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Abstract.. Several theorems concerning the spectra of elements of the complexi-
fied Lie algebra in unitary representations of non-compact semi-simple groups are
proved. The principal theorem gives purely Lie algebraic sufficient conditions for
the type of spectrum (point or continuous) of any element of the real Lie algebra.
For elements of special "self adjoint" Cartan subalgebras these conditions are
rephrased in terms of the basis-dependent information most readily available to the
physicist, namely their hermiticity properties and the values of the structure
constants: roots, etc.

] . Introduction

It should be useful in physics to have spectral criteria for the gener-
ators of non-compact groups represented unitarily in Hubert space
phrased entirely in terms of their Lie algebraic properties, e.g., in terms
of the Killing form norm. Since one also frequently considers the com-
plexified generator algebra (one must, for example, in using a Weyl
"canonical" basis {h{, eα} for semi-simple groups), one would like to be
able to develop spectral criteria for at least some, if not all, elements z
of the complexified algebra phrased in terms of the most available (basis-
dependent) information, namely, the values of the roots, the hermiticity
properties of z, etc.

In this paper we prove several theorems about spectra of this type.
They fall short of the ideal in that only sufficient conditions can be
proved. But without a doubt they can be sharpened to ί£if and only if" 's
if higher Lie algebra invariants beyond the Killing form are introduced.
On the other hand it seems remarkable that such "Lie-algebraic"
spectral theorems can be proved in general, that is, without any reference
to the particular unitary representation. Indeed, this is known to be
impossible for the spectral properties of the enveloping algebra.

* On leave of absence from New Mexico State University, NM, USA.
2 Commun. math. Phys., Vol. 6
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2. Assumptions on the Representation

We start with an irreducible unitary representation U of a non-
compact semi-simple Lie group G1 on a complex Hubert space Jf7.
Denote the Lie algebra of G by G1. This means in more detail,

(a) U(G) and U (Q) are representations of G and G by unitary and
skew adjoint operators, respectively, defined on a common dense in-
variant domain Q)C^ : 2 is dense in ^ and U{G)@C@>,U(G) 3)C@2.

It follows that the complexified Lie algebra Gc is also represented on
S), and Si is invariant under it. We shall need these detailed properties
in the proof of the second half of Theorem 1.

The only assumption we make limiting the type of irreducible unitary
representation considered is that U (G) is faithful:

(b) Non-triviality assumption. There is no non-zero element of
U (G) which annihilates S.

It follows easily that no non-zero element of U(GC) annihilates Si.
Since G is semi-simple by hypothesis, G is the direct sum of simple

Lie algebras Giy i = 1, 2, . . ., n; and since every representation of a
simple algebra except the trivial one is faithful, this restriction is the
very light one that no U (G )̂ is the trivial representation: U (G$) = 0 on
Jtf*. In particular, if G itself is simple, (b) requires only that Ϊ7(G) is not
the trivial representation.

Note that although the Lie algebra G is represented faithfully o n ^ ,
this does not imply that the associative enveloping algebra need be
represented faithfully, and in fact this is what happens in the various
degenerate representations of G.

3. Completeness of Weight Vectors

We shall need the primary decomposition of Gc with respect to the
adjoint map of any of its elements:

Definition. Given z £ Gc, its roots av oc2, . . ., ocv are the characteristic
roots of adz on Gc, i.e., the roots of det(adz — λ) = 0. Gc admits a de-
composition (the primary decomposition) as a direct sum of root spaces

1 Our notational conventions are as follows. Capital letters like O, K, etc.
represent groups and G, K, etc., the corresponding (real) Lie algebras. N. B., for
convenience, in referring to the mathematical literature we have used the mathe-
matician's definition of the generator algebra G of a group G; physicists call — i 0
the generator algebra. Qc — G © i G is the complexification of G. Typical elements
of real and complex Lie algebras are denoted x, y and w, z respectively the operators
representing them on the Hubert space 30? are denoted by the corresponding capital
letters: X, Y and W, Z, respectively. For the definition of the Hubert space adjoint*
and of a self-adjoint (or skew adjoint) operator, see [1].

