoint on Ω(ϋ) Θ'.

In order to prove this, define
h

P*= Σ Pi
i = o

and consider the difference

((Pk af,(ω) a%(φ)n Γ, a^dr Γ)) - {{P1c-t af,{φf Γ, av(ω) αg(ψ)"> Γ »

= « ( P * + I + Vu) at (ψ)n Γ, a* ( F τ 55) aft (ψ)m Γ » . (5.3)

From the first part of the proof follows that the left-side of (5.3)
converges for k -> oo towards the limit

«αft(ω) a%(φ)« Γ, a%(ψ)™ Γ))-((al(Ψr Γ5 aυ(ω) al(y>)™ Γ »

so that the result follows if we prove that the right-side tends to 0.
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Now, if n — m is even, it is identically 0, and if n — m is odd, we
have, with ε — β(m):

) n Γ, α*(ω)

«) + «*(y «)) «fc(φ)" Γ, «t(v)m Γ))\ ^

^ Λ l|ω|| ||^IIn |ly]|w Σ (v ~l-l ~ 0 cHk~j) II A J a + ^ - i ( y y ω),

where p = max(m, n), and AP depends only upon p and c. In the last
step (5.2) has been used. It follows by induction that

K(̂ 2 7c + e+l a\j(φ)n -^ tt*(ω) a>\j{ψ)m -Γ))| ^

^4J!ω | | | | d w | | V | | m J

Since the ̂ 'th term in a convergent series tends to 0, the result follows
by the argument in the beginning of this proof.

Lemma 8. Let U ζ Σ1 be such that U is bounded and V is of Hilbert-
Schmidt class in $£. Let Ω1(\J) denote the isometry of ξj into § obtained by
normalizing Ω(J]). Then

and hence Ω1{U) is unitary.
Proof. It follows from Corollary 1 (obviously this holds for \] ζ Στ

as well) that Ω (U"1) and Ω(V) are each other's duals as operators from §>
into Θ*, and the equation (3.15) then shows that

in JD(©,©*) for all φζSf. Since both sides of (5.5) are continuous
from $) into f)*, the relation (5.5) holds in L(ξ), §*) as well. Consequently
we have

a*(φ) Ω(U-η PkΩ(V) Ψ=Ω(XJ-η a%(ψ) PkΩ{V) Ψ =

= ^(U-1) Pk^ Ω(V) a*(φ) Ψ+Ωφ-1) (pk+1 -h pk) α*(i7* φ) Ω(V) Ψ

for all φ ζ &>, all Ψ ζ €>', and all & = 1, 2, . . . .



48 P. KRISTENSEN, L. MEJLBO and E. TH. POULSEN: Tempered Distributions

Since Ω(Ό)Ψζξ) and Ω(\J) a*{φ) Ψζ$),we have in § * :

a*(φ)Ω(TJ-1)Ω{l!)Ψ= lim a*(ψ) f^IJ-1) Pk Ω(U) Ψ,
Jc—>oo

and
Ω(TJ-1)Ω{\J)a*{φ)Ψ= lim ί^U"1) Pfc_α β(U) α*(<p) Ψ .

&—>00

It follows from (5.5) that

βCU-1) (pk+1 + pk) a*(U* φ) fl(ϋ) f

= β(U-i) (p fc+1 + pk) Ω(V) a^ϋ* φ) Ψ ,
and since Ω(U) a^-i(U* φ) Ψζ$), this term tends to 0 for k -> oof

and consequently

in L(ξ>, §*). Similarly one proves that

a{φ)

for all φ ζ SP. Hence ̂ (U"1) Ω(V) is an intertwining operator associated
with the identity in Σ, and thus ΩCϋ'1) Ω(\J) — c I for some c ζ C

Since jQCϋ"1) = Ω ({])*, c must be positive, and the result follows.
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