2 The assumption of the unitary group representation guarantees these domain
and range properties, see [2].
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(weight spaces of adz on Gc), namely,

Gc = Gαi θ Gα2 Θ θ Gα (3.1)

where for any non-zero element eα £ Gα

(adz — α)fceα = 0, some integer k ^ 1 . (3.2)

If da Ξ= dimGα, the least such integer k ^ da. For further properties of
the primary decomposition see, say, HELGASON [3]. The terminology
used here follows JACOBSON [4], see p. 61 if.

Now we can prove a useful lemma which, for generality, we state
about any element of the complexified Lie algebra.

Lemma 1. Let z ζ Gc. // Z has a weight vector ζ Jf, then its weight
vectors span 34?. If z = x ζ G, the weight vectors are all eigenvectors and the
weights are pure imaginary.

Proof. Assume then that / is a weight vector of Z to weight m, that is
(Z — m)nf = 0, f ζ@, for some integer n ^ 1 and some number m. We
first prove that if βα is an element of the root space Gα, then Exf is also
a weight vector, to weight m + α3. First note that for any two operators
A, B and number λ

(A~λ)NB = 2

Here (ad-4) B == [A, B], the commutator. Prove by inspection or in-
duction. Now let us take A = Z — m, B = Eai and λ = α, and apply this
identity to /, noting that ad (Z — m) =

α)F ^./ = 21 (f) [(adZ - α)- v -^J (Z - m)'/ . (3.3)

Therefore, taking N ^ dία + w — 1, and comparing with (3.2) and
(Z — m)nf = 0, we find that one of the exponents in each term is always
big enough to annihilate that factor. Hence [Z — (α + m)]NEuf = 0, so
that EJ is a weight vector to weight m + α, QED.

Now choosing bases in each of the root spaces we get a basis of the
complex Lie algebra Gc by (3.1). Applying all monomials in these basis
elements an arbitrary number of times on /, we get an infinite set of
weight vectors C ®, by what has just been proved above. The closure of
the finite complex linear span Jί' f of this set is a sub-Hubert space
3%*f = Jίf which is a non-trivial4 closed invariant subspace under U(G).
Because U (G) is irreducible, # !

/ = J f ; in other words, the weight
vectors of Z span 3$?, QED.

Consider the case that z = x 6 G. Then since every weight is also an
eigenvalue, all the weights of the skew adjoint operator X are pure

3 This is implicit in JACOBSON [4] Proposition 5, p. 64.
4 Because it contains / =j= 0.
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imaginary. Take any weight vector φ and corresponding pure imaginary
weight m: (X ~ m)n = 0. Then n vectors

φ, A φ , A 2 φ , . . . , A n ~ 1 φ
span a finite-dimensional subspace Vφ of 3tf invariant under the self-
adjoint operator A ^=i{X — m). But A restricted to Vφ is both self-
adjoint and nilpotent, thus vanishes, i.e., Aφ = 0 <=> φ is an eigen-
vector of X, Q E D 5 . This completes the proof of Lemma 1.

Note how we need the domain and range properties detailed in (a) of
Sec. 2 to be able to carry through this proof.

Remarks
(a) Lemma 1 generalizes the familiar theorem that in any finite -

dimensional irreducible representation of a complex semi-simple Lie
algebra, the eigenvectors of any element of any Cartan subalgebra span
the representation space V [5]. The generalization is in two directions:
first, z need not belong to any Cartan subalgebra and, second, the rep-
resentation may be infinite dimensional.

Besides the specialization to z = x £ G mentioned in the Lemma, note
the following specialization. If 2 ( C ^ some Cartan subalgebra of GrCJ

then ads; is semi-simple6, so that one can specialize to da = 1 in the proof.
Then it turns out that Z is semi-simple too, i.e., if it has a single weight
vector, then its eigenvectors span 3ff.

(b) Note that Lemma 1 is actually a pure algebra theorem, does not
need the strong hypothesis of a unitary group representation. Stated in
its full generality, the theorem proved reads7 as follows :

Theorem. Given an irreducible representation R of any complex Lie
algebra <£c (N.B., not necessarily semi-simple) on a Hilbert space such
that R (j£?c) is defined on a common dense domain Q) C ̂  invariant under
R: R{££c)Θc@. Let z C JS?C, then if Z has a weight vector ζ3tf9 its iveight
vectors span Jίf.

(c) Remark on spectra. Since any generator X is a skew adjoint
operator on J f by Stone's theorem, its spectrum consists only of points
of the point spectrum ("eigenvalues") or of the continuous spectrum [6].
Hence whenever we can show that X has no eigenvalue, the conclusion
is that it has a pure continuous spectrum. Now Lemma 1 says that if X
has any eigenvalue at all, then it has a pure point spectrum. Hence the
alternatives for the spectrum of any generator are cut down to merely
these two: pure point or pure continuous spectrum.

5 This argument that the weight \τectors of X are all eigenvectors is due to
N. LIMIO.

6 See HELGASON [3]; the definition p. 137.
7 In slightly different language this theorem asserts that if for any element

z £ o^c, Z lias a weight vector / £ Jf, then the representation is cyclic, with cyclic
vector /. I thank II. DOEBKER for a conversation on this point.
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4. Spectra of Elements of the Lie Algebra G

Let B(x, y) = Tr(ada; ad?/) be the Killing form on G. The basic
theorem is :

Theorem 1. Given xζ(j, X has a pure point spectrum if x belongs to
some maximal compact subalgebra K; if B(x, x) ^ 0, X has a pure con-
tinuous spectrum.

Proof. Given x £ K, X generates a -unitary representation expίX,
— oo < t < oo, of a one-parameter subgroup k (t) of K ΞΞ connected sub-
group of G generated by K. Since K is compact8, expίX is a unitary
representation of a compact (abelian) group. Hence it is reducible into
a direct sum of finite-dimensional irreducible unitary representations
[7], [8], which must then be one-dimensional; in other words #f — direct
sum of eigenvectors of X to pure imaginary eigenvalues, QED.

Remark. Here the assumed existence of a representation of the group
G, not just of the algebra G, was essential, so that we could bring into
play the powerful theorems on the reduction of group representations.

Now given B (x, x) Ξ> 0, we assume that X has an eigenvector and
prove a contradiction.

First, we can easily get the expression

B(x, x) = Σ ccfda. (4.1)
i = 1

where the αt are the roots of x and da., the dimensions of the corresponding
root spaces Gα..

Proof. Take the basis of Gc such that adx restricted to any root
space Gα has the cla x dx matrix

where * denotes possibly non-zero elements. Then Tr (ada; ado;) restricted
to G α = α 2 4 , QED.

Since B(x, x) ^ 0 by hypothesis, if all the roots do not vanish then
by (4.1) there is at least one root, say oc, which is not pure imaginary. Now
assume that X has an eigenvector ζJίf. Then by Lemma 1 ̂  is spanned
by I ' s weight vectors and all weights are pure imaginary. Now there
exists a weight vector / such that Eaf φ 0 for any non-zero βα £ Gx, other-
wise one would have Ea& = 0, contrary to the non-triviality assumption
of Sec. 2. But if the (pure imaginary) weight of / is m, the weight of the

8 Cf. HELGASON [3]; Theorem 1.1, p. 214. We are assuming that our semi-
simple group G is connected and has a finite centre.
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non-zero vector Eaf is m + ccφ pure imaginary, contradiction. The con-
clusion is that X has no eigenvector, therefore no point spectrum,
therefore a pure continuous spectrum by remark (c) of Sec. 3, QED.

It remains to treat the case B(x, x) == 0 and all roots vanish, i.e.,
aάx is nilpotent. Assuming that X has an eigenvector, to weight m say,
it follows just as before that J4? is spanned by X's weight vectors. But
now, since all the roots are zero, all the weights = m, i.e., the operator
A ΞΞΞ X — m is skew adjoint and nilpotent on ffl in the sense that there
is a basis φit i = 1, 2, . . ., of J^ such that Aniφi = 0 for some integer nif

£ = 1, 2, . . . . Just as in the proof of Lemma 1, we can then infer that
Aφi — 0, i.e., X = constant operator m on Jίf.

Now Sbάx φ 0 since G is semi-simple, therefore there exist non-zero
elements y,vζQ such that (a,άx)v = y. Represented on Jti? this reads

(adZ) F = [Z, F] = Γ .

But since X = const on f̂7, [X, V] = F = 0, contrary to the non-
triviality assumption of Sec. 2, contradiction. Hence X has no eigen-
vector, thus a pure continuous spectrum in this case also. This completes
the proof of Theorem 1, QED.

Remarks on Theorem 1
(a) Unfortunately Theorem 1 cannot be sharpened to an ί:if and

only if" in terms of the Killing form alone. For although B(x, x) < 0 is
necessary that X have a pure point spectrum, it is not sufficient. As a
counter-example, consider the element

x = μiM12+ λiMu, μ, λψ 0 real, \μ\ > \λ\ (4.2)

of the Lie algebra L of the Lorentz group L = SO(3,1) in the usual
(physical) basis Mμv = —Mvμ, μ, v = 1, . . ., 4. One has the Killing
form norms of i M12 and i MM equal to — 4 and -f 4 respectively, and they
are orthogonal with respect to B. Hence B (x, x) = — 4 (μ2 — λ2) < 0.
In spite of the fact that B (x, x) < 0 it can be directly proved (Appendix)
that x is not compact Ξ= belongs to no maximal compact subalgebra
K of L or, equivalently, given any such K, there is no inner automor-
phism9 of €r which transforms x into K. Therefore one is not guaranteed
via Theorem 1 that X has a pure point spectrum. On the other hand, one
can directly prove that it has a pure continuous spectrum.

9 Incidentally, the Theorem 5—3 given in R. HERMANK [9] is wrong. The last
part of it states that if K' is a subalgebra of a semi-simple G such that B restricted
to Kr is negative definite, then there is an inner automorphism of G transforming Kf

into any maximal compact subalgebra K. A counter example is given in the Appen-
dix. Moreover, it is not clear how to fix up this theorem: for example, adding the
hypothesis that K' is semi-simple does not seem to help. The further hypotheses
must guarantee that the corresponding connected subgroup K' is compact, so that
the analogue of Theorem 5—3 on the group level (HELGASON [3]; Theorem 2.1,
p. 218) can be applied.
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Proof. iM12 belongs to a maximal compact subalgebra, while
B(ίMM, iMM) = + 4 > 0, therefore by Theorem 1 they have respectively
pure point and pure continuous spectra. Moreover, [M12, MM] = 0.
Assume X has an eigenvector; then by Lemma 1 34? is spanned by its
eigenvectors, and since [X, iM12] = 0 we can find a basis φif i == 1, 2, . . .,
of 34? composed of common eigenvectors of X and iM12. But then the
ψi are eigenvectors of λiMM ~ X — μiM12, contradiction. Therefore
X has a pure continuous spectrum, QED.

(b) We conjecture that Theorem 1 can be sharpened as follows: "X
has a pure point spectrum if and only if x 6 some maximal compact sub-
algebra." This can be proved for the Lorentz group, for example, by
means of a classification of all its one-parameter subgroups up to con-
jugacy under inner automorphism [10]. Representatives of all the non-
compact subgroups with B(x, x) < 0 can be directly examined, and
Theorem 1 gives that they all have pure continuous spectra. Any equi-
valent xr then also has a pure continuous spectrum since on the Hubert
space an inner automorphism of G corresponds to a unitary trans-
formation, which preserves spectra (see Sec. 6).

For the general semi-simple group we expect that further Lie algebra
invariants — beyond B(x, x) — analogous to the higher Casimir in-
variants can be introduced by the method of WINTEBNITZ et al., so that
the compactness of x can be characterized by their values. Assuming
that the above conjecture were true, the discreteness of the spectrum
of X would then be characterized by certain values of these Lie algebra
invariants. I thank P. WINTERNITZ for fruitful discussions on this point.

(c) The spectral conditions given in Theorem 1 (and conjectured in
point (b)) should be useful in physics, because there one usually works
with the Lie algebra in a definite basis xi9 i = 1, 2, . . . N, with definite
structure constants c^Λ The Killing form metric is then gij = JJ cik

lc5l

h.
l,k

If the element in question is x = Σ aiχi> o n e n a s

B{x,x) = Σ aiaj9ij-
Another form of Theorem 1 follows immediately from the above:
Corollary 1. Given x £ Gr, X has a pure continuous spectrum unless its

roots are all pure imaginary.
Proof. If the roots are either all zero or not all pure imaginary, then

by the last part of the proof of Theorem 1 one sees that X cannot have
an eigenvector, QED.

5. Spectra of ,,Self-Adjoint" Cartan Subalgebras of Gc

It is convenient to introduce the notion of a "*-map" of a complex
Lie algebra Ĵ f c, with the same properties which would arise if one had a
skew-adjoint representation of one of its real forms on some Hubert



24 R. L. INGRAHAM :

space. Thus we define: a *-map of the complex Lie algebra =5?c is an

antilinear map which is involutory and reverses the Lie bracket. I.e.,

(aw + bz)* = aw* + bz*

a, b complex numbers; w, z ζ ££\ (5.1)

(3*)* = Z, [WZ]* = [z*20*] .

It can be shown that *-maps are associated 1 — 1 with real forms J5? of

j£?c, that is * <-> J5f if and only if x* — —x for all x ζ J2?10. Now in any

unitary representation of our group G, the Hubert space adjoint acting

on the complexified generator algebra Gc represented on ffl has the same

properties as (5.1). Hence the unitary representation determines

uniquely11 a *-map of Gc and we can use the same symbol * for both this

*-map and the Hubert space adjoint on the representing operators. This

provides a rigorous justification for neglecting the difference between an

element z of Gc and its image Z in U(GC) in the following theorems.

Consider a Cartan subalgebra CcG c which is fixed under the *-map

given by U, i.e., a self-adjoint Cartan subalgebra:

Def. C* = C O & £ C = Φ Λ * € C . (5.2)

It can easily be proved that C* = C if and only if one can find a basis
of C which belongs to G, i.e., if C is just the complexification of a Cartan
subalgebra (JG of G12. This also rests on Lemma 2, which we now give.

Lemma 2. / / z 6 Gc, Z* = -Z if and only if z 6 G.
Proof. The proof is an immediate consequence of the non-triviality

assumption that the representation of the Lie algebra G is faithful
(Ξ= the kernel is zero).

Let α1? α2, . . . ocr be the non-zero roots and eX{, elements of the root

spaces Gα.. Thus

[ h e X i ] = X j ( h ) e X i , h ί ϋ (5.3)

for j = 1, 2, . . . r. Then we have

Theorem 2. Given a self-adjoint Cartan subalgebra C C G c : C* = C. //

h C- 0 and its roots CCJ (h) are real, then H has a pure continuous spectrum

unless h* = h.

Proof. We introduce a basis of € : hi, i = 1, . . . /, such that ihi £ G,
as we may by the remark above. Let

1

<*j(h) = Σai<*j(hi) j=l,2,...r. (5.4)

1 0 Thus there are an infinite number of different *-maρs of a given Jδfe, because
not only do two non-isomorphic real forms give different *'s but also the infinite
number of isomorphic real forms of any one type.

11 This reduces to showing that given Z (• U(G0), thenZ* = — Z if and only if
Z £ U(G). This is a consequence of Lemma 2 below.

12 Any Cartan subalgebra C of Gc is conjugate to a self-adjoint one by an inner
automorphism of Gc, however, in general C* 4= C. See further remarks in Sec. 6.
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Assume that H has an eigenvector / £ 2$ and eigenvalue. But since the
Ή.i are (strongly) commuting self-adjoint operators, this will be so if and
only if all the Ri appearing in first sum (5.4) have this eigenvector / and
corresponding points m€ of their point spectra, thus by Lemma 1 if and
only if they all have pure point spectra. So let the sums go from 1 to
V ^ h where all the ai are now non-zero; therefore, by the above, all the
oc. (fii)9 ί = 1, . . . Γ, appearing in the second sum are real for j = 1, 2 . . . r.
But since the α3- (h) are real, this forces all the at to be real.

Proof. One gets immediately

Since the simple roots OCJ, j = 1, . . ., I ̂  Γ, are linearly independent13,
this has only the trivial solution Imα^ = 0, q.e.d. But then h* = Σ ^i^f
= Σ ciihi = h, QED. This completes the proof of Theorem 2.

A sort of a converse follows immediately:

Corollary 2. Let C be any Cartan subalgebra of Gc and OCJ, j = 1, 2, . . . r,

the corresponding non-zero roots. If h 6 C and h* — h, then H has a pure

continuous spectrum unless the OCJ (h) are all real.

Proof. Then ih ί G by Lemma 2, and use Cor. 1, QED.

6. Spectra of Other Elements of Gc

In practice one is interested only in the spectra of Cartan subalgebras
of Qc, so we shall confine ourselves to those elements. So given a general
Cartan subalgebra C C Crc what can we say about the spectra of its
elements ? For h 6 C,H = J -f iL where J and L are self-adjoint operators
on Jf, in general unbounded and non-commuting. Not much is known
about the spectra of such operators. Even though we have algebraic
criteria above which may decide whether J and L have pure point or
pure continuous spectra, we can say little about the type of spectrum
oίH.

Let us try another way. One knows that C is conjugate to any other
Cartan subalgebra of Gc by an inner automorphism14 of Gc, thus in
particular to any self-adjoint Cartan subalgebra, for whose spectra we
have the criteria above. Let then

C - (exp adz) C, C;* = C, z £ Gc (6.1)
for example.

Now notice that if any two elements x', x ζ G are connected by an
inner automorphism of G, they have the same type of spectrum.

1 3 JACOBSON [4]; chapter IV, paragraph 3.
1 4 JACOBSON [4]; Theorem 3, p. 273.
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Proof. I t is sufficient to treat the case

x' = (expad?/)a;, y € G . (6.2)

In proof realize that on 3F (6.2) reads15

X' = eγXe~γ (6.3)

where exp(± F) are unitary operators, whence the skew adjoint X' and
X have the same spectra [11], q.e.d.

But one cannot infer that H and H' such that h and h' are connected
by (6.1) have the same spectra. We know this because it is easy to find
(even self-adjoint) Cartan subalgebras which have different type spectra.
The failure of the inner automorphism (6.1) of Gc to preserve the spectrum
may be due to either of the following possibilities: (1) exp adz may not
be "implementable" to a relation like (6.3) on f̂7, that is, exp(±Z) may
not "exist" as an operator on 3tify more precisely, may not have the
dense domain &16. (2) exp(±J£) may "exist" in this sense but, being in
general non-unitary and even unbounded, it may not preserve the
spectrum of a self-adjoint operator.

The upshot is that the connection (6.1) of our general Cartan sub-
algebra C with a self-adjoint one can teach us nothing about the spectra
of elements of C on the basis of the theorems presented here if C* φ C.

7. Application

For a simple example, take the conformal space-time group = SO (4,2)
and let Mab = — Mba (a, b = 0, 1, . . ., 5) be the usual (in physics)
generators relative to co-ordinates ξa such that the fundamental quadratic
form is ξ2 — (f4)2 — 2f° | δ . One can introduce the self-adjoint Cartan
subalgebra C = complex span {h± = M12i h2 = iMM, h3 Ξ= iMQ6}, for
which the non-zero roots α3- (h{) are

) ( M ( ( U

- α(A.) (7.1)

W \ 0/

with the matrix convention

and their negatives. Thus all roots are real. Since h* == hv h* — — h2,
h* — ~h3, one can immediately infer from Theorems 1 and 2 what sort
of spectra the hi have in any non-trivial irreducible unitary representa-

1 5 JACOBSON [4]; top p. 282.
1 6 According to H. DOEBNEE, it is very probably provable that possibility (1)

cannot arise.
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tion of #0(4,2). In particular Jι3 = ίM05, which has the geometrical
interpretation of the generator of space-time dilatations, has a pure
continuous spectrum in any such representation of the conformal group.

Consider also iM5μ = ipμf which generates translations, i.e., pμ is the
four-momentum. Using the structure constants one computes

B ( i p μ , i Ί > μ ) = 0> μ = 1, . . . , 4 ;

in fact right from the Lie commutation relations one sees that the
suά(ipμ) are nilpotent. Thus from Theorem 1 the momenta have pure
continuous spectra in any unitary representations of this type.
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Appendix

Since any inner automorphism of L is equivalent to a Lorentz trans-
formation on the tensor indices of Mμv, the question is whether there
exists a Lorentz transformation Lμ

v such that if Mfμv = Lμ

λL
v

ξM
λξ,

then μM12 + λ Mu — real linear combination of the spatial components
M''i$', i,j— 1, 2, 3. This because one knows that any maximal compact
subalgebra is generated by the spatial components M'ij in some Lorentz
frame. But if we could attain this form, by a further spatial rotation we
could align this axial three-vector along the s-axis say, and divide out
the non-zero real coefficient. Hence it suffices to show that there is no
Lorentz transformation Lμ

v such that

M'12 ΞΞ LλμL\Mμv = //if12 φ

μ, λ real, φ 0 . (A.I)

Set 1 ^ Ξ I p L
2μ^ Yμ for convenience; then (A.I) is equivalent to

(a) X1Yi-Xi Y1 = μ {ά)X1Yί-XιY1 = 0

(b) Z 3 Γ4 - Z 4 Γ3 = λ (e) Z 2 Γ3 - Z 3 Γ2 = 0 (A.2)

(c) X.Y.-X.Y^O (f) X 2 Γ 4 - X 4 7 2 = 0

Proof. Consider (c) and (d). If all quantities there were non-zero, by
division of (c) by (d) and cross multiplication we would get X3 F 4 —
— X4 Y3 = 0, ̂ ξ (ΞΞ contradiction) with (b), since λ φ 0. Therefore at
least one of Xv X3, X4, Yv Y3, 7 4 must vanish if Lμ

v exists.
Case Xt = 0. Then Z 3 Y1 = 0 from (c). But Yx #= 0 from (a) since

μ Φ 0, therefore Xs = 0. From (d) Z 4 = 0. But then ̂  with (b).
Case 7 3 = 0. Then X3 Yτ = 0 from (c). But Z 3 φ 0 from (b) since

H O , thus Yx = 0. From (a) Xλ Φ 0 since μ Φ 0. Thus from (d) 7 4 = 0.
But X with (b).
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By similar arguments the other four cases likewise give contra-

dictions. Hence Lμ

v does not exist, QED.

Note that we have proved something actually stronger: the element

on the right hand of (A.I) can never be transformed into the single

component ΘM'μv, θ real φ 0, any μ, v, by any linear transformation

of space-time.

The same conclusion, namely that the element (4.2) generates a non-

compact subgroup for any μ, λ ={= 0, is a special case of the general

results of Ref. 15.
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